HU Cheng, SONG Haoying, CHANG Cong, et al. Optimization of the Preparation Process and Evaluation of the Activity of β-Glucan/Nano-selenium Complex (DNT-Se) from Black Fungus[J]. Science and Technology of Food Industry, 2023, 44(21): 162−170. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100004.
Citation: HU Cheng, SONG Haoying, CHANG Cong, et al. Optimization of the Preparation Process and Evaluation of the Activity of β-Glucan/Nano-selenium Complex (DNT-Se) from Black Fungus[J]. Science and Technology of Food Industry, 2023, 44(21): 162−170. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100004.

Optimization of the Preparation Process and Evaluation of the Activity of β-Glucan/Nano-selenium Complex (DNT-Se) from Black Fungus

More Information
  • Received Date: October 07, 2022
  • Available Online: September 05, 2023
  • This study aimed to explore the optimal conditions for the preparation of β-glucan/nanosized selenium (Se NPs) complexes (DNT-Se) and determining the safety of DNT-Se. The concentration of polysaccharides (DNTs), the ratio of vitamin C (VC) to Na2SeO3, the concentration of Na2SeO3, the reaction time, and the reaction temperature were used as experimental factors. The dual-wavelength colorimetric method and the Malvern particle-size assay method were used to characterize changes in the particle size of Se NPs in DNT-Se, and the single-factors and orthogonal experimental design were used to investigate the preparation process of DNT-Se, and the toxicity of DNT-Se to 293T human embryonic kidney cells and normal liver cells of AML-12 mice was evaluated by using CCK-8. The results showed that the optimal conditions for DNT-Se preparation were list as follows: 1.0 mg/mL of DNTs, and 1.0 mg/mL of Na2SeO3 with the ratio of vitamin C to Na2SeO3 6:1. Moreover, the reaction time was 12 h, and the reaction temperature was 25 ℃. The mean diameter of DNT-Se prepared under such conditions was around 34.50 nm. Cell proliferation experiment results showed that DNT-Se was non-toxic to 293T human embryonic kidney cells and normal liver cells of AML-12 mice, but it could inhibit the proliferation of HepG2 cells, and the IC50 value of DNT-Se for HepG2 cells at 72 h was 42.54 μg/mL. The synthesis process of DNT-Se was fixed in this work, and the obtained nanoparticles were with smaller size and uniform distribution. Moreover, the DNT-Se could significantly inhibit the proliferation of HepG2 hepatoma cells without toxicity to normal cells, which was of good biosafety.
  • [1]
    DAVY T, CASTELLANO S. The genomics of selenium:Its past, present and future[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2018,1862(11):2427−2432. doi: 10.1016/j.bbagen.2018.05.020
    [2]
    LIU X, SUN J, GAO W. Site-selective protein modification with polymers for advanced biomedical applications[J]. Biomaterials,2018,178:413−434. doi: 10.1016/j.biomaterials.2018.04.050
    [3]
    XIE M, YANG M, SUN X, et al. WS 2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy[J]. Journal of Materials Chemistry B,2020,8(11):2331−2342. doi: 10.1039/C9TB01604J
    [4]
    ZENG D, ZHAO J, LUK K H, et al. Potentiation of in vivo anticancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration[J]. Journal of Agricultural and Food Chemistry,2019,67(10):2865−2876. doi: 10.1021/acs.jafc.9b00193
    [5]
    李泽甫, 钟国清. 纳米硒的制备与应用研究进展[J]. 当代化工,2011,40(4):396−399 doi: 10.3969/j.issn.1671-0460.2011.04.021

    LI Z F, ZHONF G Q. Progress in preparation and application of selenium nanoparticles[J]. Contemporary Chemical Industry,2011,40(4):396−399. doi: 10.3969/j.issn.1671-0460.2011.04.021
    [6]
    MENG Y, ZHANG Y, JIA N, et al. Synthesis and evaluation of a novel water-soluble high Se-enriched Astragalus polysaccharide nanoparticles[J]. International Journal of Biological Macromolecules,2018,118:1438−1448. doi: 10.1016/j.ijbiomac.2018.06.153
    [7]
    ZHU C, ZHANG S, SONG C, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF- κB mediated hyper inflammation[J]. Journal of Nanobiotechnology,2017,15(1):1−15. doi: 10.1186/s12951-016-0241-6
    [8]
    朱雪琼. 黑木耳多糖的提取、功能及单糖组成的研究[D]. 南宁:广西大学, 2014

    ZHU X Q. Study on the extraction, separation and functional activity of the Auricularia auricula polysaccharide[D]. Nanning:Guangxi University, 2014.
    [9]
    CHEN G, LUO Y C, LI B P, et al. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol‐enriched diet[J]. Journal of Food Science,2008,73(6):H103−H108. doi: 10.1111/j.1750-3841.2008.00821.x
    [10]
    KHASKHELI S G, ZHENG W, SHEIKH S A, et al. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product[J]. International Journal of Biological Macromolecules,2015,81:387−395. doi: 10.1016/j.ijbiomac.2015.08.020
    [11]
    MA Z, WANG J, ZHANG L, et al. Evaluation of water soluble β-D-glucan from Auricularia auricular-judae as potential anti-tumor agent[J]. Carbohydrate Polymers,2010,80(3):977−983. doi: 10.1016/j.carbpol.2010.01.015
    [12]
    YOON S J, YU M A, PYUN Y R, et al. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin[J]. Thrombosis Research,2003,112(3):151−158. doi: 10.1016/j.thromres.2003.10.022
    [13]
    庄伟, 屈咪, 赵迪, 等. 黑木耳多糖的结构组成及其免疫活性研究[J]. 食品科技,2020,45(2):205−210 doi: 10.13684/j.cnki.spkj.2020.02.034

    ZHUANG W, QU M, ZHAO D, et al. Structual composition and immunomodulatory activities of polysaccharides from Auricularia auricula[J]. Food Science and Technology,2020,45(2):205−210. doi: 10.13684/j.cnki.spkj.2020.02.034
    [14]
    CHEN K, CAI L, YANG S, et al. Pt (IV) prodrugs designed to embed in nanotubes of a polysaccharide for drug delivery[J]. ACS Applied Bio Materials,2021,4(6):4841−4848. doi: 10.1021/acsabm.1c00128
    [15]
    MENG Y, ZHANG H, HU N, et al. Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities[J]. International Journal of Biological Macromolecules,2021,182:1170−1178. doi: 10.1016/j.ijbiomac.2021.04.130
    [16]
    PING Z, LIU T, XU H, et al. Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities[J]. Nano Research,2017,10:3775−3789. doi: 10.1007/s12274-017-1590-7
    [17]
    孟燕. 黑木耳多糖的螺旋链构象及其生物医学应用[D]. 武汉:武汉大学, 2018

    MENG Y. Helical chain conformation of a polysaccharide isolated from black fungus and its biomedical applications[D]. Wuhan:Wuhan University, 2018.
    [18]
    SONG H, HU N, GAO Z, et al. Construction of gold nanoparticles by tubular polysaccharide from black fungus and their apoptosis-inducing activities in HepG2 cells[J]. Journal of Applied Polymer Science,2021,138(48):51537. doi: 10.1002/app.51537
    [19]
    JIN Y, CAI L, YANG Q, et al. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-D-glucan[J]. Carbohydrate Polymers,2020,240:116329. doi: 10.1016/j.carbpol.2020.116329
    [20]
    SHI X D, TIAN Y Q, WU J L, et al. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides[J]. Critical Reviews in Food Science and Nutrition,2021,61(13):2225−2236. doi: 10.1080/10408398.2020.1774497
    [21]
    XU S, XU X, ZHANG L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae[J]. Journal of Agricultural and Food Chemistry,2012,60(13):3498−3506. doi: 10.1021/jf300423z
    [22]
    王迎香, 唐子惟, 彭腾, 等. 苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化[J]. 食品工业科技,2021,42(18):308−316 doi: 10.13386/j.issn1002-0306.2021010069

    WANG Y X, TANG Z W, PENG T, et al. Optimization of phenol sulfuric acid method for the polysaccharide content of wine-steamed Polygonatum cyrtonema Hua[J]. Science and Technology of Food Industry,2021,42(18):308−316. doi: 10.13386/j.issn1002-0306.2021010069
    [23]
    张聪, 胡娜, 李珊, 等. 马钱苷对肝癌细胞HepG2增殖与凋亡的影响及机制研究[J]. 中国药房,2020,31(7):782−788 doi: 10.6039/j.issn.1001-0408.2020.07.04

    ZHANG C, HU N, LI S, et al. Study on the effects of loganin on the proliferation and apoptosis of liver cancer HepG2 cells and its mechanism[J]. China Pharmacy,2020,31(7):782−788. doi: 10.6039/j.issn.1001-0408.2020.07.04
    [24]
    平兆华. 黑木耳刚性链β-葡聚糖及其复合物的抗癌活性和构效关系[D]. 武汉:武汉大学, 2016

    PING Z H. Antitumor activities and correlation of structure to bioactivity of stiff β-glucan from Auricularia auricula-judae and its composites[D]. Wuhan:Wuhan University, 2016.
    [25]
    许淑琴. 黑木耳刚性链葡聚糖结构、链构象转变及自组装行为[D]. 武汉:武汉大学, 2013

    XU S Q. Chemical structure, chain conformational transition, and self- assembly behaviors of stiff glucan from Auricularia auricular-judae[D]. Wuhan:Wuhan University, 2013.
    [26]
    TAJMIR-RIAHI H A. Infrared spectra of crystalline β-d-glucuronic acid and its Na+, K+, and Rb+ salts[J]. Carbohydrate Research,1984,125(1):13−20. doi: 10.1016/0008-6215(84)85139-3
    [27]
    CHAUVEAU C, TALAGA P, WIERUSZESKI J M, et al. A water-soluble β-D-glucan from Boletus erythropus[J]. Phytochemistry,1996,43(2):413−415. doi: 10.1016/0031-9422(96)00234-8
    [28]
    RINAUDO M, VINCENDON M. 13C NMR structural investigation of scleroglucan[J]. Carbohydrate Polymers,1982,2(2):135−144. doi: 10.1016/0144-8617(82)90059-5
    [29]
    SANTOS-NEVES J C, PEREIRA M I, CARBONERO E R, et al. A gel-forming β-glucan isolated from the fruit bodies of the edible mushroom Pleurotus florida[J]. Carbohydrate Research,2008,343(9):1456−1462. doi: 10.1016/j.carres.2008.03.001
    [30]
    SHIBATA S. Dual-wavelength spectrophotometry[J]. Angewandte Chemie International Edition in English,1976,15(11):673−679. doi: 10.1002/anie.197606731
    [31]
    王红艳, 张胜义, 刘明珠, 等. 壳聚糖模板法制备纳米硒[J]. 应用化学,2004(8):788−792 doi: 10.3969/j.issn.1000-0518.2004.08.008

    WANG H Y, ZHANG S Y, LIU M Z, et al. Synthesis of selenium nanoparticles in the presence of chitosan template[J]. Chinese Journal of Applied Chemistry,2004(8):788−792. doi: 10.3969/j.issn.1000-0518.2004.08.008
    [32]
    ZHANG J, TENG Z, YUAN Y, et al. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin[J]. International Journal of Biological Macromolecules,2018,107:1406−1413. doi: 10.1016/j.ijbiomac.2017.09.117
    [33]
    赵胜男. 不同尺寸纳米硒的制备及其生物活性研究[D]. 佳木斯:佳木斯大学, 2019

    ZHAO S N. Preparation and bioactivity of different sizes nano selenium[D]. Jiamusi:Jiamusi University, 2019.
    [34]
    杨梦涛. 纳米硒—牡蛎多糖的制备及其抗氧化活性研究[D]. 青岛:中国海洋大学, 2014. [YANG M T. Synthesis of selenium nanoparticles in the presence of oyster polysaccharides and the antioxidant activity[D]. Qingdao:Ocean University of China, 2014.

    YANG M T. Synthesis of selenium nanoparticles in the presence of oyster polysaccharides and the antioxidant activity[D]. Qingdao: Ocean University of China, 2014.
    [35]
    郑晓凤, 侯丽然, 廉亚楠, 等. 桔梗多糖软模板法制备纳米硒及表征[J]. 广东化工,2016,43(16):25−26 doi: 10.3969/j.issn.1007-1865.2016.16.012

    ZHENG X F, HOU L R, LIAN Y N, et al. Preparation and characterization of nano-selenium using Platycodon grandiflorum polysaccharides as soft template[J]. Guangdong Chemical Industry,2016,43(16):25−26. doi: 10.3969/j.issn.1007-1865.2016.16.012
  • Cited by

    Periodical cited type(4)

    1. 郑淼,张竞文,荆高祥,宋丹靓敏,满朝新,姜毓君. 纳米肉桂油乳液的制备及其对阪崎克罗诺杆菌抑菌性的研究. 中国乳品工业. 2023(01): 4-8+25 .
    2. 钟芳洁,周炳贤,冯棋琴,陈汉鹏,胡烨,李振鑫. 复合天然保鲜剂制备及对树仔菜保鲜效果研究. 食品工业科技. 2022(03): 308-316 . 本站查看
    3. 赵思琪,张浪,刘骞,陈倩,孔保华. 天然抗菌剂纳米乳液的制备、抑菌机理及在肉类保鲜中的应用研究进展. 肉类研究. 2022(04): 48-56 .
    4. 杨焕彬,曾庆培,林光明,刘晓丽,杨锡洪,宋琳,解万翠. 生物保鲜剂在禽肉保鲜中的应用研究进展. 轻工学报. 2021(06): 38-46 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (158) PDF downloads (19) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return