Citation: | WANG Xiaoyu, WU Mengna, YU Qiaoru, et al. Isolation and Identification of Lactiplantibacillus plantarum ST3.5 and Its Inhibitory Effect on Mold[J]. Science and Technology of Food Industry, 2023, 44(13): 141−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080334. |
[1] |
BANGAR S P, SHARMA N, KUMAR M, et al. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination[J]. Food Bioscience,2021,44:101444. doi: 10.1016/j.fbio.2021.101444
|
[2] |
NEME K, MOHAMMED A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review[J]. Food Control,2017,78:412−425. doi: 10.1016/j.foodcont.2017.03.012
|
[3] |
LITING W, HAO W, GUOZHENG Q, et al. Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit[J]. Food Control,2014,41:56−62. doi: 10.1016/j.foodcont.2013.12.028
|
[4] |
TONGFEI L, YING W, YAYA F, et al. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment[J]. International Journal of Food Microbiology,2017,244:1−10. doi: 10.1016/j.ijfoodmicro.2016.12.017
|
[5] |
ZHANG X M, FU M R. Inhibitory effect of chlorine dioxide (ClO2) fumigation on growth and patulin production and its mechanism in Penicillum expansum[J]. LWT-Food Science and Technology,2018,96:335−343. doi: 10.1016/j.lwt.2018.05.051
|
[6] |
HE C, ZHANG Z, LI B, et al. Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit[J]. Postharvest Biology and Technology,2019,151:134−141. doi: 10.1016/j.postharvbio.2019.02.009
|
[7] |
VANESSA R D S, VLADIMIR P, KEITH W, et al. A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm[J]. Food Control,2020,110:107039. doi: 10.1016/j.foodcont.2019.107039
|
[8] |
NICOLETA A M, ANA Y R, ANCA I N, et al. Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice[J]. Food Control,2014,41:27−31. doi: 10.1016/j.foodcont.2013.12.023
|
[9] |
刘欢, 史懿乐, 雷化雨, 等. 食源性病原菌新型天然抑菌剂的开发研究进展[J]. 食品科技,2022,47(7):243−249. [LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria[J]. Food Science and Technology,2022,47(7):243−249. doi: 10.3969/j.issn.1005-9989.2022.7.spkj202207036
LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria [J]. Food Science and Technology, 2022, 47(7): 243-249. doi: 10.3969/j.issn.1005-9989.2022.7.spkj202207036
|
[10] |
孙悦. 抗耐药性埃希氏大肠杆菌乳酸菌的筛选及抑菌机制研究[D]. 锦州: 渤海大学, 2020
SUN Y. Screening of anti-drug resistant Escherichia coli lactic acid bacteria and its antibacterial mechanism[D]. Jinzhou: Bohai University, 2020.
|
[11] |
YANG E J, CHANG H C. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi[J]. International Journal of Food Microbiology,2010,139(1−2):56−63. doi: 10.1016/j.ijfoodmicro.2010.02.012
|
[12] |
SVANSTROM A, BOVERI S, BOSTROM E, et al. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi[J]. BMC Research Notes,2013,6:464. doi: 10.1186/1756-0500-6-464
|
[13] |
LE LAY C, COTON E, LE BLAY G, et al. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria[J]. International Journal of Food Microbiology,2016,239:79−85. doi: 10.1016/j.ijfoodmicro.2016.06.020
|
[14] |
AL-ROUSAN W M, OLAIMAT A N, OSAILI T M, et al. Use of acetic and citric acids to inhibit Escherichia coli O157: H7, Salmonella typhimurium and Staphylococcus aureus in tabbouleh salad[J]. Food Microbiology,2018,73:61−66. doi: 10.1016/j.fm.2018.01.001
|
[15] |
苟拥军, 严林, 王煊锴, 等. 苹果汁发酵用乳酸菌的分离 筛选及增殖条件优化[J]. 农产品加工,2022(13):13−20. [GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation[J]. Farm Products Processing,2022(13):13−20.
GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation [J]. Farm Products Processing, 2022(13): 13-20.
|
[16] |
李院. 酱菜中抑霉菌的乳酸菌分离、鉴定及抑菌活性物质分析[D]. 杨凌: 西北农林科技大学, 2015
LI, Y. The isolation, identification and analysis of antimicrobial component of lactic acid bacteria inhibiting fungi in pickles[D]. Yangling: Northwest A&F University, 2015.
|
[17] |
布坎南, 吉本斯. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 797−826
BUDANAN R E, GIBBONR N E. Berger handbook of bacterial identification[M]. Beijing: Science Press, 1984: 797−826.
|
[18] |
YAO D, WANG X, MA L, et al. Impact of Weissella cibaria BYL4.2 and its supernatants on Penicillium chrysogenum metabolism[J]. Frontiers in Microbiology,2022,13:983613. doi: 10.3389/fmicb.2022.983613
|
[19] |
CHEN H, JU H, WANG Y, et al. Antifungal activity and mode of action of lactic acid bacteria isolated from kefir against Penicillium expansum[J]. Food Control,2021,130:108274. doi: 10.1016/j.foodcont.2021.108274
|
[20] |
SOMASHEKARAIAH R, MOTTAWEA W, GUNDURAJ A, et al. Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an indian traditional fermented food pozha[J]. Frontiers in Microbiology,2021,12:696267. doi: 10.3389/fmicb.2021.696267
|
[21] |
VELEZ P, ESPINOSA-ASUAR L, FIGUEROA M, et al. Nutrient dependent cross-kingdom interactions: Fungi and bacteria from an oligotrophic desert oasis[J]. Frontiers in Microbiology,2018,9:1755. doi: 10.3389/fmicb.2018.01755
|
[22] |
王巧丽. 猪源罗伊氏乳杆菌的筛选、特性研究及应用[D]. 兰州: 甘肃农业大学, 2013
WANG Q L, Screening, characteristics and application of Lactobacillus reuteri from pigs[D]. Lanzhou: Gansu Agricultural University, 2013.
|
[23] |
苏布敦格日乐. 猪源乳酸菌的分离及其对猪瘟疫苗免疫协同作用的研究[D]. 呼和浩特: 内蒙古农业大学, 2008
SU B D G R L. Identification and characterisation of lactic acid bacterial isolates and their effects on immune synergism with classical swine fever vaccine[D]. Hohhot: Inner Mongolia Agricultural University, 2008.
|
[24] |
肖俊, 张桂芳, 李艳芳, 等. 草鱼肠道乳酸菌的分离鉴定及适用性能评价[J]. 湖南农业科学,2022(4):65−69. [XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine[J]. Hunan Agricultural Sciences,2022(4):65−69. doi: 10.16498/j.cnki.hnnykx.2022.004.018
XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine [J]. Hunan Agricultural Sciences, 2022(4): 65-69. doi: 10.16498/j.cnki.hnnykx.2022.004.018
|
[25] |
郑越, 段涛, 宋丹, 等. 六株植物乳杆菌的益生特性研究[J]. 食品与发酵工业,2022,48(10):119−125. [ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries,2022,48(10):119−125. doi: 10.13995/j.cnki.11-1802/ts.029063
ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries, 2022, 48( 10): 119-125. doi: 10.13995/j.cnki.11-1802/ts.029063
|
[26] |
HAI J Y, YONG F C, HUI J Y, et al. Screening for Lactobacillus plantarum with potential inhibitory activity against enteric pathogens[J]. Annals of Microbiology,2015,65(3):1257−1265. doi: 10.1007/s13213-014-0963-3
|
[27] |
FRAQUEZA M J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages[J]. International Journal of Food Microbiology,2015,212:76−88. doi: 10.1016/j.ijfoodmicro.2015.04.035
|
[28] |
何杉杉, 王晓蕊, 彭禹熙, 等. 雪莲菌中乳酸菌的益生特性[J]. 食品科学,2022,43(2):210−216. [HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science,2022,43(2):210−216. doi: 10.7506/spkx1002-6630-20201224-282
HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science, 2022, 43(2): 210-216. doi: 10.7506/spkx1002-6630-20201224-282
|
[29] |
王楠, 尹纪元, 王英英, 等. 草鱼源乳酸菌的分离鉴定及其生物学特性研究[J]. 南方水产科学,2021,17(6):74−84. [WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of Lactobacillus from grass carp[J]. South China Fisheries Science,2021,17(6):74−84. doi: 10.12131/20210039
WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of lactobacillus from grass carp [J]. South China Fisheries Science, 2021, 17(6): 74-84. doi: 10.12131/20210039
|
[30] |
WERNER G. Current trends of emergence and spread of vancomycin-resistant enterococci[M]//IntechOpen, 2012.
|
[31] |
DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology,2003,82(1):1−11. doi: 10.1016/S0168-1605(02)00254-4
|
[32] |
冯金晓, 李明珠, 冯倩. 青岛市售酸奶中乳酸菌的分离鉴定及耐药性研究[J]. 现代食品,2018(5):106−109. [FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao[J]. Modern Food,2018(5):106−109. doi: 10.16736/j.cnki.cn41-1434/ts.2018.05.034
FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao [J]. Modern Food, 2018(5): 106-109. doi: 10.16736/j.cnki.cn41-1434/ts.2018.05.034
|
[33] |
党乔, 孔令聪, 刘洁, 等. 泡菜发酵乳酸菌的分离鉴定及耐药性分析[J]. 食品科学,2019,40(20):166−170. [DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi[J]. Food Science,2019,40(20):166−170. doi: 10.7506/spkx1002-6630-20181109-093
DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi [J]. Food Science, 2019, 40(20): 166-170. doi: 10.7506/spkx1002-6630-20181109-093
|
[34] |
王庆宇, 李啸, 宋宜兵, 等. 抑制馒头中腐败霉菌活性乳酸菌的筛选及其应用[J]. 中国酿造,2021,40(10):139−143. [WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou[J]. China Brewing,2021,40(10):139−143. doi: 10.11882/j.issn.0254-5071.2021.10.023
WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou [J]. China Brewing, 2021, 40(10): 139-143. doi: 10.11882/j.issn.0254-5071.2021.10.023
|
[35] |
GREIFOVA G, MAJEKOVA H, GREIF G, et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri[J]. Folia Microbiologica,2017,62(6):515−524. doi: 10.1007/s12223-017-0524-9
|
[36] |
孙艳, 冯晓微, 刘佳玮, 等. 健康奶牛生殖道乳酸菌的分离鉴定及其抑菌活性研究[J]. 中国畜牧兽医,2022,49(5):1852−1859. [SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows[J]. China Animal Husbandry & Veterinary Medicine,2022,49(5):1852−1859. doi: 10.16431/j.cnki.1671-7236.2022.05.025
SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1852-1859. doi: 10.16431/j.cnki.1671-7236.2022.05.025
|
[37] |
NEHAL F, SAHNOUN M, SMAOUI S, et al. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou[J]. Microbial Pathogenesis,2019,132:10−19. doi: 10.1016/j.micpath.2019.04.018
|
[38] |
赵雅茹, 郭刚, 陈雷, 等. 抑霉乳酸菌的筛分及其抑菌特性研究[J]. 饲料研究,2021,44(2):62−66. [ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus[J]. Feed Research,2021,44(2):62−66. doi: 10.13557/j.cnki.issn1002-2813.2021.02.015
ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus [J]. Feed Research, 2021, 44(2): 62-66. doi: 10.13557/j.cnki.issn1002-2813.2021.02.015
|
[39] |
KULEY E, ÖZYURT G, ÖZOGUL I, et al. The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability[J]. Microorganisms (Basel),2020,8(2):172. doi: 10.3390/microorganisms8020172
|
[40] |
丁宁, 陆兆新, 别小妹, 等. 谷物中具有抑制霉菌活性乳酸菌的分离筛选及鉴定[J]. 南京农业大学学报,2021,44(6):1187−1196. [DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains[J]. Journal of Nanjing Agricultural University,2021,44(6):1187−1196. doi: 10.7685/jnau.202102003
DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains [J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1187-1196. doi: 10.7685/jnau.202102003
|
[41] |
赵雅茹, 许庆方, 高文俊, 等. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报,2021,37(9):95−105. [ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage[J]. Biotechnology Bulletin,2021,37(9):95−105. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0897
ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage [J]. Biotechnology Bulletin, 2021, 37(9): 95-105. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0897
|
[42] |
吕好新, 赵玲丽, 霍珊珊, 等. 肉桂-山苍子复合植物精油对发霉花生黑曲霉BQM菌的抑菌效果[J]. 中国食品学报,2021,21(12):222−229. [LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):222−229. doi: 10.16429/j.1009-7848.2021.12.024
LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 222-229. doi: 10.16429/j.1009-7848.2021.12.024
|
1. |
李杨,杨燕,王振南,吕慎金. 乳酸菌在畜禽营养与饲料中的应用. 饲料工业. 2024(05): 16-22 .
![]() | |
2. |
任青霞,户行宇,张敏,周增佳,杨贞耐. 植物乳杆菌NMGL2的安全性评价及其产细菌素发酵条件优化. 中国食品学报. 2024(09): 184-193 .
![]() |