Citation: | WANG Jinge, CAI Yongjian, LIU Junmei, et al. Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 85−93. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090179. |
[1] |
张远红. 大豆肽基纳米颗粒的制备、界面行为及功能性输送的研究[D]. 广州: 华南理工大学, 2018: 20−30
ZHANG Y H. Fabrication, interfacial behaviors and functional delivery of soy peptide-based nanoparticles[D]. Guangzhou: South China University of Technology, 2018: 20−30.
|
[2] |
杜翠. 大豆酶解聚集体的改性及其在植脂奶油中的应用[D]. 广州: 华南理工大学, 2020: 27−36
DU C. The modification of insoluble soy peptide aggregate (ISPA): Application in the whipped cream[D]. Guangzhou: South China University of Technology, 2020: 27−36.
|
[3] |
SOZER N, KOKINI J L. Nanotechnology and its applications in the food sector[J]. Trends in Biotechnology,2008,27(2):82−89.
|
[4] |
JONES O G, MCCLEMENTS D J. Functional biopolymer particles: Design, fabrication, and applications[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(4):374−397. doi: 10.1111/j.1541-4337.2010.00118.x
|
[5] |
YUAN D, ZHOU F B, SHEN P H, et al. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven encapsulation and delivery of hydrophobic cargo curcumin[J]. Food Hydrocolloids,2021,120:106759. doi: 10.1016/j.foodhyd.2021.106759
|
[6] |
LI J M, CHEN Z. Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin[J]. LWT-Food Science and Technology,2022,159:113059. doi: 10.1016/j.lwt.2021.113059
|
[7] |
ROUFEGARINEJAD L. Development and characterization of the reinforced soy protein isolate-based nanocomposite film with CuO and TiO2 nanoparticles[J]. Journal of Polymers and the Environment,2022,30(6):2507−2515. doi: 10.1007/s10924-022-02374-9
|
[8] |
ZHAO M M, LUO D H, CU L J, et al. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate[J]. LWT-Food Science and Technology,2012,46(2):453−459. doi: 10.1016/j.lwt.2011.12.001
|
[9] |
CHEN L, CHEN J S, REN J Y, et al. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties[J]. Food Hydrocolloids,2011,25(5):887−897. doi: 10.1016/j.foodhyd.2010.08.013
|
[10] |
HINMAN J J, SUSLICK K S. Nanostructured materials synthesis using ultrasound[J]. Topics in Current Chemistry,2017,375(1):12. doi: 10.1007/s41061-016-0100-9
|
[11] |
DONG X H, ZHAO M M, YANG B, et al. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins[J]. Innovative Food Science and Emerging Technologies,2011,12(4):478−483. doi: 10.1016/j.ifset.2011.07.002
|
[12] |
ZHANG L T, PAN Z, SHEN K Q, et al. Influence of ultrasound-assisted alkali treatment on the structural properties and functionalities of rice protein[J]. Journal of Cereal Science,2018,79:204−209. doi: 10.1016/j.jcs.2017.10.013
|
[13] |
RYMER S J, TENDLER S J, BOSQUILLON C, et al. Self-assembling peptides and their potential applications in biomedicine[J]. Therapeutic Delivery,2011,2(8):1043−1056. doi: 10.4155/tde.11.74
|
[14] |
ZHANG Y H, ZHOU F B, ZHAO M M, et al. Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability[J]. Food Hydrocolloids,2018,74:62−71. doi: 10.1016/j.foodhyd.2017.07.021
|
[15] |
HAMLEY I W. Self-assembly of amphiphilic peptides[J]. Soft Matter,2011,7(9):4122−4138. doi: 10.1039/c0sm01218a
|
[16] |
ABBAS M, ZOU Q L, LI S K, et al. Self-Assembled peptide and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Advanced Materials,2017,29(12):1605021. doi: 10.1002/adma.201605021
|
[17] |
ZHANG Y H, ZHOU F B, ZENG X F, et al. pH-Driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3[J]. Food Chemistry,2022,383:132489. doi: 10.1016/j.foodchem.2022.132489
|
[18] |
杨盛楠, 翟爱华. 高压均质对大豆分离蛋白功能性质的影响[J]. 中国酿造,2014,33(12):89−93. [YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing,2014,33(12):89−93. doi: 10.11882/j.issn.0254-5071.2014.12.018
YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing, 2014, 33(12): 89-93. doi: 10.11882/j.issn.0254-5071.2014.12.018
|
[19] |
XU Y Y, WANG G R, WANG X B, et al. Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate[J]. Food Science and Biotechnology,2018,27(5):1293−1299. doi: 10.1007/s10068-018-0361-x
|
[20] |
SUN C C, LIU R, WU T, et al. Combined superfine grinding and heat-shearing treatment for the microparticulation of whey proteins[J]. Food and Bioprocess Technology,2016,9(2):378−386. doi: 10.1007/s11947-015-1629-2
|
[21] |
刘慕君, 于国萍, 齐微微, 等. 植酸酶-木瓜蛋白酶协同改性对大豆分离蛋白冻融稳定性的影响[J]. 中国食品学报,2018,18(2):112−116. [LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(2):112−116. doi: 10.16429/j.1009-7848.2018.02.014
LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(2): 112-116. doi: 10.16429/j.1009-7848.2018.02.014
|
[22] |
LIU R, WANG L G, LIU Y, et al. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment[J]. Food Hydrocolloids,2018,81:39−47. doi: 10.1016/j.foodhyd.2018.01.031
|
[23] |
胡晓利, 布冠好. 高压均质与酶法联合改性对大豆蛋白抗原性及结构的影响[J]. 河南工业大学学报,2018,39(6):29−35. [HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(6):29−35.
HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(6): 29-35.
|
[24] |
张晶. 均质及酶解对大米蛋白功能特性的影响及机理的初探[D]. 安徽: 安徽农业大学, 2017: 44−54
ZHANG J. The effects of homogenization and enzymatic hydrolysis on the functional properties of rice protein and preliminary study on its mechanism[D]. Anhui Agricultural University, 2017: 44−54.
|
[25] |
SHEN P H, ZHOU F B, ZHANG Y H, et al. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis[J]. Food Hydrocolloids,2020,105:105844. doi: 10.1016/j.foodhyd.2020.105844
|
[26] |
NIELSEN P M, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi: 10.1111/j.1365-2621.2001.tb04614.x
|
[27] |
DU C, CAI Y J, LIU T X, et al. Physicochemical, interfacial and emulsifying properties of insoluble soy peptide aggregate: Effect of homogenization and alkaline-treatment[J]. Food Hydrocolloids,2020,109:106125. doi: 10.1016/j.foodhyd.2020.106125
|
[28] |
孙冰玉, 李志敏, 刘琳琳, 等. 高压均质技术对大豆蛋白结构和发酵特性影响研究进展[J]. 食品工业科技,2022,43(13):425−433. [SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry,2022,43(13):425−433. doi: 10.13386/j.issn1002-0306.2021070123
SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry, 2022, 43(13): 425-433. doi: 10.13386/j.issn1002-0306.2021070123
|
[29] |
CARULLO D, DONSI F, FERRARI G. Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins[J]. LWT-Food Science and Technology,2020,130:109657. doi: 10.1016/j.lwt.2020.109657
|
[30] |
ZHANG Y H, ZHOU F B, SHEN P H, et al. Influence of thermal treatment on oil-water interfacial properties and emulsion stabilization prepared by sono-assembled soy peptide nanoparticles[J]. Food Hydrocolloids,2020,103:105646. doi: 10.1016/j.foodhyd.2020.105646
|
[31] |
YE J P, DENG L P, WANG Y R, et al. Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes[J]. Food Chemistry,2021,362:130238. doi: 10.1016/j.foodchem.2021.130238
|
1. |
李杨,杨燕,王振南,吕慎金. 乳酸菌在畜禽营养与饲料中的应用. 饲料工业. 2024(05): 16-22 .
![]() | |
2. |
任青霞,户行宇,张敏,周增佳,杨贞耐. 植物乳杆菌NMGL2的安全性评价及其产细菌素发酵条件优化. 中国食品学报. 2024(09): 184-193 .
![]() |