YANG Yunfei, WANG Yuwan, LIN Jiazheng, et al. Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process[J]. Science and Technology of Food Industry, 2023, 44(19): 199−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100312.
Citation: YANG Yunfei, WANG Yuwan, LIN Jiazheng, et al. Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process[J]. Science and Technology of Food Industry, 2023, 44(19): 199−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100312.

Effect of Oxygen Concentration in Fermentation on Black Tea Quality and Optimization of Oxygen-enriched Fermentation Process

More Information
  • Received Date: November 01, 2022
  • Available Online: August 04, 2023
  • Fermentation is a critical process of black tea quality formation and oxygen is the key factor affecting the fermentation, so it is important to analyze the effect of oxygen in fermentation on the quality and metabolites of black tea. One bud and two leaves of 'Longjing 43' tea varieties were used as materials for low oxygen fermentation (5%) , natural fermentation (21%) and oxygen-enriched fermentation (36%) treatments, and the effects of oxygen concentration on sensory quality, non-volatile and volatile metabolites of black tea were analyzed by sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), and the parameters of oxygen-enriched fermentation of black tea were optimized by single factor combined with response surface analysis. Results showed that oxygen-enriched fermentation could significantly improve the taste and aroma quality of black tea compared with nature fermentation (P<0.05). Compared with natural fermentation, the content of key taste compounds catechins and gallic acid (GA) decreased significantly (P<0.05), total theaflavins (TFs) and its monomer increased significantly (P<0.05), and amino acids did not change significantly (P>0.05) in oxygen-enriched fermentation. A total of 25 volatile compounds differed significantly in three treatments, including 12 aldehydes, 2 ketones, 3 alcohols, 3 alkenes, and 5 esters, and the content of most differing compounds increased with increasing oxygen concentration. The optimized parameters of oxygen-enriched black tea were: Oxygen concentration of 40%, oxygenation time of 1.5 h, fermentation time of 4 h. And the contents of TFs, TF, TF3G, TF3'G and TFDG of black tea were 2.86%, 0.25%, 1.71%, 0.24% and 0.68%, respectively. The results of this study would provide an important basis for guiding black tea processing and quality control.
  • [1]
    ZHAO D Y, NAGENDRA S. Antiradical and tea polyphenol-stabilizing ability of functional fermented soymilk–tea beverage[J]. Food Chemistry,2014,158(8):262−269.
    [2]
    滑金杰, 袁海波, 江用文. 我国红茶产业现状、加工进展及前景展望[J]. 华中农业大学学报,2022,41(5):16−23. [HUA J J, YUAN H B, JIANG Y W. Current situation, processing progress and prospect of China’s black tea industry[J]. Journal of Huazhong Agricultural University,2022,41(5):16−23. doi: 10.3969/j.issn.1000-2421.2022.5.hznydx202205003

    HUA J J, YUAN H B, JIANG Y W. Current situation, processing progress and prospect of China’s black tea industry[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 16-23. doi: 10.3969/j.issn.1000-2421.2022.5.hznydx202205003
    [3]
    MA C H, HUNG Y C. Effect of brewing conditions using a single-serve coffee maker on black tea (Lapsang Souchong) quality[J]. Food Science & Nutritiong,2020,8(8):4379−4387.
    [4]
    钱园凤, 叶阳, 周小芬, 等. 红茶发酵技术研究现状分析[J]. 食品工业科技,2012,33(23):388−392. [QIAN Y F, YE Y, ZHOU X F, et al. Current research situation in black tea fermentation technology[J]. Science and Technology of Food Industry,2012,33(23):388−392. doi: 10.13386/j.issn1002-0306.2012.23.066

    QIAN Y F, YE Y, ZHOU X F, et al. Current research situation in black tea fermentation technology[J]. Science and Technology of Food Industry, 2012, 33(23): 388-392. doi: 10.13386/j.issn1002-0306.2012.23.066
    [5]
    黄怀生, 黎娜, 钟兴刚, 等. 自然发酵工夫红茶品质形成与儿茶素氧化动力学分析[J]. 食品与发酵工业,2023,49(8):164−169. [HUANG H S, LI N, ZHONG X G, et al. Analysis of quality formation and catechin oxidation kinetics of congou black tea through natural fermentation[J]. Food and Fermentation Industries,2023,49(8):164−169.

    HUANG H S, LI N, ZHONG X G, et al. Analysis of quality formation and catechin oxidation kinetics of congou black tea through natural fermentation [J]. Food and Fermentation Industries, 2023, 49(8): 164-169. .
    [6]
    潘科. 茶儿茶素单体酶促氧化反应特征与红茶饱和氧发酵机制研究[D]. 成都: 四川农业大学, 2017

    PAN K. Research for character of tea catechins enzymatic oxidative reaction and model of black tea fermentation with saturated oxygen[D]. Chengdu: Sichuan Agricultural University, 2017.
    [7]
    OBANDA M, OWUOR P O, MANG O R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature[J]. Food Chemistry,2002,75(4):395−404.
    [8]
    REN G X, WANG Y J, NING J M, et al. Evaluation of Dianhong black tea quality using near infrared hyperspectral imaging technology[J]. Journal of the Science of Food and Agriculture,2021,101(5):2135−2142. doi: 10.1002/jsfa.10836
    [9]
    TANMOY S, VIJAYAKUMAR C, SHRILEKHA D, et al. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea[J]. Journal of Food Science & Technology,2015,52(4):2387−2393.
    [10]
    ZHU K, OUYANG J, HUANG J A, et al. Research progress of black tea thearubigins: A review[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1556−1566. doi: 10.1080/10408398.2020.1762161
    [11]
    ULF W S, BLAUTH N, STEFFI N, et al. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments[J]. Journal of Agricultural & Food Chemistry,2014,62(31):7854−7861.
    [12]
    NIKOLAI K, MICHAEL N C, MULLER A. Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: Evidence by tandem LC-MS[J]. Food & Function,2010,1(2):180−199.
    [13]
    俞露婷, 袁海波, 王伟伟, 等. 红茶发酵过程生理生化变化及调控技术研究进展[J]. 中国农学通报,2015,31(22):263−269. [YU L T, YUAN H B, WANG W W, et al. Research progress of physiological and biochemical changes and new techniques in fermentation of black tea[J]. Chinese Agricultural Science Bulletin,2015,31(22):263−269. doi: 10.11924/j.issn.1000-6850.casb15030076

    YU L T, YUAN H B, WANG W W, et al. Research progress of physiological and biochemical changes and new techniques in fermentation of black tea[J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 263-269. doi: 10.11924/j.issn.1000-6850.casb15030076
    [14]
    方世辉, 王先锋, 汪惜生. 不同发酵温度和程度对工夫红茶品质的影响[J]. 中国茶叶加工,2004(2):19−21. [FANG S H, WANG X F, WANG X S. Effect of different fermentation temperature and degree on the quality of Gongfu black tea[J]. China Tea Processing,2004(2):19−21.

    FANG S H, WANG X F, WANG X S, Effect of different fermentation temperature and degree on the quality of Gongfu black tea[J]. China Tea Processing, 2004(2): 19−21.
    [15]
    赵和涛. 红茶发酵时主要化学变化及不同发酵方法对工夫红茶品质的影响[J]. 蚕桑茶叶通讯,1989(2):10−13. [ZHAO H T. The main chemical changes of black tea during fermentation and the effects of different fermentation methods on the quality of Gongfu black tea[J]. Newsletter of Sericulture and Tea,1989(2):10−13.

    ZHAO H T. The main chemical changes of black tea during fermentation and the effects of different fermentation methods on the quality of Gongfu black tea[J]. Newsletter of Sericulture and Tea, 1989(2): 10-13.
    [16]
    宫连瑾, 薄佳慧, 杜哲儒, 等. 基于代谢组学分析工夫红茶发酵过程中代谢物的变化[J]. 食品工业科技,2021,42(21):8−16. [GONG L J, BO J H, DU Z R, et al. Metabolomics analysis of changes in metabolites during the fermentation process of Congou black tea[J]. Science and Technology of Food Industry,2021,42(21):8−16. doi: 10.13386/j.issn1002-0306.2021030361

    GONG L J, BO J H, DU Z R, et al. Metabolomics analysis of changes in metabolites during the fermentation process of Congou black tea[J]. Science and Technology of Food Industry, 2021, 42(21): 8−16. doi: 10.13386/j.issn1002-0306.2021030361
    [17]
    宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 8-9, 200-203

    WAN X C. Biochemistry of tea [M]. Beijing: China Agriculture Press, 2003, 8-9, 200-203.
    [18]
    桂安辉. 工夫红茶发酵过程中挥发性物质及品质成分变化研究[D]. 北京: 中国农业科学院, 2015

    GUI A H. Study on the variation of volatile substances and quality components in Congou black tea during fermentation process[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [19]
    曾小燕. 红茶香气研究进展[J]. 蚕桑茶叶通讯,2022(3):11−13. [ZENG X Y. Research progress on aroma of black tea[J]. Newsletter of Sericulture and Tea,2022(3):11−13. doi: 10.3969/j.issn.1007-1253.2022.03.005

    ZENG X Y. Research progress on aroma of black tea[J]. Newsletter of Sericulture and Tea, 2022(3): 11-13. doi: 10.3969/j.issn.1007-1253.2022.03.005
    [20]
    李琛, 岳翠男, 杨普香, 等. 工夫红茶特征香气研究进展[J]. 食品安全质量检测学报,2021,12(22):8834−8842. [LI C, YUE C N, YANG P X, et al. Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety and Quality,2021,12(22):8834−8842. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.028

    LI C, YUE C N, YANG P X, et al. Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety and Quality, 2021, 12(22): 8834-8842. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.028
    [21]
    刘飞, 王云, 张厅, 等. 红茶加工过程香气变化研究进展[J]. 茶叶科学,2018,38(1):9−19. [LIU F, WANG Y, ZHANG T, et al. Review on aroma change during black tea processing[J]. Journal of Tea Science,2018,38(1):9−19. doi: 10.3969/j.issn.1000-369X.2018.01.002

    LIU F, WANG Y, ZHANG T, et al. Review on aroma change during black tea processing[J]. Journal of Tea Science, 2018, 38(1): 9-19. doi: 10.3969/j.issn.1000-369X.2018.01.002
    [22]
    董春旺, 叶阳, 江用文, 等. 工夫红茶可视化富氧发酵机设计及试验研究[J]. 茶叶科学,2015,35(4):370−376. [DONG C W, YE Y, JIANG Y W, et al. Design and experimental investigation of Congou black tea visual aerobic fermentation machine[J]. Journal of Tea Science,2015,35(4):370−376. doi: 10.3969/j.issn.1000-369X.2015.04.014

    DONG C W, YE Y, JIANG Y W, et al. Design and experimental investigation of Congou black tea visual aerobic fermentation machine[J]. Journal of Tea Science, 2015, 35(4): 370-376. doi: 10.3969/j.issn.1000-369X.2015.04.014
    [23]
    潘科, 冯林, 陈娟, 等. HS-SPME-GC-M联用法分析不同通氧发酵加工工艺红茶香气成分[J]. 食品科学,2015,36(8):181−186. [PAN K, FENG L, CHEN J, et al. Analysis of aroma compounds in black tea ventilated with oxygen for different durations during the fermentation process by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2015,36(8):181−186. doi: 10.7506/spkx1002-6630-201508033

    PAN K, FENG L, CHEN J, et al. Analysis of aroma compounds in black tea ventilated with oxygen for different durations during the fermentation process by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science, 2015, 36(8): 181-186. doi: 10.7506/spkx1002-6630-201508033
    [24]
    程启坤. 红茶色素系统分析法[J]. 中国茶叶,1981(1):17. [CHEN Q K. Systematic analysis of black tea pigment[J]. Chinese tea,1981(1):17.

    CHEN Q K. Systematic analysis of black tea pigment[J]. Chinese tea, 1981(1): 17
    [25]
    张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009

    ZHANG Z Z. Experimental course of tea biochemistry [M]. Beijing: China Agriculture Press, 2009.
    [26]
    CHEN L, WANG W W, ZHANG J Y, et al. Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway [J]. Food Chemistry, 2021, 337.
    [27]
    XU Y Q, ZHANG Y N, CHEN J X, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea[J]. Food Chemistry,2018,258(30):16−24.
    [28]
    LIU K, APPALARAJU J, DHANARAJ P, et al. Plasticity of the ligand binding pocket in the bitter taste receptor T2R7[J]. Biochimica et Biophysica Acta Biomembranes,2018,1860(5):991−999. doi: 10.1016/j.bbamem.2018.01.014
    [29]
    RAVICHANDRAN R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma[J]. Food Chemistry,2002,78(1):23−28. doi: 10.1016/S0308-8146(01)00303-X
  • Related Articles

    [1]ZHU Zitong, LEI Meikang, JIANG Zhiying, HUANG Chaoqun, YE Youbiao, CHEN Yujiao, HAN Chao. Determination of Highly Polar Fungicide of Fosetyl-aluminium in Plant-derived Product by Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2024, 45(3): 235-241. DOI: 10.13386/j.issn1002-0306.2023010043
    [2]JIN Chun’ai, WANG Rongcan, WANG Xinyi, JIN Meiling, WANG Yufang, LI Yali. Comparison of 37 Fatty Acids and Squalene in Walnut Oil and Common Vegetable Oils[J]. Science and Technology of Food Industry, 2022, 43(12): 261-267. DOI: 10.13386/j.issn1002-0306.2021090043
    [3]XU Xing, ZHANG Yan, SHU Ping, YANG Weihua, ZHAO Haojun, DONG Yiyi. Evaluation of Uncertainty in Determination of Cephalosporins in Chicken by High Performance Liquid Chromatography-Tandem Mass Spectrometry Isotope Internal Standard Method[J]. Science and Technology of Food Industry, 2022, 43(8): 312-319. DOI: 10.13386/j.issn1002-0306.2021090034
    [4]DU Yazheng, LIU Hongmei, AN Xuezheng, QI Na. Comparative Study of Rapid Test Strips and the National Standard Method to Analyse Staphylococcus aureus in Desalted Whey Powder[J]. Science and Technology of Food Industry, 2021, 42(24): 224-228. DOI: 10.13386/j.issn1002-0306.2020080298
    [5]LONG Ze-rong, WANG Li-tao, LIU Li, ZHAO Jian-yong, LU Yi, ZHAO Liang, DONG Shu-qing, LI Hui. Determination of aliphatic aldehydes in plant oils by flow injection fluorescence method[J]. Science and Technology of Food Industry, 2017, (18): 275-278. DOI: 10.13386/j.issn1002-0306.2017.18.052
    [6]MA Hai-hua, SUN Ji-zhou, ZHEN Tong, ZHANG Yuan, XIA Shan-hong. A review on aflatoxins determination methods in China 's national and industry standards[J]. Science and Technology of Food Industry, 2016, (06): 360-366. DOI: 10.13386/j.issn1002-0306.2016.06.064
    [7]WANG Li-ping, LIN Chen, FANG Jun, CAI Da-chuan, LIN Ze-peng, FANG Li, WU Ling-tao, LI Xue-ying. Determination of squalene in edible oils of plant and animal by gel permeation chromatography-gas chromatography method[J]. Science and Technology of Food Industry, 2015, (06): 69-71. DOI: 10.13386/j.issn1002-0306.2015.06.006
    [8]WU Jing-zhu, SHI Rui-jie, CHEN Yan, LIU Cui-ling, XU Yun. Rapid qualitative identification method of edible vegetable oil based on PLS-LDA and Raman[J]. Science and Technology of Food Industry, 2014, (06): 55-58. DOI: 10.13386/j.issn1002-0306.2014.06.002
    [9]Study on the method for determining the entrapment efficiency of coix seed oil liposomes[J]. Science and Technology of Food Industry, 2013, (02): 61-63. DOI: 10.13386/j.issn1002-0306.2013.02.023
    [10]微生物检测国标法和滤膜法的比较[J]. Science and Technology of Food Industry, 1999, (06): 54-56. DOI: 10.13386/j.issn1002-0306.1999.06.082

Catalog

    Article Metrics

    Article views (266) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return