Citation: | ZENG Yan, HAO Xuecai, DONG Ting, SUN Yuanxia. Research Progress on Raw Material Development, Processing Technology and Nutritional Properties of Plant Based Meat[J]. Science and Technology of Food Industry, 2021, 42(3): 338-345,350. DOI: 10.13386/j.issn1002-0306.2020030365 |
[1] |
Schipanski M E,Bennett E M. The influence of agricultural trade and livestock production on the global phosphorus cycle[J].Ecosystems,2012,15(2):256-268.
|
[2] |
Revell B. Meat and milk consumption 2050:The potential for demand-side solutions to greenhouse gas emissions reduction[J].EuroChoices,2015,14(3):4-11.
|
[3] |
Wheeler T,Kay M. Food crop production,water and climate change in the developing world[J]. Outlook on Agriculture,2010,39(4):239-243.
|
[4] |
Pettigrew P S. 21st century politics:Reconciling the spirit and ethics of liberalism[J]. Vital Speeches of the Day,2003,69(11):337-343.
|
[5] |
Sinclair R. Greenhouse gas emissions from public consumption in Gothenburg[D]. Göteborg:Chalmers University of Technology,2013:10-13.
|
[6] |
Wolk A. Potential health hazards of eating red meat[J]. Journal of Internal Medicine,2017,281(2):106-122.
|
[7] |
Chang Q Z,Wang W K,Regev-Yochay G,et al. Antibiotics in agriculture and the risk to human health:How worried should we be?[J]. Evolutionary Applications,2015,8(3):240-247.
|
[8] |
Post M J. Cultured beef:Medical technology to produce food[J]. Journal of the Science of Food and Agriculture,2014,94(6):1039-1041.
|
[9] |
Stephens N,Di Silvio L,Dunsford I,et al. Bringing cultured meat to market:Technical,socio-political,and regulatory challenges in cellular agriculture[J]. Trends in Food Science &Technology,2018,78:155-166.
|
[10] |
van der Goot A J,Pelgrom P J M,Berghout J A M,et al. Concepts for further sustainable production of foods[J]. Journal of Food Engineering,2016,168:42-51.
|
[11] |
Wild F,Czerny M,Janssen A M,et al. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives[J]. Agro Food Industry Hi-Tech,2014,25(1):45-49.
|
[12] |
Kyriakopoulou K,Dekkers B,van der Goot A J. Plant-based meat analogues[M]//Sustainable Meat Production and Processing. New York City:Academic Press,2019:103-126.
|
[13] |
Kouris-Blazos A,Belski R. Health benefits of legumes and pulses with a focus on Australian sweet lupins[J]. Asia Pacific Journal of Clinical Nutrition,2016,25(1):1-17.
|
[14] |
Global plant based meat market will reach USD 21.23 billion by 2025:Zion Market Research,[2019-3-28]. https://www.globenewswire.com/news-release/2019/03/28/1781303/0/en/Global-Plant-Based-Meat-Market-Will-Reach-USD-21-23-Billion-By-2025-Zion-Market-Research.html.
|
[15] |
Gbert R,Borders C. Achieving success with meat analogs[J].Food Technology(Chicago),2006,60(1):28-34.
|
[16] |
Singhal A,Karaca A C,Tyler R,et al. Pulse proteins:from processing to structure-function relationships[M]//Grain Legumes,2016:55.
|
[17] |
Krintiras G A,Göbel J,Van der Goot A J,et al. Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell[J]. Journal of Food Engineering,2015,160:34-41.
|
[18] |
Samard S,Gu B Y,Ryu G H. Effects of extrusion types,screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues[J]. Journal of the Science of Food and Agriculture,2019,99(11):4922-4931.
|
[19] |
Lam A C Y,Can Karaca A,Tyler R T,et al. Pea protein isolates:Structure,extraction,and functionality[J]. Food Reviews International,2018,34(2):126-147.
|
[20] |
Beck S M,Knoerzer K,Arcot J. Effect of low moisture extrusion on a pea protein isolate's expansion,solubility,molecular weight distribution and secondary structure as determined by fourier transform infrared spectroscopy(FTIR)[J].Journal of Food Engineering,2017,214:166-174.
|
[21] |
Samard S,Ryu G H. Physicochemical and functional characteristics of plant protein-based meat analogs[J]. Journal of Food Processing and Preservation,2019,43(10):e14123.
|
[22] |
Rehrah D,Ahmedna M,Goktepe I,et al. Extrusion parameters and consumer acceptability of a peanut-based meat analogue[J]. International Journal of Food Science & Technology,2009,44(10):2075-2084.
|
[23] |
Zhang J,Liu L,Jiang Y,et al. Converting peanut protein biomass waste into "double green" meat substitutes using a high-moisture extrusion process:A multiscale method to explore a process for forming a meat-like fibrous structure[J]. Journal of Agricultural and Food Chemistry,2019,67(38):10713-10725.
|
[24] |
Day L. Proteins from land plants-potential resources for human nutrition and food security[J]. Trends in Food Science & Technology,2013,32(1):25-42.
|
[25] |
Palanisamy M,Töpfl S,Berger R G,et al. Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures[J]. European Food Research and Technology,2019,245(9):1889-1898.
|
[26] |
Sharima-Abdullah N,Hassan C Z,Arifin N,et al. Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein[J]. International Food Research Journal,2018,25(3):1016-1025.
|
[27] |
Shoaib A,Sahar A,Sameen A,et al. Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets[J]. Journal of Food Processing and Preservation,2018,42(9):e13763.
|
[28] |
Joshi S M R,Bera M B,Panesar P S. Extrusion cooking of maize/spirulina mixture:Factors affecting expanded product characteristics and sensory quality[J]. Journal of Food Processing and Preservation,2014,38(2):655-664.
|
[29] |
Hashempour-Baltork F,Khosravi-Darani K,Hosseini H,et al. Mycoproteins as safe meat substitutes[J]. Journal of Cleaner Production,2020,253:119958.
|
[30] |
Stephan A,Ahlborn J,Zajul M,et al. Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system:Functionality and sensory tests in comparison to commercial proteins and meat sausages[J]. European Food Research and Technology,2018,244(5):913-924.
|
[31] |
Kim K,Choi B,Lee I,et al. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue[J]. Journal of the Science of Food and Agriculture,2011,91(9):1561-1568.
|
[32] |
Stephanie,G Caporgno M P,Böcker L,et al. Extruded meat analogues based on yellow,heterotrophically cultivated Auxenochlorella protothecoides microalgae[J]. Innovative Food Science & Emerging Technologies,2020,59:102275.
|
[33] |
Grahl S,Palanisamy M,Strack M,et al. Towards more sustainable meat alternatives:How technical parameters affect the sensory properties of extrusion products derived from soy and algae[J]. Journal of Cleaner Production,2018,198:962-971.
|
[34] |
Ilo S,Schoenlechner R,Berghofe E. Role of lipids in the extrusion cooking processes[J]. Grasas y Aceites,2000,51(1/2):97-110.
|
[35] |
Chiang J H,Hardacre A K,Parker M E. Effects of Maillard-reacted beef bone hydrolysate on the physicochemical properties of extruded meat alternatives[J]. Journal of Food Science,2020,85(3):567-575.
|
[36] |
Guo Z W,Teng F,Huang Z X,et al. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs[J]. Food Hydrocolloids,2020,105:105752.
|
[37] |
Guerrero P,Beatty E,Kerry J P,et al. Extrusion of soy protein with gelatin and sugars at low moisture content[J]. Journal of Food Engineering,2012,110(1):53-59.
|
[38] |
Fraser R Z,Shitut M,Agrawal P,et al. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris,intended for use as a flavor catalyst in plant-based meat[J]. International Journal of Toxicology,2018,37(3):241-262.
|
[39] |
Martínez L,Cilla I,Beltrán,J A,et al. Comparative effect of red yeast rice(Monascus purpureus),red beet root(Beta vulgaris)and betanin(E-162)on colour and consumer acceptability of fresh pork sausages packaged in a modified atmosphere[J]. Journal of the Science of Food and Agriculture,2006,86(4):500-508.
|
[40] |
Singh J P,Kaur A,Shevkani K,et al. Physicochemical characterization of corn extrudates prepared with varying levels of beetroot(Beta vulgaris)at different extrusion temperatures[J]. International Journal of Food Science & Technology,2016,51(4):911-919.
|
[41] |
Arora B,Kamal S,Sharma V P. Effect of binding agents on quality characteristics of mushroom based sausage analogue[J]. Journal of Food Processing and Preservation,2017,41(5):e13134.
|
[42] |
Palanisamy M,Töpfl S,Aganovic K,et al. Influence of iota carrageenan addition on the properties of soya protein meat analogues[J]. LWT-Food Science and Technology,2018,87:546-552.
|
[43] |
Zhang J,Liu L,Jiang Y,et al. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures:Effect of different exogenous polysaccharides on the process forming a fibrous structure[J]. Food Hydrocolloids,2020,99:105311.
|
[44] |
Forghani Z,Eskandari M H,Aminlari M,et al. Effects of microbial transglutaminase on physicochemical properties,electrophoretic patterns and sensory attributes of veggie burger[J].Journal of Food Science and Technology,2017,54(8):2203-2213.
|
[45] |
Anderson L A,Islam M A,Prather K L J. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers[J]. Journal of Biological Chemistry,2018,293(14):5053-5061.
|
[46] |
Obata S,Yamato Y,Taniguchi H. Method of manufacturing edible soy protein-containing,simulated meat product:US3982004A[P]. 1976-09-21[2020-03-24].https://patents.glgoo.top/patent/US3982004A/en.
|
[47] |
陈榕钦,吕茹倩,梁鹏,等. 静电纺丝技术在食品科学领域中应用的研究进展[J]. 食品工业科技,2019,40(3):351-356.
|
[48] |
Mattice K D,Marangoni A G. Comparing methods to produce fibrous material from zein[J]. Food Research International,2020,128:108804.
|
[49] |
Nieuwland M,Geerdink P,Brier P,et al. Food-grade electrospinning of proteins[J]. Innovative Food Science & Emerging Technologies,2013,20:269-275.
|
[50] |
王强,张金闯. 高水分挤压技术的研究现状、机遇及挑战[J]. 中国食品学报,2018,18(7):1-9.
|
[51] |
Schmiele M. Physical and chemical interactions between isolated soy protein and vital gluten during thermoplastic extrusion at high and low moisture content to obtain meat analogue[D]. 2014. Campinas:Universidade Estadual de Campinas,1-275.
|
[52] |
Mazaheri Tehrani M,Ehtiati A,Azghandi S. Application of genetic algorithm to optimize extrusion condition for soy-based meat analogue texturization[J]. Journal of Food Science and Technology,2017,54(5):1119-1125.
|
[53] |
Liu S X,Peng M,Tu S,et al. Development of a new meat analog through twin-screw extrusion of defatted soy flour-lean pork blend[J]. Food Science and Technology International,2005,11(6):463-470.
|
[54] |
Omohimi C I,Sobukola O P,Sarafadeen K O,et al. Effect of process parameters on the proximate composition,functional and sensory properties[J]. World Academy of Science,Engineering and Technology,2013,5(7):4-24.
|
[55] |
Fang Y Q,Zhang B,Wei Y M. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking[J]. Journal of Food Engineering,2014,121:32-38.
|
[56] |
Palanisamy M,Franke K,Berger R G,et al. High moisture extrusion of lupin protein:influence of extrusion parameters on extruder responses and product properties[J]. Journal of the Science of Food and Agriculture,2019,99(5):2175-2185.
|
[57] |
Dekkers B L,Boom R M,van der Goot A J. Structuring processes for meat analogues[J]. Trends in Food Science & Technology,2018,81:25-36.
|
[58] |
Krintiras G A,Diaz J G,Van Der Goot A J,et al. On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers[J]. Journal of Food Engineering,2016,169:205-213.
|
[59] |
Krintiras G A,Göbel J,Van der Goot A J,et al. Production of structured soy-based meat analogues using simple shear and heat in a couette cell[J]. Journal of Food Engineering,2015,160:34-41.
|
[60] |
Dekkers B L,Nikiforidis C V,van der Goot A J. Shear-induced fibrous structure formation from a pectin/SPI blend[J]. Innovative Food Science & Emerging Technologies,2016,36:193-200.
|
[61] |
Grabowska K J,Zhu S C,Dekkers B L,et al. Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate[J]. Journal of Food Engineering,2016,188:77-86.
|
[62] |
Schreuders F K G,Dekkers B L,Bodnár I,et al. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation[J]. Journal of Food Engineering,2019,261:32-39.
|
[63] |
Dekkers B L. Creation of fibrous plant protein foods[D]. Wageningen:Wageningen University,2018.
|
[64] |
Chiang J H,Loveday S M,Hardacre A K,et al. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues[J]. Food Structure,2019,19:100102.
|
[65] |
Chiang J H,Hardacre A K,Parker M E. Extruded meat alternatives made from Maillard-reacted beef bone hydrolysate and plant proteins:Part I-Effect of moisture content[J]. International Journal of Food Science & Technology,2020,55(2):649-659.
|
[66] |
Samard S,Ryu G H. A comparison of physicochemical characteristics,texture,and structure of meat analogue and meats[J]. Journal of the Science of Food and Agriculture,2019,99(6):2708-2715.
|
[67] |
Schreuders F K G,Bodnár I,Erni P,et al. Water redistribution determined by time domain NMR explains rheological properties of dense fibrous protein blends at high temperature[J]. Food Hydrocolloids,2020,101:105562.
|
[68] |
Kumar P,Chatli m K,Mehta N,et al. Meat analogues:Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):923-932.
|
[69] |
Tvrzicka E,Kremmyda L S,Stankova B,et al. Fatty acids as biocompounds:Their role in human metabolism,health and disease-a review. part 1:Classification,dietary sources and biological functions[J]. Biomedical Papers of the Medical Faculty of the University Palacky,Olomouc Czech Republic,2011,155(2):117-130.
|
[70] |
杨春英,刘学铭,陈智毅. 15种食用植物油脂肪酸的气相色谱-质谱分析[J]. 食品科学,2013,34(6):211-214.
|
[71] |
Chawla R,Patil G R. Soluble dietary fiber[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(2):178-196.
|
[72] |
Bohrer B M. An investigation of the formulation and nutritional composition of modern meat analogue products[J]. Food Science and Human Wellness,2019,8(4):320-329.
|
[73] |
Kumar P,Kumar R R. Product profile comparison of analogue meat nuggets versus chicken nuggets[J]. Fleischwirtschaft International:Journal for Meat Production and Meat Processing,2011(1):72-74.
|
[74] |
Fresán U,Mejia M A,Craig W J,et al. Meat analogs from different protein sources:A comparison of their sustainability and nutritional content[J]. Sustainability,2019,11(12):3231.
|
[75] |
Curtain F,Grafenauer S. Plant-based meat substitutes in the flexitarian age:An audit of products on supermarket shelves[J]. Nutrients,2019,11(11):2603.
|
[76] |
Gonowrie A. Cost effectiveness comparison related to cost per product nutrient of available meat alternatives and meat products in supermarkets and health food stores of Trinidad[R]. Trinidad and Tobago:The University of the West Indies,2016.
|
1. |
郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
![]() | |
2. |
陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
![]() | |
3. |
王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
![]() | |
4. |
王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
![]() | |
5. |
刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 .
![]() | |
6. |
芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
![]() | |
7. |
俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
![]() | |
8. |
周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
![]() | |
9. |
麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
![]() | |
10. |
郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
![]() | |
11. |
葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
![]() | |
12. |
王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
![]() | |
13. |
刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 .
![]() | |
14. |
樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
![]() | |
15. |
孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 .
![]() | |
16. |
蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
![]() | |
17. |
刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
![]() | |
18. |
李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
![]() | |
19. |
陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
![]() | |
20. |
佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 .
![]() | |
21. |
臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
![]() | |
22. |
袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
![]() | |
23. |
豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
![]() | |
24. |
李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
![]() | |
25. |
高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
![]() | |
26. |
周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .
![]() |