YANG Yunfei, WANG Yuwan, LIN Jiazheng, et al. Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process[J]. Science and Technology of Food Industry, 2023, 44(19): 199−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100312.
Citation: YANG Yunfei, WANG Yuwan, LIN Jiazheng, et al. Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process[J]. Science and Technology of Food Industry, 2023, 44(19): 199−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100312.

Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process

More Information
  • Received Date: November 01, 2022
  • Available Online: August 04, 2023
  • Fermentation is a critical process of black tea quality formation and oxygen is the key factor affecting the fermentation, so it is important to analyze the effect of oxygen in fermentation on the quality and metabolites of black tea. One bud and two leaves of 'Longjing 43' tea varieties were used as materials for low oxygen fermentation (5%) , natural fermentation (21%) and oxygen-enriched fermentation (36%) treatments, and the effects of oxygen concentration on sensory quality, non-volatile and volatile metabolites of black tea were analyzed by sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), and the parameters of oxygen-enriched fermentation of black tea were optimized by single factor combined with response surface analysis. Results showed that oxygen-enriched fermentation could significantly improve the taste and aroma quality of black tea compared with nature fermentation (P<0.05). Compared with natural fermentation, the content of key taste compounds catechins and gallic acid (GA) decreased significantly (P<0.05), total theaflavins (TFs) and its monomer increased significantly (P<0.05), and amino acids did not change significantly (P>0.05) in oxygen-enriched fermentation. A total of 25 volatile compounds differed significantly in three treatments, including 12 aldehydes, 2 ketones, 3 alcohols, 3 alkenes, and 5 esters, and the content of most differing compounds increased with increasing oxygen concentration. The optimized parameters of oxygen-enriched black tea were: Oxygen concentration of 40%, oxygenation time of 1.5 h, fermentation time of 4 h. And the contents of TFs, TF, TF3G, TF3'G and TFDG of black tea were 2.86%, 0.25%, 1.71%, 0.24% and 0.68%, respectively. The results of this study would provide an important basis for guiding black tea processing and quality control.
  • [1]
    ZHAO D Y, NAGENDRA S. Antiradical and tea polyphenol-stabilizing ability of functional fermented soymilk–tea beverage[J]. Food Chemistry,2014,158(8):262−269.
    [2]
    滑金杰, 袁海波, 江用文. 我国红茶产业现状、加工进展及前景展望[J]. 华中农业大学学报,2022,41(5):16−23. [HUA J J, YUAN H B, JIANG Y W. Current situation, processing progress and prospect of China’s black tea industry[J]. Journal of Huazhong Agricultural University,2022,41(5):16−23. doi: 10.3969/j.issn.1000-2421.2022.5.hznydx202205003

    HUA J J, YUAN H B, JIANG Y W. Current situation, processing progress and prospect of China’s black tea industry[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 16-23. doi: 10.3969/j.issn.1000-2421.2022.5.hznydx202205003
    [3]
    MA C H, HUNG Y C. Effect of brewing conditions using a single-serve coffee maker on black tea (Lapsang Souchong) quality[J]. Food Science & Nutritiong,2020,8(8):4379−4387.
    [4]
    钱园凤, 叶阳, 周小芬, 等. 红茶发酵技术研究现状分析[J]. 食品工业科技,2012,33(23):388−392. [QIAN Y F, YE Y, ZHOU X F, et al. Current research situation in black tea fermentation technology[J]. Science and Technology of Food Industry,2012,33(23):388−392. doi: 10.13386/j.issn1002-0306.2012.23.066

    QIAN Y F, YE Y, ZHOU X F, et al. Current research situation in black tea fermentation technology[J]. Science and Technology of Food Industry, 2012, 33(23): 388-392. doi: 10.13386/j.issn1002-0306.2012.23.066
    [5]
    黄怀生, 黎娜, 钟兴刚, 等. 自然发酵工夫红茶品质形成与儿茶素氧化动力学分析[J]. 食品与发酵工业,2023,49(8):164−169. [HUANG H S, LI N, ZHONG X G, et al. Analysis of quality formation and catechin oxidation kinetics of congou black tea through natural fermentation[J]. Food and Fermentation Industries,2023,49(8):164−169.

    HUANG H S, LI N, ZHONG X G, et al. Analysis of quality formation and catechin oxidation kinetics of congou black tea through natural fermentation [J]. Food and Fermentation Industries, 2023, 49(8): 164-169. .
    [6]
    潘科. 茶儿茶素单体酶促氧化反应特征与红茶饱和氧发酵机制研究[D]. 成都: 四川农业大学, 2017

    PAN K. Research for character of tea catechins enzymatic oxidative reaction and model of black tea fermentation with saturated oxygen[D]. Chengdu: Sichuan Agricultural University, 2017.
    [7]
    OBANDA M, OWUOR P O, MANG O R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature[J]. Food Chemistry,2002,75(4):395−404.
    [8]
    REN G X, WANG Y J, NING J M, et al. Evaluation of Dianhong black tea quality using near infrared hyperspectral imaging technology[J]. Journal of the Science of Food and Agriculture,2021,101(5):2135−2142. doi: 10.1002/jsfa.10836
    [9]
    TANMOY S, VIJAYAKUMAR C, SHRILEKHA D, et al. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea[J]. Journal of Food Science & Technology,2015,52(4):2387−2393.
    [10]
    ZHU K, OUYANG J, HUANG J A, et al. Research progress of black tea thearubigins: A review[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1556−1566. doi: 10.1080/10408398.2020.1762161
    [11]
    ULF W S, BLAUTH N, STEFFI N, et al. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments[J]. Journal of Agricultural & Food Chemistry,2014,62(31):7854−7861.
    [12]
    NIKOLAI K, MICHAEL N C, MULLER A. Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: Evidence by tandem LC-MS[J]. Food & Function,2010,1(2):180−199.
    [13]
    俞露婷, 袁海波, 王伟伟, 等. 红茶发酵过程生理生化变化及调控技术研究进展[J]. 中国农学通报,2015,31(22):263−269. [YU L T, YUAN H B, WANG W W, et al. Research progress of physiological and biochemical changes and new techniques in fermentation of black tea[J]. Chinese Agricultural Science Bulletin,2015,31(22):263−269. doi: 10.11924/j.issn.1000-6850.casb15030076

    YU L T, YUAN H B, WANG W W, et al. Research progress of physiological and biochemical changes and new techniques in fermentation of black tea[J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 263-269. doi: 10.11924/j.issn.1000-6850.casb15030076
    [14]
    方世辉, 王先锋, 汪惜生. 不同发酵温度和程度对工夫红茶品质的影响[J]. 中国茶叶加工,2004(2):19−21. [FANG S H, WANG X F, WANG X S. Effect of different fermentation temperature and degree on the quality of Gongfu black tea[J]. China Tea Processing,2004(2):19−21.

    FANG S H, WANG X F, WANG X S, Effect of different fermentation temperature and degree on the quality of Gongfu black tea[J]. China Tea Processing, 2004(2): 19−21.
    [15]
    赵和涛. 红茶发酵时主要化学变化及不同发酵方法对工夫红茶品质的影响[J]. 蚕桑茶叶通讯,1989(2):10−13. [ZHAO H T. The main chemical changes of black tea during fermentation and the effects of different fermentation methods on the quality of Gongfu black tea[J]. Newsletter of Sericulture and Tea,1989(2):10−13.

    ZHAO H T. The main chemical changes of black tea during fermentation and the effects of different fermentation methods on the quality of Gongfu black tea[J]. Newsletter of Sericulture and Tea, 1989(2): 10-13.
    [16]
    宫连瑾, 薄佳慧, 杜哲儒, 等. 基于代谢组学分析工夫红茶发酵过程中代谢物的变化[J]. 食品工业科技,2021,42(21):8−16. [GONG L J, BO J H, DU Z R, et al. Metabolomics analysis of changes in metabolites during the fermentation process of Congou black tea[J]. Science and Technology of Food Industry,2021,42(21):8−16. doi: 10.13386/j.issn1002-0306.2021030361

    GONG L J, BO J H, DU Z R, et al. Metabolomics analysis of changes in metabolites during the fermentation process of Congou black tea[J]. Science and Technology of Food Industry, 2021, 42(21): 8−16. doi: 10.13386/j.issn1002-0306.2021030361
    [17]
    宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 8-9, 200-203

    WAN X C. Biochemistry of tea [M]. Beijing: China Agriculture Press, 2003, 8-9, 200-203.
    [18]
    桂安辉. 工夫红茶发酵过程中挥发性物质及品质成分变化研究[D]. 北京: 中国农业科学院, 2015

    GUI A H. Study on the variation of volatile substances and quality components in Congou black tea during fermentation process[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [19]
    曾小燕. 红茶香气研究进展[J]. 蚕桑茶叶通讯,2022(3):11−13. [ZENG X Y. Research progress on aroma of black tea[J]. Newsletter of Sericulture and Tea,2022(3):11−13. doi: 10.3969/j.issn.1007-1253.2022.03.005

    ZENG X Y. Research progress on aroma of black tea[J]. Newsletter of Sericulture and Tea, 2022(3): 11-13. doi: 10.3969/j.issn.1007-1253.2022.03.005
    [20]
    李琛, 岳翠男, 杨普香, 等. 工夫红茶特征香气研究进展[J]. 食品安全质量检测学报,2021,12(22):8834−8842. [LI C, YUE C N, YANG P X, et al. Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety and Quality,2021,12(22):8834−8842. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.028

    LI C, YUE C N, YANG P X, et al. Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety and Quality, 2021, 12(22): 8834-8842. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.028
    [21]
    刘飞, 王云, 张厅, 等. 红茶加工过程香气变化研究进展[J]. 茶叶科学,2018,38(1):9−19. [LIU F, WANG Y, ZHANG T, et al. Review on aroma change during black tea processing[J]. Journal of Tea Science,2018,38(1):9−19. doi: 10.3969/j.issn.1000-369X.2018.01.002

    LIU F, WANG Y, ZHANG T, et al. Review on aroma change during black tea processing[J]. Journal of Tea Science, 2018, 38(1): 9-19. doi: 10.3969/j.issn.1000-369X.2018.01.002
    [22]
    董春旺, 叶阳, 江用文, 等. 工夫红茶可视化富氧发酵机设计及试验研究[J]. 茶叶科学,2015,35(4):370−376. [DONG C W, YE Y, JIANG Y W, et al. Design and experimental investigation of Congou black tea visual aerobic fermentation machine[J]. Journal of Tea Science,2015,35(4):370−376. doi: 10.3969/j.issn.1000-369X.2015.04.014

    DONG C W, YE Y, JIANG Y W, et al. Design and experimental investigation of Congou black tea visual aerobic fermentation machine[J]. Journal of Tea Science, 2015, 35(4): 370-376. doi: 10.3969/j.issn.1000-369X.2015.04.014
    [23]
    潘科, 冯林, 陈娟, 等. HS-SPME-GC-M联用法分析不同通氧发酵加工工艺红茶香气成分[J]. 食品科学,2015,36(8):181−186. [PAN K, FENG L, CHEN J, et al. Analysis of aroma compounds in black tea ventilated with oxygen for different durations during the fermentation process by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2015,36(8):181−186. doi: 10.7506/spkx1002-6630-201508033

    PAN K, FENG L, CHEN J, et al. Analysis of aroma compounds in black tea ventilated with oxygen for different durations during the fermentation process by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science, 2015, 36(8): 181-186. doi: 10.7506/spkx1002-6630-201508033
    [24]
    程启坤. 红茶色素系统分析法[J]. 中国茶叶,1981(1):17. [CHEN Q K. Systematic analysis of black tea pigment[J]. Chinese tea,1981(1):17.

    CHEN Q K. Systematic analysis of black tea pigment[J]. Chinese tea, 1981(1): 17
    [25]
    张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009

    ZHANG Z Z. Experimental course of tea biochemistry [M]. Beijing: China Agriculture Press, 2009.
    [26]
    CHEN L, WANG W W, ZHANG J Y, et al. Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway [J]. Food Chemistry, 2021, 337.
    [27]
    XU Y Q, ZHANG Y N, CHEN J X, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea[J]. Food Chemistry,2018,258(30):16−24.
    [28]
    LIU K, APPALARAJU J, DHANARAJ P, et al. Plasticity of the ligand binding pocket in the bitter taste receptor T2R7[J]. Biochimica et Biophysica Acta Biomembranes,2018,1860(5):991−999. doi: 10.1016/j.bbamem.2018.01.014
    [29]
    RAVICHANDRAN R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma[J]. Food Chemistry,2002,78(1):23−28. doi: 10.1016/S0308-8146(01)00303-X
  • Related Articles

    [1]ZHU Wenzhen, FAN Yingying, XIE Shaohua, ZHU Yanping, XUAN Hongzhuan. Research Progress of the Anti-inflammatory Effects of Honey[J]. Science and Technology of Food Industry, 2024, 45(14): 426-434. DOI: 10.13386/j.issn1002-0306.2023090211
    [2]ZHU Yingying, LUAN Qian, ZENG Fanzheng, WANG Xiaona, YUAN Yongjun, CAI Luyun. Progress on the Anti-inflammatory, Anti-cancer Activities and Mechanism of Action of Fucoxanthin[J]. Science and Technology of Food Industry, 2024, 45(11): 341-350. DOI: 10.13386/j.issn1002-0306.2023040267
    [3]YANG Jing, LIU Dingding, CHEN Teng, LIU Jing, MA Xiuping, WANG Zuhua. Extraction Process Optimization and Antioxidant, Anti-Inflammatory Activity of Total Flavonoids from Aletris spicata (Thunb.) Franch.[J]. Science and Technology of Food Industry, 2024, 45(2): 192-200. DOI: 10.13386/j.issn1002-0306.2023040190
    [4]HUANG Jiahuan, ZHANG Mingru, LUO Luxiang, JIANG Xiaolin, YANG Quan, CHENG Xuanxuan. Research Progress on the Preparation and Anti-inflammatory Mechanism of Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(4): 413-419. DOI: 10.13386/j.issn1002-0306.2021010260
    [5]SUN Chang-wu, XIE Yun-fei, YAO Wei-rong, GUO Ya-hui, CHENG Yu-liang, QIAN He. Effect of Germination on the Anti-oxidation and Anti-inflammatory of Qingke β-glucan[J]. Science and Technology of Food Industry, 2020, 41(17): 308-313. DOI: 10.13386/j.issn1002-0306.2020.17.052
    [6]WANG Xiong, ZHAO Yan, XU Ming-sheng, YAO Yao, ZHANG Meng-ya, TU Yong-gang. Research progress in the preparation, isolation, identification and anti-inflammatory mechanism of anti-inflammatory peptides derived from food[J]. Science and Technology of Food Industry, 2017, (15): 335-341. DOI: 10.13386/j.issn1002-0306.2017.15.063
    [7]YANG Hui-wen, ZHANG Xu-hong, LIANG Jia-jun, PAN Yu-fang. Research of extraction, purification and anti-inflammatory effect of total flavonoids from Acanthopanax Trifoliatus (Linn.) Merr. leaves[J]. Science and Technology of Food Industry, 2014, (08): 295-298. DOI: 10.13386/j.issn1002-0306.2014.08.058
    [8]Study on anti-oxidation and anti-inflammatory activity of Capsicum annuum leaves polyphenols[J]. Science and Technology of Food Industry, 2013, (08): 346-349. DOI: 10.13386/j.issn1002-0306.2013.08.013
    [9]Study on anti-inflammatory biological activities of glucosides from the fruits of Cucurbita moschata[J]. Science and Technology of Food Industry, 2013, (03): 354-357. DOI: 10.13386/j.issn1002-0306.2013.03.010
    [10]Anti-inflammatory and anti-nociceptive effect of the fruit of Schefflera arboricola Hayata in experimental animal models[J]. Science and Technology of Food Industry, 2012, (24): 397-398. DOI: 10.13386/j.issn1002-0306.2012.24.009
  • Cited by

    Periodical cited type(9)

    1. 曹雪丽,韩笑,李屿恺,王泽莹,董海钰,杨娟,郭晓. 响应面法优化泰山女儿茶总黄酮提取工艺及其抗氧化活性研究. 广东化工. 2024(06): 7-10+60 .
    2. 周志红,赵昕,胡勤,肖明明. 超声波处理与纤维素酶协同提取山楂总多酚的工艺优化研究. 当代化工研究. 2024(11): 152-155 .
    3. 黄月,向海芹,王双辉,龚意辉,陈致印. 穇子多酚的分离纯化及其抗氧化能力研究. 食品工业. 2023(01): 42-46 .
    4. 曾诗琴,梁强,李云成,赵玲,徐霞,熊伟,宣朴,姚英政. 浓香菜籽油SiO_2脱胶工艺优化及品质分析. 中国油脂. 2023(04): 21-26 .
    5. 王媛媛,郝璟嵘,闫思颖,张甜甜,党玲,王晓婧. 沙棘冻干粉泡腾片的制备工艺优化及其品质分析. 食品工业科技. 2023(10): 235-241 . 本站查看
    6. 杨春晖,王文平,续丹丹,崔宇倩,鞠岩,许春艳,吕小婷. 不同原料酿造酱油功能成分及抗氧化活性比较. 食品工业科技. 2023(14): 318-325 . 本站查看
    7. 刘敏卓,张小月,张灵芝,曹孟君,叶素芳,吴泽华,张杰,曾志红. 竹茹总黄酮超声波处理与纤维素酶协同提取工艺优化及其体外抗氧化活性分析. 食品工业科技. 2023(20): 221-229 . 本站查看
    8. 张鑫,朱青永,徐慧敏,吴梦园,陈小娥,陈启和,刘政捷. 黄绿卷毛菇中原伊鲁烷型倍半萜芳基酯提取工艺优化及活性研究. 浙江大学学报(农业与生命科学版). 2023(06): 813-824 .
    9. 关玉婷,陈瑞瑞,蔡如玉,范蓓,孙晶,张瑞,张紫阳,常世敏. 超声辅助提取茄皮酚工艺优化及其降血糖功效研究. 食品工业科技. 2022(24): 254-260 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (264) PDF downloads (16) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return