DUAN Xiaolin, FAN Yan, WANG Jinlin, et al. Isolation, Identification and Antimicrobial Activity Analysis of Antimicrobial Peptides from Epidermis Mucus of Sturgeon[J]. Science and Technology of Food Industry, 2023, 44(18): 67−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110148.
Citation: DUAN Xiaolin, FAN Yan, WANG Jinlin, et al. Isolation, Identification and Antimicrobial Activity Analysis of Antimicrobial Peptides from Epidermis Mucus of Sturgeon[J]. Science and Technology of Food Industry, 2023, 44(18): 67−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110148.

Isolation, Identification and Antimicrobial Activity Analysis of Antimicrobial Peptides from Epidermis Mucus of Sturgeon

More Information
  • Received Date: November 14, 2022
  • Available Online: July 12, 2023
  • To explore the antimicrobial activity of epidermis mucus, the basic components and amino acid composition were analyzed and the antimicrobial substances in the mucus were extracted in this study. Their antimicrobial activity, preservation effects on salmon were explored. The components with antimicrobial activity were isolated and purified by solid phase extraction, gel filtration chromatography and reverse phase high performance liquid chromatography. And the peptide sequences were identified. Then, the antimicrobial peptides were synthesized accordingly and their antimicrobial activities were verified. The results exhibited that the main composition of epidermis mucus of sturgeon was protein with 47.44%±0.59%. The total amino acid content was 459.68 mg/g, with a high content of basic amino acids and hydrophobic amino acids. The crude antimicrobial peptide exhibited significant antimicrobial activity against Bacillus subtilis. Crude antimicrobial peptide (50 mg/mL) significantly inhibited the growth of microorganisms and protein degradation during salmon preservation. The highest active component after final liquid chromatography purification exhibited an inhibition rate of 92.40%±4.50% against Bacillus subtilis and 75.43%±5.02% against Escherichia coli. The sequences of novel peptides were identified as HSETLHDV and PLTDWQL. The synthetic antimicrobial peptides of sturgeon epidermis mucus had obvious inhibitory effects on Bacillus subtilis, Escherichia coli and Shewanella baltica. Therefore, this study would provide a theoretical basis for exploring the antimicrobial value of sturgeon mucus and lay a foundation for the development and application of natural preservatives.
  • [1]
    尹一鸣, 徐永霞, 张朝敏, 等. 水产品贮藏期间风味劣变机理的研究进展[J]. 食品与发酵工业,2020,46(14):269−274. [YIN Y M, XU Y X, ZHANG Z M, et al. The progress on flavor deterioration mechanism of aquatic products during storage[J]. Food and Fermentation Industries,2020,46(14):269−274.

    YIN Y M, XU Y X, ZHANG Z M, et al. The progress on flavor deterioration mechanism of aquatic products during storage [J]. Food and Fermentation Industries, 2020, 46(14): 269-274.
    [2]
    TRAMPARI E, HOLDEN E R, WICKHAM G J, et al. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs[J]. NPJ Biofilms Microbiomes,2021,7(1):3. doi: 10.1038/s41522-020-00178-0
    [3]
    ALNOMASY S F. Antibacterial and anti-parasitic activities of Terfezia claveryi methanolic extract against some common pathogenic agents of infectious diarrhea[J]. Asian Pacific Journal of Tropical Biomedicine,2022,12(5):216−222. doi: 10.4103/2221-1691.343389
    [4]
    ALLCOCK S, YOUNG E H, HOLMES M, et al. Antimicrobial resistance in human populations: Challenges and opportunities[J]. Global Health, Epidemiology and Genomics,2017(2):1−7.
    [5]
    都津铭. 具有协同抑菌作用的丁香精油/茶多酚/纳米纤维素涂膜保鲜液的制备及其对带鱼涂膜保鲜效果的研究[D]. 杭州: 浙江大学, 2021

    DU J M. Preparation of clove essential oil/tea polyphenols/nano-cellulose coating preservative solution with synergistic bacteriostasis and its fresh-keeping effect on hailtail films[D]. Hangzhou: Zhejiang University, 2021.
    [6]
    姜晨. 复配抑菌剂对单增李斯特菌的抑制作用及其对三文鱼保鲜效果[D]. 上海: 上海海洋大学, 2017.

    JIANG C. Antibacterial effect of compound antibacterial agent against Listeria monocytogenes and its fresh-keeping effect on salmon[D]. Shanghai: Shanghai Ocean University, 2017.
    [7]
    张宁, 谢晶. 三文鱼的保鲜方法及研究进展[J]. 食品与机械,2015,31(3):256−259. [ZHANG N, XIE J. Research development on preservation methods of salmon[J]. Food and Machinery,2015,31(3):256−259.

    ZHANG N, XIE J. Research development on preservation methods of salmon [J]. Food and Machinery, 2015, 31(3): 256-259.
    [8]
    WANG G, MISHRA B, LAU K, et al. Antimicrobial peptides in 2014[J]. Pharmaceuticals (Basel),2015,8(1):123−150. doi: 10.3390/ph8010123
    [9]
    TYOR A K, KUMARI S. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, Hypophthalmichthys nobilis[J]. Int J Pharm Pharm Sci,2016,6(8):131−136.
    [10]
    GO H J, KIM C H, PARK J B, et al. Biochemical and molecular identification of a novel hepcidin type 2-like antimicrobial peptide in the skin mucus of the pufferfish Takifugu pardalis[J]. Fish Shellfish Immunol,2019,93:683−693. doi: 10.1016/j.fsi.2019.08.017
    [11]
    SU Y J. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco)[J]. Comp Biochem Physiol B Biochem Mol Biol,2011,158(2):149−154. doi: 10.1016/j.cbpb.2010.11.002
    [12]
    刘晓晨. 鲟鱼体表黏液及其凝集素分离、鉴定的研究[D]. 大连: 大连海洋大学, 2022

    LIU X C. Isolation and characterization of Acipenser schrenki Brandt skin mucus and its lectins[D]. Dalian: Dalian Ocean University, 2022.
    [13]
    虞恒. 鲟鱼鱼油的提取及对非酒精性脂肪肝病干预作用的研究[D]. 武汉: 武汉轻工大学, 2017

    YU H. Study on extraction of oil from sturgeon and its intervention of non-alcoholic fatty liver disease[D]. Wuhan: Wuhan Polytechnic University, 2017.
    [14]
    李佩玉. 基于多组学的鲟鱼鳔胶原蛋白肽延缓衰老作用及分子机制研究[D]. 镇江: 江苏大学, 2021

    LI P Y. Anti-aging effect and molecular mechanism of sturgeon bladder collagen peptide based on multi-omics[D]. Zhenjiang: Jiangsu University, 2021.
    [15]
    白雪, 高昕, 赵雪, 于明晓, 侯虎. 鲟鱼软骨硫酸软骨素的制备及结构分析[J]. 中国海洋药物,2022,41(2):28−36. [BAI X, GAO X, ZHAO X, et al. Preparation and structural analysis of chondroitin sulfate from sturgeon cartilage[J]. Chinese Journal of Marine Drugs,2022,41(2):28−36.

    BAI X, GAO X, ZHAO X, et al. Preparation and structural analysis of chondroitin sulfate from sturgeon cartilage [J]. Chinese Journal of Marine Drugs, 2022, 41(2): 28-36.
    [16]
    晋高伟. 鲶鱼粘液抗菌肽的鉴定及对水产品中致病菌抑制机理的研究[D]. 锦州: 渤海大学, 2016

    JIN G W. Identification of catfish mucus antimicrobial peptide and the study of inhibitory mechanism for pathogenic bacteria in aquatic product[D]. Jinzhou: Bohai University, 2016.
    [17]
    国家卫生和计划生育委员会. GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission. GB 5009.6-2016 National food safety standard. Determination of lipid in foods[S]. Beijing: China Standards Press, 2016.
    [18]
    苏沛文. 高卢蜜环菌多糖的提取分离纯化及其抗氧化活性研究[D]. 吉林: 吉林大学, 2022

    SU P W. Extraction, purification and antioxidant activity of Armillaria gallica polysaccharide[D]. Jilin: Jilin University, 2022.
    [19]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中氨基酸的测定: GB 5009.124-2016[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission. National food safety standard Determination of amino acids in foods: GB 5009.124-2016[S]. Beijing: China Standards Press, 2016.
    [20]
    周芳, 熊海涛, 张江, 柳永刚, 宋凯. 牛津杯法测定抗菌肽对四种有害微生物的抑制效果[J]. 饲料工业,2018,39(6):48−51. [ZHOU F, XIONG H T, ZHANG J, et al. The inhibitory effect of antimicrobial peptide against four kinds of harmful microorganisms by the Oxford cup method[J]. Feed Industry,2018,39(6):48−51.

    ZHOU F, XIONG H T, ZHANG J, et al. The inhibitory effect of antimicrobial peptide against four kinds of harmful microorganisms by the Oxford cup method [J]. Feed Industry, 2018, 39(6): 48-51.
    [21]
    田继源, 杨永安, 吴子健. 冻藏期间温度波动对三文鱼品质的影响[J]. 食品研究与开发,2020,41(11):66−70. [TIAN J Y, YANG Y A, WU Z J, et al. Effect of temperature fluctuation on salmon quality during freezing storage[J]. Food Research and Development,2020,41(11):66−70.

    TIAN J Y, YANG Y A, WU Z J, et al. Effect of Temperature Fluctuation on Salmon Quality during Freezing Storage [J]. Food Research and Development, 2020, 41(11): 66-70.
    [22]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.2-2016 食品国家安全标准 食品中菌落总数的测定[S]. 北京: 中国标准出版社, 2017

    National Health and Family Planning Commission, State Food and Drug Administration. GB 4789.2-2016 National food safety standard. Determination of aerobic plate count in food[S]. Beijing: China Standard Press, 2017.
    [23]
    SRIMGAL A, RAMESH T, SAHU J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−385. doi: 10.1016/j.lwt.2016.04.028
    [24]
    宗城. C端氨基酸手性对两亲短肽自组装的影响[D]. 青岛: 中国石油大学(华东), 2019

    ZONG C. The effect of terminal amino acid chirality on self-assembly of short amphiphilic peptides[D]. Qingdao: China University of Petroleum (East China), 2019.
    [25]
    ABDOLLAHZADEH E, REZAEI M, HOSSEINI H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat[J]. Food control,2014,35(1):177−183. doi: 10.1016/j.foodcont.2013.07.004
    [26]
    韩庆, 李丽立, 黄春红, 等. 洞庭湖鲶鱼体表黏液和肌肉营养组成对比分析[J]. 食品科学,2010,31(3):97−101. [HAN Q, LI L L, HUANG C H, et al. Comparison of nutritional components in surface mucus and muscle of catfish grown in Dongting Lake area[J]. Food Science,2010,31(3):97−101.

    HAN Q, LI L L, HUANG C H, et al. Comparison of nutritional components in surface mucus and muscle of catfish grown in Dongting Lake area [J]. Food Science, 2010, 31(3): 97-101.
    [27]
    SALINAS I, MAGADÁN S. Omics in fish mucosal immunity[J]. Developmental & Comparative Immunology,2017,75:99−108.
    [28]
    刘帅, 董毓卿, 岳福鹏, 等. 草鱼体表粘液凝集素制备及其性质研究[J]. 安徽农学通报,2021,27(3):9−11. [LIU S, DONG Y Q, YUE F P, et al. Study on preparation and characterization of lectin from surface mucus of Ctenopharyngodon idellus[J]. Anhui Agricultural Science Bulletin,2021,27(3):9−11.

    LIU S, DONG Y Q, YUE F P, et al. Study on preparation and characterization of lectin from surface mucus of Ctenopharyngodon idellus [J]. Anhui Agricultural Science Bulletin, 2021, 27(3): 9-11.
    [29]
    DASH S, DAS S K, SAMAL J, et al. Epidermal mucus, a major determinant in fish health: A review[J]. Iranian Journal of Veterinary Research,2018,19(2):72.
    [30]
    岑剑伟, 赵敏, 杨贤庆, 等. 罗非鱼副产物抗菌肽的制备及其对无乳链球菌抑菌活性分析[J]. 食品与发酵工业,2020,46(15):39−45. [CEN J W, ZHAO M, YANG X Q, et al. Preparation of antibacterial peptides from tilapia by-products and analysis of their antibacterial activity against Streptococcus agalactiae[J]. Food and Fermentation Industries,2020,46(15):39−45.

    CEN J W, ZHAO M, YANG X Q, et al. Preparation of antibacterial peptides from tilapia by-products and analysis of their antibacterial activity against Streptococcus agalactiae [J]. Food and Fermentation Industries, 2020, 46(15): 39-45.
    [31]
    OLIVA R, CHINO M, PANE K, et al. Exploring the role of unnatural amino acids in antimicrobial peptides[J]. Scientific Reports,2018,8(1):1−16.
    [32]
    HENZLER-WILDMAN K A, MARTINEZ G V, BROWN M F, et al. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37[J]. Biochemistry,2004,43(26):8459−8469. doi: 10.1021/bi036284s
    [33]
    SALAS-AMBROSIO P, TRONNET A, VERHAEGHE P, et al. Synthetic polypeptide polymers as simplified analogues of antimicrobial peptides[J]. Biomacromolecules,2020,22(1):57−75.
    [34]
    AMIRKHANOV N V, BARDASHEVA A V, TIKUNOVA N V, et al. Synthetic antimicrobial peptides: IV. Effect of cationic groups of lysine, arginine, and histidine on antimicrobial activity of peptides with a ‘Circular’ type of amphipathicity[J]. Russian Journal of Bioorganic Chemistry,2022,48(5):937−948. doi: 10.1134/S1068162022050041
    [35]
    ZHONG C, ZHU N, ZHU Y, et al. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria[J]. European Journal of Pharmaceutical Sciences,2020,141:105123. doi: 10.1016/j.ejps.2019.105123
    [36]
    SUN C, LI Y, CAO S, et al. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences[J]. International Journal of Molecular Sciences,2018,19(10):2951. doi: 10.3390/ijms19102951
    [37]
    DAVIDEK J, KHAN A W. Estimation of inosinic acid in chicken muscle and its formation and degradation during post-mortem aging[J]. Journal of Food Science,1967,32(2):155−157. doi: 10.1111/j.1365-2621.1967.tb01282.x
    [38]
    CHEN C, PAN F, ZHANG S, et al. Antibacterial activities of short designer peptides: A link between propensity for nanostructuring and capacity for membrane destabilization[J]. Biomacromolecules,2010,11(2):402−411. doi: 10.1021/bm901130u
    [39]
    LIMA P G, OLIVEIRA J T, AMARAL J L, et al. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance[J]. Life Sciences,2021,278:119647. doi: 10.1016/j.lfs.2021.119647
  • Cited by

    Periodical cited type(5)

    1. 隗立昂,李璐,马若飞,白圣贺,张爱国,牛康. 鱼类初加工装备关键技术研究进展. 现代农业装备. 2023(01): 2-7 .
    2. 陈朗,吴文锦,陈胜,石柳,郭晓嘉,汪兰. 淡水鱼前处理设备与技术研究现状和展望. 食品与机械. 2023(03): 207-216 .
    3. 潘扬,李涵,张莹,胡秋林,廖鄂,陈季旺. 粉蒸黄鳝加工工艺优化及米粉抗回生性能比较. 武汉轻工大学学报. 2023(06): 1-9 .
    4. 张军文,郑晓伟,陈庆余. 鱼体除鳞技术与除鳞装备研究综述. 安徽农学通报. 2021(01): 130-131 .
    5. 郑晓伟,陈庆余,张军文. 多段滚筒式罗非鱼高效低损去鳞工艺. 水产学报. 2021(07): 1101-1110 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return