GAO Yuqing, ZHANG Haojie, ZHANG Danfeng, et al. Construction of A High-efficiency Homologous Recombination and Uridine/Uracil Auxotroph Strain of Aspergillus oryzae RIB40[J]. Science and Technology of Food Industry, 2023, 44(1): 200−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040179.
Citation: GAO Yuqing, ZHANG Haojie, ZHANG Danfeng, et al. Construction of A High-efficiency Homologous Recombination and Uridine/Uracil Auxotroph Strain of Aspergillus oryzae RIB40[J]. Science and Technology of Food Industry, 2023, 44(1): 200−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040179.

Construction of A High-efficiency Homologous Recombination and Uridine/Uracil Auxotroph Strain of Aspergillus oryzae RIB40

More Information
  • Received Date: April 17, 2022
  • Available Online: October 30, 2022
  • Objective: An auxotrophic strain with high efficiency of homologous recombination was developed in Aspergillus oryzae RIB40. Methods: The AopyrG mutant of A. oryzae RIB40 was firstly obtained using a homologous recombination technique and the 5-fluoroorotic acid (5-FOA) selection for the uridine/uracil auxotroph. To disrupt the ∆Aoku70 gene, the Aoku70 gene of AopyrG mutant was replaced with A. fumigatus pyrG gene. Then, under the screening effect of 5-FOA, the AfpyrG gene of the ∆Aoku70 strain was deleted via genome self-cyclization. To test the utilization of the resulting strain, the mCherry gene, a red fluorescent protein gene, was integrated with the histone H2B gene in the ∆Aoku70∆AopyrG strain. The subcellular localization of red fluorescent protein was detected by laser confocal microscope. Results: An auxotrophic mutant ∆Aoku70∆AopyrG with high homologous recombination efficiency was established via disruption of the A. oryzae RIB40 genes Aoku70 and AopyrG. The red fluorescence was observed in the nucleus of the fungal cell, indicating the utility of the ∆Aoku70∆AopyrG strain. Conclusion: The ∆Aoku70∆AopyrG strain can be used as a recipient strain with high-efficiency homologous recombination and uridine/uracil auxotroph for future gene modification in A. oryzae RIB40.
  • [1]
    刘丽萍, 刘丽华. 米曲霉研究进展与应用[J]. 中国调味品,2008(4):28−32. [LIU L P, LIU L H. Study and application of Aspergillus oryzae indifferent domains[J]. China Condiment,2008(4):28−32. doi: 10.3969/j.issn.1000-9973.2008.04.003
    [2]
    马萍苹, 鄢莉, 张佳兰. 米曲霉液态发酵香菇残次品产蛋白酶条件优化[J]. 中国酿造,2019,40(9):211−215. [MA P P, YAN L, ZHANG J L. Optimization of liquid state fermentation conditions for production protease with Lentinus edodes residues by Aspergillus oryzae[J]. China Brewing,2019,40(9):211−215.
    [3]
    罗雯, 郭建, 樊君, 等. 酱油酿造中复合米曲霉发酵制曲研究[J]. 中国调味品,2022,47(4):164−166. [LUO W, GUO J, FAN J, et al. Study on koji making by fermentation of compound Aspergillus oryzae in brewing of soy sauce[J]. China Condiment,2022,47(4):164−166. doi: 10.3969/j.issn.1000-9973.2022.04.031
    [4]
    阮露晨. 无痕敲除构建米曲霉尿嘧啶营养缺陷型菌株[D]. 天津: 天津科技大学, 2020

    RUAN L C. Construction of Aspergillus oryzae uracil auxotrophy strain by seamless knockout[D]. Tianjin: Tianjin University of Science and Technology, 2020.
    [5]
    MACHIDA M, ASAI K, SANO M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature,2005,438(7071):1157−1161. doi: 10.1038/nature04300
    [6]
    ZHAO G Z, YAO Y P, QI W, et al. Draft genome sequence of Aspergillus oryzae strain 3.042[J]. Eukaryotic Cell,2012,11(9):1178. doi: 10.1128/EC.00160-12
    [7]
    ZHAO G Z, YAO Y P, WANG C L, et al. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation[J]. International Journal of Food Microbiology,2013,164(2-3):148−154. doi: 10.1016/j.ijfoodmicro.2013.03.027
    [8]
    ZHAO G Z, YAO Y P, CHEN W, et al. Comparison and analysis of the genomes of two Aspergillus oryzae strains[J]. Journal of Agricultural and Food Chemistry,2013,61(32):7805−7809. doi: 10.1021/jf400080g
    [9]
    侯丽华, 卢嵩, 王檬, 等. 低盐固态工艺条件下米曲霉3.042和米曲霉RIB40酿造酱油发酵性能的比较[J]. 中国调味品,2014,39(8):1−8. [HOU L H, LU S, WANG M, et al. Comparison of fermentation performance between A. oryzae 3.042 and A. oryzae RIB40 in low-salt solid-state fermentation of soy sauce[J]. China Condiment,2014,39(8):1−8. doi: 10.3969/j.issn.1000-9973.2014.08.001
    [10]
    王莹. 米曲霉RIB40和3.042在酱油酿造中发酵性能的对比[D]. 天津: 天津科技大学, 2014

    WANG Y. Fermentation performance comparison of Aspergillus oryzae RIB40 and 3.042 in soy sauce[D]. Tianjin: Tianjin University of Science and Technology, 2014.
    [11]
    SUN Y, NIU Y, HE B, et al. A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042[J]. Workld Journal of Microbiolgy and Biotechnology,2019,29(2):230−234. doi: 10.4014/jmb.1811.11027
    [12]
    毕付提, 史亚楠, 张久祎, 等. 米曲霉3.042尿苷/尿嘧啶营养缺陷型遗传转化体系的构建[J]. 食品研究与开发,2021,42(3):189−195. [BI F T, SHI Y N, ZHANG J Y, et al. Construction of Aspergillus oryzae 3.042 uridine/uracil auxotrophy genetic transformation system[J]. Food Research and Development,2021,42(3):189−195. doi: 10.12161/j.issn.1005-6521.2021.03.031
    [13]
    刘雪. 米曲霉原生质体的制备及pyrG缺失株的构建研究[D]. 南昌: 南昌大学, 2012

    LIU X. Study on preparation of protoplast and construction of pyrG disruption strains in Aspergillus oryzae[D]. Nanchang: Nanchang University, 2012.
    [14]
    WELD R J, PLUMMER K M, CARPENTER M A, et al. Approaches to functional genomics in filamentous fungi[J]. Cell Research,2006,16(1):31−44. doi: 10.1038/sj.cr.7310006
    [15]
    ZHANG F, XU G, GENG L, et al. The stress response regulator AflSkn7 influences morphological development, stress response, and pathogenicity in the fungus Aspergillus flavus[J]. Toxins (Basel),2016,8(7):202. doi: 10.3390/toxins8070202
    [16]
    EDYTA S, TANIA N, ELIZABETH O C, et al. Fusion PCR and gene targeting in Aspergillus nidulans[J]. Nature Protocols,2006,1(6):3111−3120. doi: 10.1038/nprot.2006.405
    [17]
    于潇淳. 表达蛋白酶的米曲霉工程菌构建及发酵特性研究[D]. 沈阳: 沈阳农业大学, 2018

    YU X C. Study on the construction of engineered Aspergillus oryzae for expressing proteases and their effect on the fermentation[D]. Shenyang: Shenyang Agricultural University, 2018.
    [18]
    CHEEVADHANARAK S, SAUNDERS G, RENNO D, et al. Transformation of Aspergillus oryzae with a dominant selectable marker[J]. Journal of Biotechnology,1991,19(1):117−122. doi: 10.1016/0168-1656(91)90079-B
    [19]
    KUBODERA T, YAMASHITA N, NISHIMURA A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: Cloning, characterization and application as a dominant selectable marker for transformation[J]. Bioscience, Biotechnology, and Biochemistry,2000,64(7):1416−1421. doi: 10.1271/bbb.64.1416
    [20]
    SHIMA Y, ITO Y, HATABAYASHI H, et al. Five carboxin-resistant mutants exhibited various responses to carboxin and related fungicides[J]. Bioscience, Biotechnology, and Biochemistry,2011,75(1):181−184. doi: 10.1271/bbb.100687
    [21]
    卢园萍, 肖婷婷, 尚俊军, 等. 双孢蘑菇萎锈灵抗性基因定点突变的载体构建与遗传转化[J]. 菌物学报,2021,40(12):3256−3264. [LU Y P, XIAO T T, SHANG J J, et al. Construction of a vector containing a point-mutated carboxin-resistance gene and genetic transformation of Agaricus bisporus[J]. Mycosystema,2021,40(12):3256−3264. doi: 10.13346/j.mycosystema.210347
    [22]
    ORTEGA-ESCALANTE J A, KWOK O, MILLER S M. New selectable markers for Volvox carteri transformation[J]. Protist,2019,170(1):52−63. doi: 10.1016/j.protis.2018.11.002
    [23]
    PUNT P J, OLIVER R P, DINGEMANSE M A, et al. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli[J]. Gene,1987,56(1):117−124. doi: 10.1016/0378-1119(87)90164-8
    [24]
    吴琴琴, 孙敏, 陈雨, 等. 米曲霉功能基因组研究策略和进展[J]. 生物技术通报,2019,35(8):186−192. [WU Q Q, SUN M, CHEN Y, et al. Strategies and advances in functional genomics of Aspergillus oryzae[J]. Biotechnology Bulletin,2019,35(8):186−192. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0226
    [25]
    BINH C T, THAI H D, HA B T V, et al. Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum[J]. Microbiol Res,2021,249:126773. doi: 10.1016/j.micres.2021.126773
    [26]
    李娟, 邱睿, 张盈盈, 等. 根癌农杆菌介导的尖孢镰刀菌遗传转化体系构建[J]. 中国烟草学报,2022:1−10. [LI J, QIU R, ZHANG Y Y, et al. Construction of agrobacterium tumefaciens-mediated genetic transformation system of tobacco Fusarium oxysporum[J]. Acta Tabacaria Sinica,2022:1−10.
    [27]
    曹旸. 谢瓦氏曲霉间型变种 ∆ku70 菌株的构建及功能分析[D]. 武汉: 华中农业大学, 2013

    CAO Y. Construction and study of ∆ku70 strain in Aspergillus chevalieri var. Intermedius[D]. Wuhan: Huazhong Agricultural University, 2013.
    [28]
    李达, 沈雪莲, 李少华, 等. Ku70基因稳定敲除HeLa株的建立及其生物学功能研究[J]. 生物技术通讯,2018,29(2):155−161. [LI D, SHEN X L, LI S H, et al. Establishment and biological function of Ku70 gene stably knockout HeLa cell lines[J]. Letters in Biotechnology,2018,29(2):155−161. doi: 10.3969/j.issn.1009-0002.2018.02.001
    [29]
    NINOMIYA Y, SUZUKI K, ISHII C, et al. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining[J]. Proceedings of the National Academy of Sciences,2004,101(33):12248−12253. doi: 10.1073/pnas.0402780101
    [30]
    JIN H, LEE B, LUO Y, et al. FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku[J]. Nat Commun,2020,11(1):2010. doi: 10.1038/s41467-020-15748-1
    [31]
    KOH C M J, LIU Y, MOEHNINSI, et al. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides[J]. BMC Microbiology,2014,14(1):50. doi: 10.1186/1471-2180-14-50
    [32]
    TU J L, BAI X Y, XU Y L, et al. Targeted gene insertion and replacement in the basidiomycete Ganoderma lucidum by inactivation of non-homologous end joining using CRISPR/Cas9[J]. Applied and Environmental Microbiology,2021,87(23):1510−1521.
  • Related Articles

    [1]WANG Xiaoyu, WANG Zhenzhen, HU Mengya, DAI Jing, SHA Ruyi, MAO Jianwei. Metabolomics Analysis of Five Types of Wangdu Chili Peppers Based on HPLC and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(20): 14-22. DOI: 10.13386/j.issn1002-0306.2024010245
    [2]HUANG Chen, GUO Dejun, YOU Gang, QIN Ningjing. Effect of Different Baking Degrees of Oak on Lychee Brandy Volatility Flavor Based on Electronic Nose and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(2): 252-259. DOI: 10.13386/j.issn1002-0306.2023030239
    [3]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
    [4]BAI Xue, YANG Shuang, MENG Xin. Effect of Microbial Lipase on the Flavor of Dairy Products by GC-MS Combined with Electronic Nose[J]. Science and Technology of Food Industry, 2018, 39(14): 209-212,218. DOI: 10.13386/j.issn1002-0306.2018.14.039
    [5]YANG Shuang, BAI Xue, MENG Xin. Effect of Chicken Protease on Chicken Flavor by Electronic Nose Combined with GC-MS Detection[J]. Science and Technology of Food Industry, 2018, 39(13): 252-256. DOI: 10.13386/j.issn1002-0306.2018.13.046
    [6]ZHANG Di-ya, XIE Dan-ting, LI Ye. Comparison of volatile components in different parts of beef by electronic nose and GC-MS[J]. Science and Technology of Food Industry, 2017, (21): 241-246. DOI: 10.13386/j.issn1002-0306.2017.21.048
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]FUN Qin-bao, CAI Wei-rong, XIE Liang-liang, PAN Hui, CAO Xue, ZENG Heng. Characterisation of volatile components of Lotus leaves by HS-SPME and SDE coupled to GC-MS[J]. Science and Technology of Food Industry, 2017, (15): 253-258. DOI: 10.13386/j.issn1002-0306.2017.15.047
    [9]YANG Ying-chun, WANG Qiang, YANG Jie. Fatty acid composition of Portulaca oleracea seeds oil with GC-MS[J]. Science and Technology of Food Industry, 2014, (14): 147-150. DOI: 10.13386/j.issn1002-0306.2014.14.024
    [10]ZHAO Lin-min, QI Cheng-mei, LIU Xiao-wen, LUO Ying, YUAN Zhi-hui, ZHANG Zu-jiao, WANG Zong-cheng. Analysis of ginger oleoresin in Jiangyong fragrant-ginger by GC-MS[J]. Science and Technology of Food Industry, 2014, (06): 78-80. DOI: 10.13386/j.issn1002-0306.2014.06.005
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (361) PDF downloads (41) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return