CHEN Gu, JIANG Zhumao, WEI Zhengpeng, et al. Cold Plasma Treatment Accelerated the Oxidation and Structural Changes of Myofibrillar in Tilapia[J]. Science and Technology of Food Industry, 2023, 44(4): 88−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050196.
Citation: CHEN Gu, JIANG Zhumao, WEI Zhengpeng, et al. Cold Plasma Treatment Accelerated the Oxidation and Structural Changes of Myofibrillar in Tilapia[J]. Science and Technology of Food Industry, 2023, 44(4): 88−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050196.

Cold Plasma Treatment Accelerated the Oxidation and Structural Changes of Myofibrillar in Tilapia

More Information
  • Received Date: May 16, 2022
  • Available Online: December 16, 2022
  • To investigate the effects of cold plasma treatment on the oxidation and structure changes of myofibrillar proteins tilapia, the fish was treated by cold plasma with different time (0, 1, 2, 3, 4, 5 min) and different voltage (40, 50, 60, 70, 80 kV), respectively, the carbonyl content, sulfhydryl content, hydrophobicity, Zeta potential, SDS-PAGE, UV spectra, fluorescence spectra and Raman spectrometer of myofibrillar protein were measured after treatment. The results showed that the carbonyl content and surface hydrophobicity of myofibrillar protein were increased gradually, as the treatment time extending or voltage increased, while the total sulfhydryl and the active sulfhydryl content were decreased. When the treatment time was extending to 5 min, the total sulfhydryl and the active sulfhydryl content were decreased to 66.91 and 52.76 μmol/g, respectively. The carbonyl content increased from 1.23 to 2.16 nmol/mg, if the treatment voltage was increased to 80 kV. Cold plasma treatment decreased the absolute value of Zeta potential of myofibrillar protein. The myosin heavy chain band of myofibrillar protein was increased based on SDS-PAGE results. As treatment time extending and voltage increasing, the UV spectrum of myofibrillar protein was blue-shifted with an increased UV absorption intensity, and the fluorescence absorption intensity of protein was weakened. Based on the Raman spectrometer determination, the content of α-helix was increased, the contents of β-sheet and β-turn were reduced, and the random coils had no obvious changes in myofibrillar protein of tilapia after cold plasma treatment. In conclusion, extending the treatment time or increasing treatment voltage of cold plasma can accelerate the oxidation of myofibrillar protein to result in the changes of their second-order structure and conformation.
  • [1]
    程琳丽, 李来好, 马海霞. 罗非鱼的保鲜研究进展[J]. 食品工业科技, 2013, 34(11): 372−375

    CHENG L L, LI L H, MA H X. Research progress in preservation of tilapia[J]. Science and Technology of Food Industry, 2013, 34(11): 372−375.
    [2]
    李娜, 孙敏, 王春华, 等. 水产品保鲜贮藏期间品质评价方式的研究进展[J]. 食品安全质量检测学报, 2022, 13(4): 1099−1105

    LI N, SUN M, WANG C H, et al. Research progress on quality evaluation indexes of aquatic products during fresh-keeping and storage[J]. Journal of Food Safety & Quality, 2022, 13(4): 1099−1105.
    [3]
    FEIZOLLAHI E, MISRA N N, ROOPESH M S. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(4): 666-689.
    [4]
    ALBERTOS I, MARTÍN-DIANA A B, CULLEN P J, et al. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets[J]. Innovative Food Science & Emerging Technologies, 2017, 44: 117-122.
    [5]
    周结倩, 张坤, 徐杰, 等. 低温等离子体在水产品保鲜中的应用研究进展[J]. 食品与发酵工业,2022,48(22):328−337. [ZHOU J Q, ZHANG K, XU J, et al. Research progress on application of low temperature plasma in aquatic products preservation[J]. Food and Fermentation Industries,2022,48(22):328−337.
    [6]
    PÉREZ-ANDRÉS J M, DE ALBA M, HARRISON S M, et al. Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage[J]. LWT, 2020, 118: 108697.
    [7]
    HUANG Y M, CHANG W C, HSU C L. Inactivation of norovirus by atmospheric pressure plasma jet on salmon sashimi[J]. Food Research International, 2021, 141: 110108.
    [8]
    姜竹茂, 桑晓涵, 潘芸芸, 等. 低温等离子体对鲅鱼脂质与蛋白质氧化的影响[J]. 食品与发酵工业,2022,48(23):217−224. [JIANG Z M, SANG X H, PAN Y Y, et al. Effects of cold plasma treatment on oxidation of lipids and protein of Spanish mackerel[J]. Food and Fermentation Industries,2022,48(23):217−224.
    [9]
    杜曼婷, 黄俐, 高梦丽, 等. 介质阻挡放电低温等离子体处理对宰后羊肉品质的影响[J]. 食品科学,2022,43(21):87−92. [DU M T, HUANG L, GAO M L, et al. Effect of dielectric barrier discharge low temperature plasma treatment on mutton quality[J]. Food Science,2022,43(21):87−92.
    [10]
    WANG H, PEI Z, XUE C, et al. Comparative study on the characterization of myofibrillar proteins from tilapia, golden pompano and skipjack tuna[J]. Foods, 2022, 11(12): 1705.
    [11]
    HAN Z, CAI M, CHENG J, et al. Effects of microwave and water bath heating on the interactions between myofibrillar protein from beef and ketone flavour compounds[J]. International Journal of Food Science & Technology, 2019, 54(5): 1787−1793.
    [12]
    MESQUITA C S, OLIVEIRA R, BENTO F, et al. Simplified 2, 4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins[J]. Analytical Biochemistry, 2014, 458: 69-71.
    [13]
    徐红艳, 张珍, 陈雪琴, 等. 复配香辛料精油处理对冷藏藏羊肉氧化特性的影响[J]. 食品科学技术学报,2020,38(2):90−98. [XU H Y, ZHANG Z, CHEN X Q, et al. Effect of compound spice essential oil on oxidation characteristics of Tibetan mutton during refrigeration[J]. Journal of Food Science and Technology,2020,38(2):90−98. doi: 10.3969/j.issn.2095-6002.2020.02.012
    [14]
    黄倩, 黄兰兰, 陈炼红, 等. 冻融对冷藏藏羊肉保水性及蛋白氧化和溶解特性的影响[J]. 食品工业科技, 2021, 42(19): 21−28

    HUANG Q, HUANG L L, CHEN L H, et al. Effects of repeated freezing-thawing on water holding capacity, myofibrillar protein oxidation and dissolution characteristics of Tibetan mutton during chilled storage[J]. Science and Technology of Food Industry, 2021, 42(19): 21−28.
    [15]
    李子晗, 费子璇, 张瑞丽, 等. 低钠条件下pH值对肌原纤维蛋白乳化性能的影响[J]. 包装工程, 2022, 43(1): 89−97

    LI Z H, FEI Z X, ZHANG R L, et al. Effects of pH on the emulsifying properties of lamb myofibrillar protein under low sodium concentration[J]. Packaging Engineering, 2022, 43(1): 89−97.
    [16]
    石钢鹏, 阙凤, 高天麒, 等. 速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响[J]. 食品工业科技, 2021, 42(20): 309−319

    SHI G P, QUE F, GAO T Q, et al. Effects of different quick-freezing methods on protein properties of largemouth bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319.
    [17]
    张海璐, 黄翔, 杨燃, 等. 氧化对羊肉肌原纤维蛋白分子与理化特性的影响[J]. 食品科学,2020,41(23):8−14. [ZHANG H L, HUANG X, YANG R, et al. Effect of oxidation on molecular and physicochemical properties of mutton myofibrillar protein[J]. Food Science,2020,41(23):8−14. doi: 10.7506/spkx1002-6630-20200615-197
    [18]
    ZOU X, HE J, ZHAO D, et al. Structural changes and evolution of peptides during chill storage of pork[J]. Frontiers in Nutrition, 2020, 7: 151.
    [19]
    XIONG Y L, GUO A. Animal and plant protein oxidation: Chemical and functional property significance[J]. Foods, 2020, 10(1): 40.
    [20]
    PANPIPAT W, CHAIJAN M. Effect of atmospheric pressure cold plasma on biophysical properties and aggregation of natural actomyosin from threadfin bream (Nemipterus bleekeri)[J]. Food and Bioprocess Technology, 2020, 13(5): 851−859.
    [21]
    LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: A review[J]. Molecular Nutrition & Food Research, 2011, 55(1): 83−95.
    [22]
    唐玲玲, 严金红, 徐慧倩, 等. 低温等离子体对南美白对虾肌肉蛋白质性质和结构的影响[J]. 食品安全质量检测学报, 2022, 13(10): 3083−3089

    TANG L L, YAN J H, XU H Q, et al. Effects of cold atmospheric plasma on protein properties and structure of Penaeus vannamei[J]. Journal of Food Safety and Quality, 2022, 13(10): 3083−3089.
    [23]
    CHELH I, GATELLIER P, SANTÉ-LHOUTELLIER V. Technical note: A simplified procedure for myofibril hydrophobicity determination[J]. Meat Science, 2006, 74(4): 681−683.
    [24]
    MIAO W, NYAISABA B M, KODDY J K, et al. Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma)[J]. International Journal of Food Science & Technology, 2020, 55(2): 517−525.
    [25]
    孙克奎, 金声琅, 潘雅燕, 等. 等离子体活性水腌制对猪肉肌原纤维蛋白氧化及结构的影响[J]. 食品科学,2020,41(14):36−41. [SUN K K, JIN S L, PAN Y Y, et al. Effects of plasma-activated water curing on oxidation and structure of pork myofibrillar protein[J]. Food Science,2020,41(14):36−41. doi: 10.7506/spkx1002-6630-20191029-319
    [26]
    ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry, 2015, 188: 111−118.
    [27]
    DU X, LI H, NUERJIANG M, et al. Influence of repeated freeze–thaw treatments on the functional and structural properties of myofibrillar protein from mirror carp (Cyprinus carpio L.)[J]. Food Biophysics, 2021, 16(4): 492−501.
    [28]
    张潮, 吴宇桐, 孔保华. 超声辅助冷冻对鸡胸肉肌原纤维蛋白乳化稳定性的影响[J]. 食品科学,2020,41(17):104−110. [ZHANG C, WU Y T, KONG B H. Effect of ultrasound-assisted freezing on emulsifying stability of myofibrillar protein from chicken breast[J]. Food Science,2020,41(17):104−110. doi: 10.7506/spkx1002-6630-20190817-189
    [29]
    OLATUNDE O O, SINGH A, SHIEKH K A, et al. Effect of high voltage cold plasma on oxidation, physiochemical, and gelling properties of myofibrillar protein isolate from asian sea bass (Lates calcarifer)[J]. Foods,2021,10(2):326.
    [30]
    KODDY J K. Understanding the role of atmospheric cold plasma (ACP) in maintaining the quality of hairtail (Trichiurus lepturus)[J]. Food Chemistry,2021:8.
    [31]
    LANGE R, BALNY C. UV-visible derivative spectroscopy under high pressure[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1595(1−2):80−93.
    [32]
    康怀彬, 邹良亮, 张慧芸, 等. 高温处理对牛肉蛋白质化学作用力及肌原纤维蛋白结构的影响[J]. 食品科学,2018,39(23):80−86. [KANG H B, ZOU L L, ZHANG H Y, et al. Effect of high temperature treatment on chemical forces of beef proteins and structure of myofibrillar protein[J]. Food Science,2018,39(23):80−86. doi: 10.7506/spkx1002-6630-201823013
    [33]
    CAO Y, TRUE A D, CHEN J, et al. Dual role (anti- and pro-oxidant) of gallic acid in mediating myofibrillar protein gelation and gel in vitro digestion[J]. Journal of Agricultural and Food Chemistry, 2016, 64(15): 3054−3061.
    [34]
    汪经邦, 谢晶, 刘大勇. 暗纹东方鲀低温贮藏期间水分、质地和蛋白质的变化规律[J]. 食品科学,2020,41(21):213−221. [WANG J B, XIE J, LIU D Y. Changes in water mobility, texture and protein structure in Takifugu obscurus during low temperature storage[J]. Food Science,2020,41(21):213−221. doi: 10.7506/spkx1002-6630-20191008-036
    [35]
    李学鹏, 蔺博燕, 王金厢, 等. 羟自由基氧化对草鱼肌原纤维蛋白热聚集行为的影响[J]. 食品与发酵工业, 2020, 46(10): 27−34

    LI X P, LIN B Y, WANG J X, et al. Effect of hydroxyl radical oxidation on the thermal aggregation behavior of myofibrillar protein from grass carp (Ctenopharyngodon idellus)[J]. Food and Fermentation Industries, 2020, 46(10): 27−34.
    [36]
    WANG J Y, YANG Y L, TANG X Z, et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J]. Ultrasonics Sonochemistry, 2017, 38: 225−233.
    [37]
    吕彤, 林俊杰, 周昌瑜, 等. 热处理强度对猪肉肌球蛋白结构及风味成分吸附特性的影响[J]. 农业工程学报,2016,32(8):285−291. [LÜ T, LIN J J, ZHOU C Y, et al. Effect of heat treatment intensity on structure and binding capacity of volatile compounds of myosin[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(8):285−291.
  • Cited by

    Periodical cited type(3)

    1. 陈家伟,谈婷,丁丽,王星,肖理文. 黄曲霉毒素B_1/呕吐毒素/玉米赤霉烯酮三合一时间分辨荧光定量快速检测卡的样品稀释液优化. 粮食加工. 2025(02): 114-119+131 .
    2. 韩冰,贾永梅,李志果,周国华,刘培炼,余彪,张玲玲,薛茗月. 核酸适配体传感器在黄曲霉毒素B1检测中应用研究进展. 分析科学学报. 2022(03): 371-376 .
    3. 王哲,陈芳,董丽,胡小松. 表面增强拉曼光谱在食源性致病菌检测中的应用研究进展. 食品研究与开发. 2022(17): 184-193 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (203) PDF downloads (16) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return