FAN Wenting, LI Kangjing, SONG Jie, et al. Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 45−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070353.
Citation: FAN Wenting, LI Kangjing, SONG Jie, et al. Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 45−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070353.

Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles

More Information
  • Received Date: August 01, 2022
  • Available Online: May 03, 2023
  • In this work, a trilayer composite film of alginate-polyvinylpyrrolidone-alginate loaded with β-lactoglobulin nanoparticles was prepared based on the layer-by-layer assembly. The formation of β-lactoglobulin nanoparticles was induced by adjusting the ambient pH and temperature in combination with binding apigenin. The formation pattern and storage stability of β-lactoglobulin nanoparticles were investigated by particle size, polydispersity and Zeta potential. Then, the β-lactoglobulin nanoparticles were loaded into sodium alginate-polyvinylpyrrolidone-sodium alginate trilayer composite film to investigate the effects of nano-loading on the mechanical, transmission, optical and thermal properties of the film. The results showed that β-lactoglobulin nanoparticles with good stability could be obtained by adjusting the ambient pH to 7.1 and heating the temperature to 75 ℃ under the protein/ligand molar ratio of 1:8. The mechanical properties and water vapor barrier of the films were significantly improved when the nanoparticles were added to the trilayer composite films at concentrations of 0.2 and 0.3 mg/mL. Moreover, the addition of β-lactoglobulin nanoparticles improved the light transmittance and thermal stability of the trilayer composite film. In conclusion, the trilayer composite film made of alginate loaded with β-lactoglobulin nanoparticles exhibited good packaging properties and high application potential.
  • [1]
    GUO X, WANG Y, QIN Y, et al. Structures, properties and application of alginic acid: A review[J]. International Journal of Biological Macromolecules,2020,162:618−628. doi: 10.1016/j.ijbiomac.2020.06.180
    [2]
    JULINOVÁ M, VAŇHAROVÁ L, ŠAŠINKOVÁ D, et al. Characterization and biodegradation of ternary blends of lignosulfonate/synthetic zeolite/polyvinylpyrrolidone for agricultural chemistry[J]. International Journal of Biological Macromolecules,2022,213:110−122. doi: 10.1016/j.ijbiomac.2022.05.153
    [3]
    ZHANG X, XU Y, ZHANG X, et al. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications[J]. Progress in Polymer Science,2019,89:76−107. doi: 10.1016/j.progpolymsci.2018.10.002
    [4]
    MAHMUD J, SARMAST E, SHANKAR S, et al. Advantages of nanotechnology developments in active food packaging[J]. Food Research International,2022,154:111023. doi: 10.1016/j.foodres.2022.111023
    [5]
    ADEYEYE S A O, ASHAOLU T J. Applications of nano-materials in food packaging: A review[J]. Journal of Food Process Engineering,2021,44(7):e13708.
    [6]
    MCCLEMENTS D J, XIAO H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles[J]. NPJ Science of Food,2017,1(1):1−13. doi: 10.1038/s41538-017-0001-5
    [7]
    CAO X, HAN Y, GU M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations[J]. Small,2020,16(36):2001858. doi: 10.1002/smll.202001858
    [8]
    JEEVAHAN J, CHANDRASEKARAN M. Nanoedible films for food packaging: A review[J]. Journal of Materials Science,2019,54(19):12290−12318. doi: 10.1007/s10853-019-03742-y
    [9]
    WANG C, GONG C, QIN Y, et al. Bioactive and functional biodegradable packaging films reinforced with nanoparticles[J]. Journal of Food Engineering,2022,312:110752. doi: 10.1016/j.jfoodeng.2021.110752
    [10]
    LI X, JI N, QIU C, et al. The effect of peanut protein nanoparticles on characteristics of protein-and starch-based nanocomposite films: A comparative study[J]. Industrial Crops and Products,2015,77:565−574. doi: 10.1016/j.indcrop.2015.09.026
    [11]
    ZHANG S, ZHAO H. Preparation and properties of zein-rutin composite nanoparticle/corn starch films[J]. Carbohydrate Polymers,2017,169:385−392. doi: 10.1016/j.carbpol.2017.04.044
    [12]
    LIU C, LIU Z, SUN X, et al. Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6717−6726. doi: 10.1021/acs.jafc.8b00834
    [13]
    SALAH M, MANSOUR M, ZOGONA D, et al. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro[J]. Food Research International,2020,137:109635. doi: 10.1016/j.foodres.2020.109635
    [14]
    REN Y, LIU T, LIU H, et al. Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation[J]. Journal of Functional Foods,2022,94:105120. doi: 10.1016/j.jff.2022.105120
    [15]
    ZHU J, LI K, WU H, et al. Multi-spectroscopic, conformational, and computational atomic-level insights into the interaction of β-lactoglobulin with apigenin at different pH levels[J]. Food Hydrocolloids,2020,105:105810. doi: 10.1016/j.foodhyd.2020.105810
    [16]
    RAMOS O L, PEREIRA R N, MARTINS A, et al. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food[J]. Critical Reviews in Food Science and Nutrition,2017,57(7):1377−1393. doi: 10.1080/10408398.2014.993749
    [17]
    SIMÕES L S, ABRUNHOSA L, VICENTE A A, et al. Suitability of β-lactoglobulin micro-and nanostructures for loading and release of bioactive compounds[J]. Food Hydrocolloids,2020,101:105492. doi: 10.1016/j.foodhyd.2019.105492
    [18]
    ADITYA N P, YANG H, KIM S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids & Surfaces B Biointerfaces,2015,127:114−121.
    [19]
    GUAN G, ZHANG L, ZHU J, et al. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus[J]. Journal of Hazardous Materials,2021,402:123542. doi: 10.1016/j.jhazmat.2020.123542
    [20]
    LI K, ZHU J, GUAN G, et al. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism[J]. International Journal of Biological Macromolecules,2019,122:485−492. doi: 10.1016/j.ijbiomac.2018.10.188
    [21]
    CHENG S Y, WANG B J, WENG Y M. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids[J]. LWT-Food Science & Technology,2015,63(1):115−121.
    [22]
    SOUZA V G L, FERNANDO A L, PIRES J R A, et al. Physical properties of chitosan films incorporated with natural antioxidants[J]. Industrial Crops & Products,2017,107:565−572.
    [23]
    SUN R, ZHU J, WU H, et al. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities[J]. International Journal of Biological Macromolecules,2021,180:510−522. doi: 10.1016/j.ijbiomac.2021.03.092
    [24]
    JI W, YANG F, YANG M. Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate[J]. Food Chemistry,2022,384:132508. doi: 10.1016/j.foodchem.2022.132508
    [25]
    SOLEIMANIFAR M, JAFARI S M, ASSADPOUR E. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles production and characterization[J]. Food Hydrocolloids,2020,101:105572. doi: 10.1016/j.foodhyd.2019.105572
    [26]
    SAVA N, VAN DER PLANCKEN I, CLAEYS W, et al. The kinetics of heat-induced structural changes of β-lactoglobulin[J]. Journal of Dairy Science,2005,88:1646−1653. doi: 10.3168/jds.S0022-0302(05)72836-8
    [27]
    WEI Z, YANG W, FAN R, et al. Evaluation of structural and functional properties of protein-EGCG complexes and their ability of stabilizing a model β-carotene emulsion[J]. Food Hydrocolloids,2015,45:337−350. doi: 10.1016/j.foodhyd.2014.12.008
    [28]
    WU X, WU H, LIU M, et al. Analysis of binding interaction between (-)-epigallocatechin (EGC) and beta-lactoglobulin by multi-spectroscopic method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,82:164−168. doi: 10.1016/j.saa.2011.07.028
    [29]
    SHPIGELMAN A, ISRAELI G, LIVNEY Y D. Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids,2010,24:735−743. doi: 10.1016/j.foodhyd.2010.03.015
    [30]
    杜文凯. β-乳球蛋白与表没食子儿茶素没食子酸酯制备纳米粒及其抗肿瘤活性研究[D]. 杭州: 浙江工商大学, 2012

    DU W K. Preparation of and anti-cancer activity evaluation of the nanoparticles of β-lactoglobulin-epigallocatechin gallate[D]. Hangzhou: Zhejiang Gongshang University, 2012.
    [31]
    田木. 山羊奶乳清蛋白的制备及其包埋大豆异黄酮体系研究[D]. 哈尔滨: 东北农业大学, 2021

    TIAN M. Goat milk whey protein preparation and its application in whey protein-soy isoflavones delivery system[D]. Harbin: Northeast Agricultural University, 2021.
    [32]
    OYMACI P, ALTINKAYA S A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite[J]. Food Hydrocolloids,2016,54:1−9. doi: 10.1016/j.foodhyd.2015.08.030
    [33]
    MAROUFI L Y, GHORBANI M, TABIBIAZAR M, et al. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging[J]. International Journal of Biological Macromolecules,2021,183:753−759. doi: 10.1016/j.ijbiomac.2021.04.163
    [34]
    彭勇, 李云飞, 项凯翔. 绿茶多酚提高壳聚糖包装膜的抗氧化性能[J]. 农业工程学报,2013,29(14):269−276. [PENG Y, LI Y F, XIANG K X. Adding green tea polyphenols enhances antioxidant of chitosan film[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(14):269−276. doi: 10.3969/j.issn.1002-6819.2013.14.034

    PENG Y, LI Y, XIANG K. Adding green tea polyphenols enhances antioxidant of chitosan film[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 269−276. doi: 10.3969/j.issn.1002-6819.2013.14.034
    [35]
    刘思源. 淀粉基纳米复合膜材多层次结构对水蒸气与氧气阻隔性能的影响研究[D]. 广州: 华南理工大学, 2018

    LIU S Y. Effect of starch-based nanocomposite films multi-scale structures on water vapor and oxygen barrier property[D]. Guangzhou: South China University of Technology, 2018.
    [36]
    VILELA C, PINTO R J B, COELHO J, et al. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging[J]. Food Hydrocolloids,2017,73:120−128. doi: 10.1016/j.foodhyd.2017.06.037
    [37]
    YANG M, XIA Y, WANG Y, et al. Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films[J]. Journal of Applied Polymer Science,2016,133(22):43489.
    [38]
    LIU S, LI Y, LI L. Enhanced stability and mechanical strength of sodium alginate composite films[J]. Carbohydrate Polymers,2017,160:62−70. doi: 10.1016/j.carbpol.2016.12.048
  • Cited by

    Periodical cited type(7)

    1. 杨晓华,洪嘉淇,王临好,潘丽怡,郭何子贤,王洁,廖振林. 降糖活性乳酸菌的筛选及对2型糖尿病小鼠的改善作用. 食品科学. 2025(08): 151-161 .
    2. 兰星,李媛,李莎. 妊娠期糖尿病患者阴道微生态状况与绒毛膜羊膜炎和妊娠结局的相关性分析. 中国妇幼保健. 2023(14): 2550-2553 .
    3. 张雪静,牛红红,苗欣宇,华梅,孙慕白,刘文健,王景会. 自然发酵玉米液中乳酸菌的分离、鉴定及益生特性研究. 中国酿造. 2023(08): 129-134 .
    4. 谢秀明,热孜姑丽·库尔班,马彦科,林勇,杨洁. 阿勒泰传统酸驼乳中乳酸菌发酵乳益生活性评价. 中国乳品工业. 2023(08): 12-19+24 .
    5. 唐铭,高聪聪,王宁宇,胡梅梅,韩雪梅,王海宽. 副干酪乳杆菌TK1501发酵大豆粉对小鼠Ⅱ型糖尿病的干预作用. 食品研究与开发. 2022(12): 61-70 .
    6. 曹英,侯敏,易光平,买尔哈巴·艾合买提,薛杉,陈钢粮,崔卫东. 驼乳制品中抑制α-淀粉酶和α-葡萄糖苷酶活性乳酸菌的筛选及益生特性研究. 食品工业科技. 2022(19): 191-201 . 本站查看
    7. 申永艳,何贵新,肖婷,玉黎燕. 针灸疗法调节肠道菌群防治动脉粥样硬化的研究进展. 广西医学. 2021(13): 1627-1630 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (165) PDF downloads (13) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return