YANG Yang, NIU Mansi, DAI Qiulian, et al. A Comparative Study on Physicochemical Indices and Fungal Community Composition of Medium-temperature and High-temperature Daqus from the Same Region[J]. Science and Technology of Food Industry, 2023, 44(13): 150−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090313.
Citation: YANG Yang, NIU Mansi, DAI Qiulian, et al. A Comparative Study on Physicochemical Indices and Fungal Community Composition of Medium-temperature and High-temperature Daqus from the Same Region[J]. Science and Technology of Food Industry, 2023, 44(13): 150−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090313.

A Comparative Study on Physicochemical Indices and Fungal Community Composition of Medium-temperature and High-temperature Daqus from the Same Region

More Information
  • Received Date: October 08, 2022
  • Available Online: April 22, 2023
  • In order to reduce the interference of seasonal, geographical and other factors and explore the effect of different peak-temperature control strategies on the fungal community of Daqu, this study mainly applied the high-throughput sequencing technology to analyze and compare the fungal community in medium-temperature and high-temperature Daqus collected from the same core production region of high-quality Baijiu. The correlation between the fungal community in Daqu and the main physicochemical indices was also evaluated by combining redundancy analysis. The results showed that the overall population of fungi (characterized by the copy numbers of ITS1 region of rDNA) in high-temperature Daqu was smaller than that in medium-temperature Daqu, but the richness, diversity, and evenness of overall fungal community in the former were higher than that in the latter. Thermoascus, Pichia, Aspergillus and Rhizopus accounted for a higher proportion in medium-temperature Daqu, with Thermoascus aurantiacus as the absolute advantage. Thermomyces, Rasamsonia, Monascus, and Byssochlamys accounted for a higher proportion in high-temperature Daqu, with Thermomyces lanuginosus as the absolute advantage. Based on the random forest prediction model, the first ten key ASVs that could best explain the differences between the two Daqu communities belonged respectively to three major groups including Thermoascus crustaceus (for 5 ASVs), Thermomyces spp. (for 4 ASVs), and Thermoascus aurantiacus (for 1 ASV). The results of redundancy analysis showed that Aspergillus, Rasamsonia and Hyphopichia in two types of Daqu had a positive correlation with saccharifying power, Pichia had a strong positive correlation with acidity, and Thermoascus had a strong positive correlation with moisture. This study further clarified the diversity of fungal community and biomarkers in Daqus with different peak-temperatures, explored the correlation between the fungal community in Daqu and the main physicochemical indices, and provided a reference for the optimization of Daqu making process and the screening of functional strains.
  • [1]
    秦丹, 段佳文, 李有明, 等. 白酒老熟过程中风味成分的变化及人工催陈技术的研究进展[J]. 食品科学,2021,42(23):260−267. [QIN D, DUAN J W, LI Y M, et al. A review of changes of flavor compounds during Baijiu aging and recent progress in artificial aging techniques[J]. Food Science,2021,42(23):260−267. doi: 10.7506/spkx1002-6630-20201015-127

    QIN D, DUAN J W, LI Y M, et al. A review of changes of flavor compounds during baijiu aging and recent progress in artificial aging techniques[J]. Food Science, 2021, 42(23): 260-267. doi: 10.7506/spkx1002-6630-20201015-127
    [2]
    XIA Y, ZHOU W, DU Y K, et al. Difference of microbial community and gene composition with saccharification function between Chinese Nongxiangxing Daqu and Jiangxiangxing Daqu[J]. Journal of the Science of Food and Agriculture,2022,103(2):637−647.
    [3]
    CAI W C, XUE Y A, WANG Y R, et al. The fungal communities and flavor profiles in different types of high-temperature Daqu as revealed by high-throughput sequencing and electronic senses[J]. Frontiers in Microbiology,2021,12:784651. doi: 10.3389/fmicb.2021.784651
    [4]
    BAN S B, CHEN L N, FU S X, et al. Modelling and predicting population of core fungi through processing parameters in spontaneous starter (Daqu) fermentation[J]. International Journal of Food Microbiology,2021,363:109493.
    [5]
    杨少勇, 黎婷玉, 蔡文超, 等. 襄阳地区高温大曲和中高温大曲真菌多样性解析[J]. 中国酿造,2021,40(5):76−80. [YANG S Y, LI T Y, CAI W C, et al. Analysis of fungal diversity in high-temperature Daqu and medium-high-temperature Daqu from Xiangyang[J]. China Brewing,2021,40(5):76−80. doi: 10.11882/j.issn.0254-5071.2021.05.014

    YANG S Y, LI T Y, CAI W C, et al. Analysis of fungal diversity in high-temperature Daqu and medium-high-temperature Daqu from Xiangyang[J]. China Brewing, 2021, 40(5): 76-80. doi: 10.11882/j.issn.0254-5071.2021.05.014
    [6]
    冯佳婷, 陆震鸣, 时伟, 等. 不同培养温度对大曲微生物群落结构、酶活及挥发性化合物的影响[J]. 应用与环境生物学报,2021,27(3):760−767. [FENG J T, LU Z M, SHI W, et al. Effects of different culture temperatures on microbial community structure, enzyme activity, and volatile compounds in Daqu[J]. Chinese Journal of Applied and Environmental Biology,2021,27(3):760−767.

    FENG J T, LU Z M, SHI W, et al. Effects of different culture temperatures on microbial community structure, enzyme activity, and volatile compounds in Daqu[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 760-767.
    [7]
    KANG J, CHEN X, HAN B Z, et al. Insights into the bacterial, fungal, and phage communities and volatile profiles in different types of Daqu[J]. Food Research International,2022,158:111488. doi: 10.1016/j.foodres.2022.111488
    [8]
    XIAO C, LU Z, ZHANG X, et al. Bio-heat is a key environmental driver shaping microbial community of medium-temperature Daqu[J]. Applied and Environmental Microbiology,2017,83(23):e01550−17.
    [9]
    FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology,2005,71(7):4117−4120. doi: 10.1128/AEM.71.7.4117-4120.2005
    [10]
    向港兴, 陈莹琪, 沈毅, 等. 不同等级浓香型大曲微生物群落结构与理化性质的比较分析[J]. 食品科学,2022,43(18):184−191. [XIANG G X, CHEN Y Q, SHEN Y, et al. Comparative analysis of microbial community structure and physicochemical properties of different grades of Nongxiangxing Daqu[J]. Food Science,2022,43(18):184−191. doi: 10.7506/spkx1002-6630-20211018-193

    XIANG G X, CHEN Y Q, SHEN Y, et al. Comparative analysis of microbial community structure and physicochemical properties of different grades of Nongxiangxing Daqu[J]. Food Science, 2022, 43(18): 184-191. doi: 10.7506/spkx1002-6630-20211018-193
    [11]
    LIU J J, CHEN J Y, FAN Y, et al. Biochemical characterisation and dominance of different hydrolases in different types of Daqu: A Chinese industrial fermentation starter[J]. Journal of the Science of Food and Agriculture,2018,98:113−121. doi: 10.1002/jsfa.8445
    [12]
    WANG B W, WU Q, XU Y, et al. Specific volumetric weight-driven shift in microbiota compositions with saccharifying activity change in starter for Chinese Baijiu fermentation[J]. Frontiers in Microbiology,2018,9:2349. doi: 10.3389/fmicb.2018.02349
    [13]
    印丽, 邱树毅, 曹文涛, 等. 酱香型白酒核心产区大曲的酶系分析[J]. 现代食品科技,2021,31(3):89−96. [YIN L, QIU S Y, CAO W T, et al. Analysis of Daqu enzymes from the core production area of Maotai-flavor liquor[J]. Modern Food Science and Technology,2021,31(3):89−96. doi: 10.13982/j.mfst.1673-9078.2021.3.0749

    YIN L, QIU S Y, CAO W T, et al. Analysis of Daqu enzymes from the core production area of Maotai-flavor liquor[J]. Modern Food Science and Technology, 2021, 31(3): 89-96. doi: 10.13982/j.mfst.1673-9078.2021.3.0749
    [14]
    刘雅婧, 陆晨浩, 赵腾, 等. 微波干燥对高水分稻谷酶活力及稳定性的影响[J]. 食品工业科技,2019,40(17):1−7. [LIU Y J, LU C H, ZHAO T, et al. Effect of microwave drying on enzyme activity and stability of high moisture rice[J]. Science and Technology of Food Industry,2019,40(17):1−7.

    LIU Y J, LU C H, ZHAO T, et al. Effect of microwave drying on enzyme activity and stability of high moisture rice[J]. Science and Technology of Food Industry, 2019, 40(17): 1-7.
    [15]
    方程, 杜海, 徐岩. 大曲丝状真菌的物种多样性及其次级代谢产物的合成潜力[J]. 食品与发酵工业,2019,45(15):1−8. [FANG C, DU H, XU Y. Diversity of Daqu filamentous fungi and their potentials for synthesizing bioactive compounds[J]. Food and Fermentation Industries,2019,45(15):1−8. doi: 10.13995/j.cnki.11-1802/ts.020601

    FANG C, DU H, XU Y. Diversity of Daqu filamentous fungi and their potentials for synthesizing bioactive compounds[J]. Food and Fermentation Industries, 2019, 45(15): 1-8. doi: 10.13995/j.cnki.11-1802/ts.020601
    [16]
    曹森, 董立超, 张鹏, 等. 基于高通量测序解析不同品种蓝莓表面菌群结构的多样性[J]. 中国食品学报,2022,22(7):278−286. [CAO S, DONG L C, ZHANG P, et al. Analysis of fungal flora structural diversity on the surface of different varieties of blueberry based on high-throughput sequencing[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(7):278−286.

    CAO S, DONG L C, ZHANG P, et al. Analysis of fungal flora structural diversity on the surface of different varieties of blueberry based on high-throughput sequencing[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(7): 278-286.
    [17]
    李静心, 王艳丽, 何宏魁, 等. 基于高通量测序技术解析高温大曲和中高温大曲的真菌群落结构[J]. 食品与发酵工业,2018,44(12):52−59. [LI J X, WANG Y L, HE H K, et al. High-throughput sequencing revealed fungal community structures at high temperature Daqu and medium temperature Daqu[J]. Food and Fermentation Industries,2018,44(12):52−59.

    LI J X, WANG Y L, HE H K, et al. High-throughput sequencing revealed fungal community structures at high temperature Daqu and medium temperature Daqu[J]. Food and Fermentation Industries, 2018, 44(12): 52-59.
    [18]
    CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13:581−583. doi: 10.1038/nmeth.3869
    [19]
    钟辉, 刘亚军, 王滨花, 等. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报,2022,38(6):81−92. [ZHONG H, LIU Y J, WANG B H, et al. Effects of analysis methods on the analyzed results of 16S rRNA gene amplicon sequencing in bacterial communities[J]. Biotechnology Bulletin,2022,38(6):81−92.

    ZHONG H, LIU Y J, WANG B H, et al. Effects of analysis methods on the analyzed results of 16S rRNA gene amplicon sequencing in bacterial communities[J]. Biotechnology Bulletin, 2022, 38(6): 81-92.
    [20]
    苏畅, 窦晓, 叶新, 等. 基于ITS4/5 rRNA区序列对不同时期大曲中霉菌的分离与鉴定[J]. 现代食品科技,2018,34(3):54−58, 211. [SU C, DOU X, YE X, et al. Isolation and identification of mold from Daqu in different periods based on the ITS4/5 rRNA region sequence[J]. Modern Food Science and Technology,2018,34(3):54−58, 211.

    SU C, DOU X, YE X, et al. Isolation and identification of mold from Daqu in different periods based on the ITS4/5 rRNA region sequence[J]. Modern Food Science and Technology, 2018, 34(3): 54-58, 211.
    [21]
    向玉萍, 邱树毅, 曹文涛, 等. 酱香型白酒核心产区大曲中霉菌的分离及鉴定[J]. 食品与发酵科技,2021,57(2):56−65. [XIANG Y P, QIU S Y, CAO W T, et al. Isolation and identification of molds in Daqu of the core producing area of Moutai-flavor liquor[J]. Food and Fermentation Science and Technology,2021,57(2):56−65.

    XIANG Y P, QIU S Y, CAO W T, et al. Isolation and identification of molds in Daqu of the core producing area of Moutai-flavor liquor[J]. Food and Fermentation Science and Technology, 2021, 57(2): 56-65.
    [22]
    申孟林. 浓香型白酒大曲发酵成熟过程中四种主要酶产生菌多样性分析[D]. 成都: 西华大学, 2018

    SHEN M L. The diversity of four main enzymes producers in strong flavor Daqu during fermentation and maturation stages[D]. Chengdu: Xihua University, 2018.
    [23]
    SU Y Y, CAI L. Rasamsonia composticola, a new thermophilic species isolated from compost in Yunnan, China[J]. Mycological Progress,2013,12:213−21. doi: 10.1007/s11557-012-0827-9
    [24]
    MCCLENDON S D, BATTH T, PETZOLD C J, et al. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J]. Biotechnology for Biofuels,2012,5:54. doi: 10.1186/1754-6834-5-54
    [25]
    李晓丽, 涂涛, 姚斌, 等. 嗜热子囊菌JCM12803来源的双功能木聚糖/纤维素酶[J]. 生物工程学报,2018,34(12):1996−2006. [LI X L, XU T, YAO B, et al. A novel bifunctional xylanase/cellulase TcXyn10A from Thermoascus crustaceus JCM12803[J]. Chinese Journal of Biotechnology,2018,34(12):1996−2006. doi: 10.13345/j.cjb.180067

    LI X L, XU T, YAO B, et al. A novel bifunctional xylanase/cellulase TcXyn10A from Thermoascus crustaceus JCM12803[J]. Chinese Journal of Biotechnology, 2018, 34(12): 1996-2006. doi: 10.13345/j.cjb.180067
    [26]
    GARBIN A P, GARCIA N F L, CAVALHEIRO G F, et al. β-Glucosidase from thermophilic fungus Thermoascus crustaceus: Production and industrial potential[J]. Anais da Academia Brasileira de Ciencias,2021,93:e20191349. doi: 10.1590/0001-3765202120191349
    [27]
    罗艳, 涂涛, 姚斌, 等. 嗜热子囊菌JCM12803来源的阿魏酸酯酶FAE-2515酶学性质研究[J]. 中国农业科技导报,2018,20(9):57−64. [LUO Y, XU T, YAO B, et al. Studies on enzymatic properties of ferulic acid esterase FAE-2515 from Thermoascus crustaceus JCM12803[J]. Journal of Agricultural Science and Technology,2018,20(9):57−64. doi: 10.13304/j.nykjdb.2017.0825

    LUO Y, XU T, YAO B, et al. Studies on enzymatic properties of ferulic acid esterase FAE-2515 from Thermoascus crustaceus JCM12803[J]. Journal of Agricultural Science and Technology, 2018, 20(9): 57-64. doi: 10.13304/j.nykjdb.2017.0825
    [28]
    SHI W, CHAI L J, FANG G Y, et al. Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop[J]. Food Research International,2022,156:111298. doi: 10.1016/j.foodres.2022.111298
    [29]
    李申奥. 兼香型白酒高温大曲微生物群落演替规律的研究[D]. 武汉: 华中农业大学, 2016

    LI S A. The study on the succession low of microbial community from high temperature Daqu of maotai-luzhou-flavor liquor[D]. Wuhan: Huazhong Agricultural University, 2016.
    [30]
    SINGH S, MADLALA A M, PRIOR B A. Thermomyces lanuginosus: Properties of strains and their hemicellulases[J]. FEMS Microbiology Reviews,2003,27:3−16. doi: 10.1016/S0168-6445(03)00018-4
    [31]
    NGUYEN Q D, SZABÓ J M R, CLAEYSSENS M, et al. Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626[J]. Enzyme and Microbial Technology,2002,31(3):345−352. doi: 10.1016/S0141-0229(02)00128-X
    [32]
    王瑞. 多轮黑曲霉麸曲强化技术对四川麸醋固态发酵过程中菌群和风味品质的影响[D]. 雅安: 四川农业大学, 2020

    WANG R. Effects of multiple rounds of Aspergillus niger bran koji intensification technology on microbial flora and flavor quality during the solid fermentation of Sichuan bran vinegar[D]. Ya’an: Sichuan Agricultural University, 2020.
    [33]
    马鹏. 高酯化力、糖化力和液化力霉菌的筛选及强化大曲的研究[D]. 阿拉尔: 塔里木大学, 2022

    MA P. Screening of molds with high esterification power, saccharification power and liquefaction power and research on strengthening Daqu[D]. Alaer: Tarim University, 2022.
    [34]
    安建鲁. 嗜热真菌埃默森篮状菌糖苷水解酶的功能解析[D]. 济南: 山东大学, 2021

    AN J L. Functional analysis of glycoside hydrolases from the thermophilic fungus Rasamsonia emersonii[D]. Jinan: Shandong University, 2021.
    [35]
    唐慧芳, 黄钧, 周荣清, 等. 场地异质性对中高温大曲微生物群落及品质影响的研究[J]. 食品与发酵工业, 2023, 49(8): 237-244.

    TANG H F, HUANG J, ZHOU R Q, et al. Study on the effect of the site heterogeneity on the microbial community and quality of medium-high temperature Daqu[J]. Food and Fermentation Industries, 2023, 49(8): 237-244.
    [36]
    黄静. 保宁醋“中药醋曲”发酵过程中微生物菌群与理化性质动态解析[D]. 雅安: 四川农业大学, 2020

    HUANG J. Dynamic analysis of microbiota and physicochemical properties during the fermentation process of Baoning vinegar “herb Daqu”[D]. Ya’an: Sichuan Agricultural University, 2020.
  • Cited by

    Periodical cited type(14)

    1. 祝森根,何玮宁,胡雨,刘青林,王淑慧,童桦,李秋. 不同葛根多糖结构特征及生物活性研究. 食品研究与开发. 2025(02): 208-216 .
    2. 王焕燃,朱轶龙,孙萍. 白块菌多糖理化特性分析及对运动疲劳小鼠肝脏氧化损伤的保护作用. 现代食品科技. 2024(03): 56-64 .
    3. 彭静,潘东梅,潘东莲,史哲铭,袁婧玮,曾雄龙,黄裕成,易延逵. 白术多糖提取分离工艺研究. 中华中医药学刊. 2024(05): 41-45+274 .
    4. 郑康威,陈泽华,王健,殷亚如,谢凯杰,韩梦威,陈福佳,钱慧琴. 不同提取方法对海桐果皮多糖理化性质及生物活性的影响. 饲料工业. 2024(15): 97-105 .
    5. 郑伟剑,曾致,黄东璋,沈留红. 葛根主要成分、生物学功能及其在畜禽生产中的应用. 动物营养学报. 2024(10): 6223-6233 .
    6. 陈盈盈,李杰,宋建忠,陈章浩,李改茹,常军民. 刺糖多糖脱色脱蛋白工艺及抗氧化活性研究. 化学试剂. 2023(01): 46-53 .
    7. 高晶晶,刘丽娜,王震,闫君芝,慕苗,陈锦中. 豆渣中多糖的提取工艺研究. 当代化工. 2023(01): 121-124 .
    8. 许梦粤,曾长立,王红波. 药食同源植物多糖提取方法、结构解析和生物活性研究进展. 食品研究与开发. 2023(19): 216-224 .
    9. 王秋丹,赵凯迪,林长青. 葛根多糖抗氧化性及其降血糖作用研究. 食品工业科技. 2022(05): 381-388 . 本站查看
    10. 陈超,谭书明,王画,杨笙,代晓桐. 刺梨及其活性成分对2型糖尿病小鼠糖脂代谢的影响. 食品科学. 2022(13): 146-154 .
    11. 李莉,武成刚,李炎锴,王柯,张淑平. 岩藻多糖的纯化工艺研究. 应用化工. 2022(12): 3545-3548 .
    12. 李慧,包海蓉. 天然多糖保鲜剂在水产品冷藏中的保鲜机理及应用形式. 食品与发酵工业. 2021(10): 271-277 .
    13. 侯瑞阳,龚光杰,黄雨,陈双迪,侯子阳,张亚婷. 药食同源戚风蛋糕的工艺研究. 现代食品. 2021(10): 79-83 .
    14. 柯春山,吴少福,彭鹏,李麟,李书飞,洪艳平. 大孔树脂纯化裸花紫珠总三萜工艺研究. 江西农业大学学报. 2021(05): 1178-1187 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (434) PDF downloads (25) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return