Citation: | LIU Jialin, YING Yong, GUO Lei, et al. Effects of Cryo-grinding on the Extraction and Physicochemical Properties of Silk Fibroin[J]. Science and Technology of Food Industry, 2023, 44(13): 39−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070350. |
[1] |
HUANG X W, LIANG H, LI Z, et a1. Monodisperse phase transfer and surface bioengineering of metal nanoparticles via a silk fibroin protein corona[J]. Nanoscale,2017,9(8):2695−2700. doi: 10.1039/C6NR09581J
|
[2] |
LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32:1901924.1−1901924.43.
|
[3] |
ZHANG X H, SHENG N N, WANG L A, et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors[J]. Materials Horizons Journal,2019,6:326−333. doi: 10.1039/C8MH01188E
|
[4] |
CHEN F, LU S P, ZHU L, et al. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances[J]. J Mater Chem B,2019,7:1708−1715. doi: 10.1039/C8TB02445F
|
[5] |
LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering[J]. Chem Rev,2017,117:4376−4421.
|
[6] |
DHASMANA A, SINGH L, ROY P, et al. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration[J]. Mat Sci Eng C-Mater Biol Appl,2019,97:313−324. doi: 10.1016/j.msec.2018.12.038
|
[7] |
李平, 宛晓春, 陶文沂, 等. 丝素蛋白膜固定β葡萄糖苷酶及其改良食品风味的研究[J]. 菌物学报,2014,23(1):73−78. [LI P, WAN X C, TAO W Y, et al. Study on the immobilization of β-glucosidase by silk fibroin membrane and its improvement of food flavor[J]. Acta Bacteriologica Sinica,2014,23(1):73−78.
LI P, WAN X C, TAO W Y, et al. Study on the immobilization of β-glucosidase by silk fibroin membrane and its improvement of food flavor[J]. Acta Bacteriologica Sinica, 2014, 23(1): 73-78.
|
[8] |
MARELLI B, BRENCKLE M A, KAPLAN D L, et al. Silk fibroin as edible coating for perishable food preservation[J]. Scientific Reports,2016,6:25236. doi: 10.1038/srep25263
|
[9] |
屠洁, 刘冠卉, 燕薇. 4种常用稳定剂和丝素蛋白对搅拌型酸奶黏度和保水性的影响[J]. 食品科学,2012,33(21):136−140. [TU J, LIU G H, YAN W. Effects of four common stabilizers combined with silk fibroin on viscosity and water-holding capacity of stirred yogurt[J]. Food Science,2012,33(21):136−140.
TU J, LIU G H, YAN W. Effects of four common stabilizers combined with silk fibroin on viscosity and water-holding capacity of stirred yogurt[J]. Food Science, 2012, 33(21): 136-140.
|
[10] |
李莹莹, 王昉, 刘其春. 丝素蛋白及其复合材料的研究进展[J]. 材料工程,2018,46(8):14−26. [LI Y Y, WANG F, LIU Q C. Research progress of silk fibroin and its composite materials[J]. Materials Engineering,2018,46(8):14−26. doi: 10.11868/j.issn.1001-4381.2017.001242
LI Y Y, WANG F, LIU Q C. Research progress of silk fibroin and its composite materials[J]. Materials Engineering, 2018, 46(8): 14-26. doi: 10.11868/j.issn.1001-4381.2017.001242
|
[11] |
ARANGO M C, MONTOYA Y, PERESIN M S, et al. Silk sericin as a biomaterial for tissue engineering: A review[J]. International Journal of Polymeric Materials,2021,70(15/18):1115−1129.
|
[12] |
CHELAZZI D, BADILLO-SANCHEZ D, GIORGI R, et al. Self-regenerated silk fibroin with controlled crystallinity for the reinforcement of silk[J]. Journal of Colloid and Interface Science,2020,576:230−240. doi: 10.1016/j.jcis.2020.04.114
|
[13] |
GUO X, LIN N, LU S, et al. Preparation and biocompatibility characterization of silk fibroin 3D scaffolds[J]. ACS Applied Bio Materials,2021,4(2):1369−1380. doi: 10.1021/acsabm.0c01239
|
[14] |
JMA B, SM C, SG C, et al. Silk fibroin as biomaterial for bone tissue engineering[J]. Acta Biomaterialia,2016,31:1−16. doi: 10.1016/j.actbio.2015.09.005
|
[15] |
GUAN Y, YANG X Y, WANG L, et al. A novel silk/polyester woven small diameter arterial prosthesis: Degumming and the influence on cytocompatibility[J]. Fibers and Polymers,2015,16:1533−1539. doi: 10.1007/s12221-015-4934-5
|
[16] |
SUN W, GREGIRY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. International Journal of Molecular Sciences,2021,22(3):1499. doi: 10.3390/ijms22031499
|
[17] |
WANG L P, LUO Z W, et al. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials[J]. Fibers and Polymers,2019,20:45−50. doi: 10.1007/s12221-019-8658-9
|
[18] |
ZHENG Z, GUO S, LIU Y, et al. Lithium-free processing of silk fibroin[J]. Journal of Biomaterials Applications,2016,31(3):450−463. doi: 10.1177/0885328216653259
|
[19] |
RUI W, ZHU Y, ZHUO S, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production,2018,203(PT.1−1216):492−497.
|
[20] |
WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of the Textile Institute,2019,110(1):134−140. doi: 10.1080/00405000.2018.1473074
|
[21] |
VYAS S K, SHUKLA S R. Comparative study of degumming of silk varieties by different techniques[J]. Journal of the Textile Institute Proceedings & Abstracts,2015,107(2):191−199.
|
[22] |
RASTOGI S, KANDASU B. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization[J]. Journal of the Textile Institute,2020,111(12):1−17.
|
[23] |
TOWNSEND B, PEYRONEL F, CAHHAGHAN-PATEACHAR N, et al. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements[J]. J Appl Phys,2017,122(22):224304−224314. doi: 10.1063/1.5004023
|
[24] |
WILSON J F, BOLESLAV Z, ONDŘEJ Š, et al. Study of the shear-thinning effect between polymer nanoparticle surfaces during shear-induced aggregation[J]. Ind Eng Chem Res,2021,60(29):10654−10665. doi: 10.1021/acs.iecr.1c00232
|
[25] |
MEGHWAL M, GOSWAMI T K. Comparative study on ambient and cryogenic grinding of fenugreek and black pepper seeds using rotor, ball, hammer and pin mill[J]. Powder Technology,2014,267:245−255. doi: 10.1016/j.powtec.2014.07.025
|
[26] |
HE L, YANG J, XU C Z, et al. Effect of pre-shearing treatment on the molecular structure, fibrillogenesis behavior and gel properties of collagen[J]. New J Chem,2020,44(17):6760−6770. doi: 10.1039/D0NJ00054J
|
[27] |
SUN M, WEI X, WANG H B, et al. Structure restoration of thermally denatured collagen by ultrahigh pressure treatment[J]. Food Bioprocess Tech,2020,13(2):367−378. doi: 10.1007/s11947-019-02389-6
|
[28] |
YANG J, WANG H B, HE L, et al. Reconstituted fibril from heterogenic collagens-a new method to regulate properties of collagen gels[J]. Macromol Res,2019,27(11):1124−1135. doi: 10.1007/s13233-019-7160-y
|
[29] |
CHEN X, LIU L, YUAN D, et al. Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding[J]. Progress in Natural Science Materials International,2012,3:201−206.
|
[30] |
赵绪龙, 马广鹏, 武继锋, 等. 冷冻研磨结合LC-MS/MS法检测指甲中甲基苯丙胺、苯丙胺成分[J]. 刑事技术,2020,6:601−605. [ZHAO X L, MA G P, WU J F, et al. Determination of methamphetamine and amphetamine in nail through frozen grinding coupled into high performance liquid chromatography-tandem mass spectrometry[J]. Forensic Science and Technology,2020,6:601−605. doi: 10.16467/j.1008-3650.2020.06.011
ZHAO X L, MA G P, WU J F, et al. Determination of methamphetamine and amphetamine in nail through frozen grinding coupled into high performance liquid chromatography-tandem mass spectrometry[J]. Forensic Science and Technology, 2020, 6: 601-605. doi: 10.16467/j.1008-3650.2020.06.011
|
[31] |
BARANOWSKA-KOREZYE A, BARANOWSKA-KOREZYE A, HUDECKI A, et al. Silk powder from cocoons and woven fabric as a potential bio-modifier[J]. Materials,2021,14(22):6919. doi: 10.3390/ma14226919
|
[32] |
HESS S, BEEK J V, PANNELLL K. Acid hydrolysis of silk fibroins and determination of the enrichment of isotopically labeled amino acids using precolumn derivatization and high-performance liquid chromatography-electrospray ionization-mass spectrometry[J]. Analytical Biochemistry,2002,311(1):19−26. doi: 10.1016/S0003-2697(02)00402-5
|
[33] |
BATH J D, ELLIS J W. Some features and implications of the near infrared absorption spectra of various proteins: Gelatin, silk fibroin, and zinc insulinate[J]. J Phys Chem,2002,45(2):204−209.
|
[34] |
FRENDEL A, SCHMIDT-NAAKE G. Controlled molecular weight degradation by vibration grinding[J]. 2001, 24(8): 798-803.
|
[35] |
WANG Y Q, ZHAO P, LIU H, et al. Structure and temperature induced crystallization of natural rubber with different milling times[J]. Polym Sci Ser A,2021,63(3):228−237. doi: 10.1134/S0965545X21030135
|
[36] |
AMOURA H, MOKRANE H, NADIEMI B. Effect of wet and dry milling on the functional properties of whole sorghum grain flour and kalian[J]. J Food Sci Technol,2020,57:1100−1109. doi: 10.1007/s13197-019-04145-2
|
[37] |
ZHONG J, MA M J, LI W Y, et al. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures[J]. Biopolymers: Original Research on Biomolecules and Biomolecular Assemblies,2014,101(12):1181−1192.
|
[38] |
SHAMSHINA J L, STEIN R S, ABIDI N. Choosing the right strategy: Cryogrinding vs. ball milling-comparing apples to apples[J]. Green Chemistry,2021,23(23):9646−9657. doi: 10.1039/D1GC03128G
|
[39] |
丁梦瑶, 戴梦男, 李蒙, 等. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报,2021,42(7):46−53. [DING M Y, DAI M G, LI M, et al. Separation and characterization of silk fibroin with different molecular weight[J]. Journal of Textile Research,2021,42(7):46−53. doi: 10.13475/j.fzxb.20201006308
DING M Y, DAI M G, LI M, et al. Separation and characterization of silk fibroin with different molecular weight[J]. Journal of Textile Research, 2021, 42(7): 46-53. doi: 10.13475/j.fzxb.20201006308
|
[40] |
ZHOU J, ZHENG D, ZHANG F, et al. A novel method to bind soybean protein onto the surface of poly (Ethylene terephthalate) fabric[J]. Textile Research Journal,2016,87(4):460−473.
|
1. |
汪芸萱,应勇,黄丽,满念薇,徐玉玲,张军涛,许承志. 蚕丝蛋白的体外自组装动力学行为研究. 广州化工. 2024(23): 25-27+41 .
![]() |