LIANG Shiyang, ZHANG Ying, ZENG Xiaofang, et al. Research Progress on the Application of Ultrasound in Food Processing[J]. Science and Technology of Food Industry, 2023, 44(4): 462−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040091.
Citation: LIANG Shiyang, ZHANG Ying, ZENG Xiaofang, et al. Research Progress on the Application of Ultrasound in Food Processing[J]. Science and Technology of Food Industry, 2023, 44(4): 462−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040091.

Research Progress on the Application of Ultrasound in Food Processing

More Information
  • Received Date: April 11, 2022
  • Available Online: December 13, 2022
  • In the process of food processing, traditional processing methods can no longer meet people's high demand for food quality. Ultrasonic technology is a non-heat treatment technology that can reduce the damage caused by conventional food processing to enhance food's nutritional value and processing characteristics. This paper mainly discusses the effects and functions of ultrasonic waves in processing operations such as drying, freezing, extraction, filtration and emulsification. The cavitation, mechanical, chemical and biological effects of ultrasonic waves can affect processing operations through complex correlations. For example, it can improve mass transfer and heat transfer efficiency, reduce processing time, reduce the dosage of processing reagents, increase yield, enhance food safety, and preserve food nutrition. By combing and comparing the literature, ultrasonic technology has been of great application value in food processing operations, but inappropriate ultrasonic conditions can also negatively affect food quality. In future work and research, it is necessary to establish the dynamic model of ultrasonic in food processing and dig deep into the application at the industrial level to overcome the shortcomings of ultrasonic energy consumption.
  • [1]
    KNORR D, AUGUSTIN M A, TIWARI B. Advancing the role of food processing for improved integration in sustainable food chains[J]. Frontiers in Nutrition,2020,7:34. doi: 10.3389/fnut.2020.00034
    [2]
    KILIC-AKYILMAZ M, OZER B, BULAT T, et al. Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk[J]. International Dairy Journal,2022,126:105231. doi: 10.1016/j.idairyj.2021.105231
    [3]
    BARBHUIYA R I, SINGHA P, SINGH S K. A comprehensive review on impact of non-thermal processing on the structural changes of food components[J]. Food Research International,2021,149:110647. doi: 10.1016/j.foodres.2021.110647
    [4]
    FU X, BELWAL T, CRAVOTTO G, et al. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components[J]. Ultrasonics Sonochemistry,2020,60:104726. doi: 10.1016/j.ultsonch.2019.104726
    [5]
    CHAVAN P, SHARMA P, SHARMA S R, et al. Application of high-intensity ultrasound to improve food processing efficiency: A review[J]. Foods,2022,11(1):122. doi: 10.3390/foods11010122
    [6]
    ALARCON-ROJO A D, JANACUA H, RODRIGUEZ J C, et al. Power ultrasound in meat processing[J]. Meat Science,2015,107:86−93. doi: 10.1016/j.meatsci.2015.04.015
    [7]
    CHAROUX C M G, OJHA K S, O’DONNELL C P, et al. Applications of airborne ultrasonic technology in the food industry[J]. Journal of Food Engineering,2017,208:28−36. doi: 10.1016/j.jfoodeng.2017.03.030
    [8]
    WANG X, MAJZOOBI M, FARAHNAKY A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review[J]. Ultrasonics Sonochemistry,2020,65:105057. doi: 10.1016/j.ultsonch.2020.105057
    [9]
    ASTRÁIN-REDÍN L, ALEJANDRE M, RASO J, et al. Direct contact ultrasound in food processing: Impact on food quality[J]. Frontiers in Nutrition,2021,8:633070. doi: 10.3389/fnut.2021.633070
    [10]
    WEN C, ZHANG J, ZHANG H, et al. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review[J]. Ultrasonics Sonochemistry,2018,48:538−549. doi: 10.1016/j.ultsonch.2018.07.018
    [11]
    SUSLICK K S, EDDINGSAAS N C, FLANNIGAN D J, et al. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe[J]. Ultrasonics Sonochemistry,2011,18(4):842−846. doi: 10.1016/j.ultsonch.2010.12.012
    [12]
    LUO X, CAO J, GONG H, et al. Phase separation technology based on ultrasonic standing waves: A review[J]. Ultrasonics Sonochemistry,2018,48:287−298. doi: 10.1016/j.ultsonch.2018.06.006
    [13]
    MCKENZIE T G, KARIMI F, ASHOKKUMAR M, et al. Ultrasound and sonochemistry for radical polymerization: Sound synthesis[J]. Chemistry-A European Journal,2019,25(21):5372−5388. doi: 10.1002/chem.201803771
    [14]
    OLADEJO A O, EKPENE M M, ONWUDE D I, et al. Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying[J]. Journal of Food Processing and Preservation, 2021, 45(3).
    [15]
    WU B, GUO X, GUO Y, et al. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure[J]. Food Chemistry,2021,358:129845. doi: 10.1016/j.foodchem.2021.129845
    [16]
    YADAV S, MISHRA S, PRADHAN R C. Ultrasound-assisted hydration of finger millet (Eleusine coracana) and its effects on starch isolates and antinutrients[J]. Ultrasonics Sonochemistry,2021,73:105542. doi: 10.1016/j.ultsonch.2021.105542
    [17]
    MIANO A C, ROJAS M L, AUGUSTO P E D. Using ultrasound for improving hydration and debittering of andean lupin grains[J]. Journal of Food Process Engineering,2019,42(6):e13170.
    [18]
    GADALKAR S M, RATHOD V K. Extraction of watermelon seed proteins with enhanced functional properties using ultrasound[J]. Preparative Biochemistry & Biotechnology,2020,50(2):133−140.
    [19]
    SONG J, DONGQI S, HANG S, et al. Optimization of ultrasonic extraction of Lycium barbarum polysaccharides using response surface methodology[J]. International Journal of Food Engineering, 2020, 16 ( 11 ) : 20200153. doi: 10.1515/ijfe-2020-0153.
    [20]
    YILDIZ G, PALMA S, FENG H. Ultrasonic cutting as a new method to produce fresh-cut red delicious and golden delicious apples[J]. Journal of Food Science,2019,84(12):3391−3398. doi: 10.1111/1750-3841.14798
    [21]
    ARNOLD G, LEITERITZ L, ZAHN S, et al. Ultrasonic cutting of cheese: Composition affects cutting work reduction and energy demand[J]. International Dairy Journal,2009,19(5):314−320. doi: 10.1016/j.idairyj.2008.11.007
    [22]
    PRABHUZANTYE T, KHAIRE R A, GOGATE P R. Enhancing the recovery of whey proteins based on application of ultrasound in ultrafiltration and spray drying[J]. Ultrasonics Sonochemistry,2019,55:125−134. doi: 10.1016/j.ultsonch.2019.03.008
    [23]
    KHAIRE R A, SUNNY A A, GOGATE P R. Ultrasound assisted ultrafiltration of whey using dual frequency ultrasound for intensified recovery of lactose[J]. Chemical Engineering and Processing - Process Intensification,2019,142:107581. doi: 10.1016/j.cep.2019.107581
    [24]
    LI Y, ZHANG Y, LIU X, et al. Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten[J]. Journal of Food Science and Technology,2019,56(7):3380−3390. doi: 10.1007/s13197-019-03822-6
    [25]
    SUN Q, KONG B, LIU S, et al. Ultrasonic freezing reduces protein oxidation and myofibrillar gel quality loss of common carp (Cyprinus carpio) during long-time frozen storage[J]. Foods,2021,10(3):629. doi: 10.3390/foods10030629
    [26]
    SUN Q, KONG B, LIU S, et al. Ultrasound-assisted thawing accelerates the thawing of common carp (Cyprinus carpio) and improves its muscle quality[J]. LWT,2021,141:111080. doi: 10.1016/j.lwt.2021.111080
    [27]
    GUO Z, GE X, YANG L, et al. Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure[J]. Ultrasonics Sonochemistry,2021,70:105345. doi: 10.1016/j.ultsonch.2020.105345
    [28]
    ZHOU L, ZHANG J, YIN Y, et al. Effects of ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein stabilized pork fat emulsions[J]. Foods,2021,10(6):1201. doi: 10.3390/foods10061201
    [29]
    LI K, FU L, ZHAO Y-Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:105275. doi: 10.1016/j.foodhyd.2019.105275
    [30]
    MARTÍNEZ-VELASCO A, LOBATO-CALLEROS C, HERNÁNDEZ-RODRÍGUEZ B E, et al. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes[J]. Ultrasonics Sonochemistry,2018,44:97−105. doi: 10.1016/j.ultsonch.2018.02.007
    [31]
    TAN M C, CHIN N L, YUSOF Y A, et al. Effect of high power ultrasonic treatment on whey protein foaming quality[J]. International Journal of Food Science & Technology,2016,51(3):617−624.
    [32]
    HE X, LÜ Y, LI X, et al. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating[J]. Ultrasonics Sonochemistry,2022,83:105942. doi: 10.1016/j.ultsonch.2022.105942
    [33]
    姜昕, 陈晴, 田志航, 等. 超声时间对鲢鱼糜凝胶特性和蛋白结构的影响及相关性分析[J/OL]. 水产学报: 1−14[2023-01-03].http://kns.cnki.net/kcms/detail/31.1283.S.20211014.2321.005.html

    JIANG X, CHEN Q, TIAN Z H, et al. Effect and correlation analysis of ultrasonic time on gel properties and protein structure of Hypophthalmichthys molitrix surimi[J/OL]. Journal of Fisheries of China: 1−14[2023-01-03]. http://kns.cnki.net/kcms/detail/31.1283.S.20211014.2321.005.html.
    [34]
    MARGEAN A, LUPU M I, ALEXA E, et al. An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice[J]. Molecules,2020,25(7):1669. doi: 10.3390/molecules25071669
    [35]
    AHMED Z, MANZOOR M F, BEGUM N, et al. Thermo-ultrasound-based sterilization approach for the quality improvement of wheat plantlets juice[J]. Processes,2019,7(8):518. doi: 10.3390/pr7080518
    [36]
    INGUGLIA E S, BURGESS C M, KERRY J P, et al. Ultrasound-assisted marination: Role of frequencies and treatment time on the quality of sodium-reduced poultry meat[J]. Foods,2019,8(10):473. doi: 10.3390/foods8100473
    [37]
    GÓMEZ-SALAZAR J A, OCHOA-MONTES D A, CERÓN-GARCÍA A, et al. Effect of acid marination assisted by power ultrasound on the quality of rabbit meat[J]. Journal of Food Quality,2018,2018:1−6.
    [38]
    CHEN X, ZOU Y, WANG D, et al. Effects of ultrasound pretreatment on the extent of maillard reaction and the structure, taste and volatile compounds of chicken liver protein[J]. Food Chemistry,2020,331:127369. doi: 10.1016/j.foodchem.2020.127369
    [39]
    HABINSHUTI I, ZHANG M, SUN H, et al. Effects of ultrasound-assisted enzymatic hydrolysis and monosaccharides on structural, antioxidant and flavour characteristics of maillard reaction products from sweet potato protein hydrolysates[J]. International Journal of Food Science & Technology,2021,56(11):6086−6099.
    [40]
    MUSIELAK G, MIERZWA D, KROEHNKE J. Food drying enhancement by ultrasound–a review[J]. Trends in Food Science & Technology,2016,56:126−141.
    [41]
    HUANG D, MEN K, LI D, et al. Application of ultrasound technology in the drying of food products[J]. Ultrasonics Sonochemistry,2020,63:104950. doi: 10.1016/j.ultsonch.2019.104950
    [42]
    MOTHIBE K J, ZHANG M, NSOR-ATINDANA J, et al. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension[J]. Drying Technology,2011,29(14):1611−1621. doi: 10.1080/07373937.2011.602576
    [43]
    薛扬, 刘恩宠, 耿鸣阳, 等. 铁棍山药超声强化热泵干燥的品质特性研究[J/OL]. 食品与发酵工业: 1−14[2022-12-05]. doi: 10.13995/j.cnki.11-1802/ts.030200.

    XUE Y, LIU E C, GENG M Y, et al. Quality characteristics of Dioscorea opposite by ultrasound-enhanced heat pump drying[J/OL]. Food and Fermentation Industries: 1−14[2022-12-05]. doi: 10.13995/j.cnki.11-1802/ts.030200.
    [44]
    AKSOY A, KARASU S, AKCICEK A, et al. Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat[J]. Foods,2019,8(6):216. doi: 10.3390/foods8060216
    [45]
    YAO Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration[J]. Ultrasonics Sonochemistry,2016,31:512−531. doi: 10.1016/j.ultsonch.2016.01.039
    [46]
    PATERO T, AUGUSTO P E D. Ultrasound (us) enhances the hydration of sorghum (Sorghum bicolor) grains[J]. Ultrasonics Sonochemistry,2015,23:11−15. doi: 10.1016/j.ultsonch.2014.10.021
    [47]
    MIANO A C, PEREIRA J Da C, CASTANHA N, et al. Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components[J]. Scientific Reports,2016,6(1):38996. doi: 10.1038/srep38996
    [48]
    MIANO A C, IBARZ A, AUGUSTO P E D. Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties[J]. Journal of Food Engineering,2017,197:34−43. doi: 10.1016/j.jfoodeng.2016.10.024
    [49]
    ESPADA-BELLIDO E, FERREIRO-GONZÁLEZ M, CARRERA C, et al. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp[J]. Food Chemistry,2017,219:23−32. doi: 10.1016/j.foodchem.2016.09.122
    [50]
    GEOW C H, TAN M C, YEAP S P, et al. A review on extraction techniques and its future applications in industry[J]. European Journal of Lipid Science and Technology,2021,123(4):2000302. doi: 10.1002/ejlt.202000302
    [51]
    SANWAL N, MISHRA S, SAHU J K, et al. Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn (Hippophae salicipholia) seed oil[J]. LWT,2022,153:112386. doi: 10.1016/j.lwt.2021.112386
    [52]
    GAZERAN S, TAJALLI F, MOHAMADI SANI A. Effect of ultrasonic extraction on qualitative parameters of saffron edible extract[J]. Journal of Essential Oil Bearing Plants,2016,19(5):1286−1291. doi: 10.1080/0972060X.2015.1004126
    [53]
    YILDIZ G, RABABAH T M, FENG H. Ultrasound-assisted cutting of cheddar, mozzarella and swiss cheeses-effects on quality attributes during storage[J]. Innovative Food Science & Emerging Technologies,2016,37:1−9.
    [54]
    LIU L, JIA W, XU D, et al. Applications of ultrasonic cutting in food processing: Application of ultrasonic cutting[J]. Journal of Food Processing and Preservation,2015,39(6):1762−1769. doi: 10.1111/jfpp.12408
    [55]
    陈健. 面包超声波切割装置和实验研究[D]. 杭州: 杭州电子科技大学, 2018

    CHEN J. Bread ultrasonic cutting device and experimental research [D]. Hangzhou: Dissertation Submitted to Hangzhou University, 2018.
    [56]
    TAO Y, SUN D W. Enhancement of food processes by ultrasound: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(4):570−594. doi: 10.1080/10408398.2012.667849
    [57]
    GROSSNER M T, BELOVICH J M, FEKE D L. Transport analysis and model for the performance of an ultrasonically enhanced filtration process[J]. Chemical Engineering Science,2005,60(12):3233−3238. doi: 10.1016/j.ces.2005.01.005
    [58]
    DALVI-ISFAHAN M, HAMDAMI N, XANTHAKIS E, et al. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields[J]. Journal of Food Engineering,2017,195:222−234. doi: 10.1016/j.jfoodeng.2016.10.001
    [59]
    MA X, MEI J, XIE J. Mechanism of ultrasound assisted nucleation during freezing and its application in food freezing process[J]. International Journal of Food Properties,2021,24(1):68−88. doi: 10.1080/10942912.2020.1858862
    [60]
    ZHANG M, HAILI N, CHEN Q, et al. Influence of ultrasound-assisted immersion freezing on the freezing rate and quality of porcine longissimus muscles[J]. Meat Science,2018,136:1−8. doi: 10.1016/j.meatsci.2017.10.005
    [61]
    TIAN Y, ZHANG P, ZHU Z, et al. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes[J]. Journal of Food Engineering,2020,286:110112. doi: 10.1016/j.jfoodeng.2020.110112
    [62]
    ZHANG P, ZHU Z, SUN D-W. Using power ultrasound to accelerate food freezing processes: Effects on freezing efficiency and food microstructure[J]. Critical Reviews in Food Science and Nutrition,2018,58(16):2842−2853. doi: 10.1080/10408398.2018.1482528
    [63]
    LI D, ZHAO H, MUHAMMAD A I, et al. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets[J]. Food Chemistry,2020,320:126614. doi: 10.1016/j.foodchem.2020.126614
    [64]
    FARAHNAK R, NOURANI M, RIAHI E. Ultrasound thawing of mushroom (Agaricus bisporus): Effects on thawing rate, protein denaturation and some physical properties[J]. LWT,2021,151:112150. doi: 10.1016/j.lwt.2021.112150
    [65]
    CHENG L, SUN D-W, ZHU Z, et al. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses[J]. Critical Reviews in Food Science and Nutrition,2017,57(4):769−781. doi: 10.1080/10408398.2015.1004569
    [66]
    ZHANG C, SUN Q, CHEN Q, et al. Effectiveness of ultrasound-assisted immersion thawing on the thawing rate and physicochemical properties of chicken breast muscle[J]. Journal of Food Science,2021,86(5):1692−1703. doi: 10.1111/1750-3841.15699
    [67]
    ABBAS S, HAYAT K, KARANGWA E, et al. An overview of ultrasound-assisted food-grade nanoemulsions[J]. Food Engineering Reviews,2013,5(3):139−157. doi: 10.1007/s12393-013-9066-3
    [68]
    TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science & Technology,2020,105:363−377.
    [69]
    SILVA K C G, SATO A C K. Sonication technique to produce emulsions: The impact of ultrasonic power and gelatin concentration[J]. Ultrasonics Sonochemistry,2019,52:286−293. doi: 10.1016/j.ultsonch.2018.12.001
    [70]
    RAHMAN M M, LAMSAL B P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1457−1480. doi: 10.1111/1541-4337.12709
    [71]
    SHENG L, WANG Y, CHEN J, et al. Influence of high-intensity ultrasound on foaming and structural properties of egg white[J]. Food Research International,2018,108:604−610. doi: 10.1016/j.foodres.2018.04.007
    [72]
    YU C, WU F, CHA Y, et al. Effects of ultrasound on structure and functional properties of mussel (Mytilus edulis) protein isolates[J]. Journal of Food Processing and Preservation,2018,42(8):e13690. doi: 10.1111/jfpp.13690
    [73]
    XUE H, TU Y, ZHANG G, et al. Mechanism of ultrasound and tea polyphenol assisted ultrasound modification of egg white protein gel[J]. Ultrasonics Sonochemistry,2021,81:105857. doi: 10.1016/j.ultsonch.2021.105857
    [74]
    叶月华, 刘晓艳, 白卫东, 等. 响应面法优化微波-超声波联用改善低盐罗非鱼糜凝胶的特性[J]. 食品与发酵工业,2021,47(22):162−169. [YE Y H, LIU X Y, BAI W D, et al. Response surface methodology to optimize the combination of microwave and ultrasonic to improve the properties of low-salt tilapia surimi gel[J]. Food and Fermentation Industries,2021,47(22):162−169. doi: 10.13995/j.cnki.11-1802/ts.028394
    [75]
    LIN L, WANG X, LI C, et al. Inactivation mechanism ofE. coli O157: H7 under ultrasonic sterilization[J]. Ultrasonics Sonochemistry,2019,59:104751. doi: 10.1016/j.ultsonch.2019.104751
    [76]
    CARRILLO-LOPEZ L M, CRUZ-GARIBALDI B Y, HUERTA-JIMENEZ M, et al. The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition[J]. Molecules,2022,27(2):541. doi: 10.3390/molecules27020541
    [77]
    LARISSA D, SILVA M, FLORES D, et al. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami[J]. Food Research International,2017,106(Apr.):363−373.
    [78]
    YU H, LIU Y, LI L, et al. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms[J]. Trends in Food Science & Technology,2020,96:91−101.
    [79]
    XIONG W, WANG Y, ZHANG C, et al. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
    [80]
    YU H, ZHONG Q, LIU Y, et al. Recent advances of ultrasound-assisted maillard reaction[J]. Ultrasonics Sonochemistry,2020,64:104844. doi: 10.1016/j.ultsonch.2019.104844
    [81]
    SFAKIANAKIS P, TZIA C. Flavour profiling by gas chromatography–mass spectrometry and sensory analysis of yoghurt derived from ultrasonicated and homogenised milk[J]. International Dairy Journal,2017,75:120−128. doi: 10.1016/j.idairyj.2017.08.003
    [82]
    MUNIR M, NADEEM M, ALI B, et al. Investigating the impact of ultrasound, microwave, and high-pressure processing of milk on the volatile compounds and sensory properties of cheddar cheese[J]. Agriculture,2022,12(5):577. doi: 10.3390/agriculture12050577
  • Related Articles

    [1]WANG Shengyu, YANG Mei, HU Heyu, ZHU Caiqing, DONG Huanhuan, GUAN Yongmei, ZHU Weifeng. Research Progress on Release Patterns of Conjugated Phenolics During Plant Growth, Food Processing and Human Digestion[J]. Science and Technology of Food Industry, 2024, 45(14): 408-417. DOI: 10.13386/j.issn1002-0306.2023080269
    [2]YANG Hongxin, TANG Xingping, YANG Zhengming, ZHANG Ju, LU Yajuan, WU Wendou. Application Research and Prospects of Multispectral Technology in Non-destructive Testing of Food[J]. Science and Technology of Food Industry, 2024, 45(8): 350-357. DOI: 10.13386/j.issn1002-0306.2023040152
    [3]MENG Yuanyuan, LIU Haiquan, PAN Yingjie, ZHAO Yong. Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications[J]. Science and Technology of Food Industry, 2022, 43(22): 414-421. DOI: 10.13386/j.issn1002-0306.2021100149
    [4]YANG Xue-fan, ZHANG Wei, GU Xin-zhe, LI Wen-hui, WU Jin-hong, WANG Zheng-wu. The Application of Raman Spectroscopy in Quality Control and Food Processing[J]. Science and Technology of Food Industry, 2020, 41(19): 361-368. DOI: 10.13386/j.issn1002-0306.2020.19.056
    [5]YANG Yu-fan, CHEN Qian, WANG Hao, KONG Bao-hua. Research Progress of High Voltage Electric Field Technology in Food Processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320,325. DOI: 10.13386/j.issn1002-0306.2019.19.055
    [6]HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065
    [7]CHEN Yan-zhu, HU Wen-zhong, JIANG Ai-li, LIU Cheng-hui, YU Xue, LIU Xing-bo. Food processing and functional character of Aronia melanocarpa[J]. Science and Technology of Food Industry, 2016, (09): 397-400. DOI: 10.13386/j.issn1002-0306.2016.09.071
    [8]WANG Wei-wei, MENG Ting-ting, GUO Dan-zhao, MA Hai-le, CAO Ying, WANG Wen-xiu. Research progress on ultrasonic biological effect of food processing[J]. Science and Technology of Food Industry, 2015, (02): 379-383. DOI: 10.13386/j.issn1002-0306.2015.02.074
    [9]FAN Lin-lin, HAN Peng-xiang, FENG Xu-qiao, DUAN Xiao-ming, LI Meng-meng, ZHANG Bei, CAI Xi-tong. Research progress in the application development of electron beam irradiation in food industry[J]. Science and Technology of Food Industry, 2014, (14): 374-380. DOI: 10.13386/j.issn1002-0306.2014.14.074
    [10]QIU Liang-yan, LIU Mei, XIAO Hong-mei. Study on stability of exogenous genes in transgenic rice with Bar and Bt gene during food processing[J]. Science and Technology of Food Industry, 2013, (20): 125-129. DOI: 10.13386/j.issn1002-0306.2013.20.047
  • Cited by

    Periodical cited type(6)

    1. 张月,杨新玥,黄莉,马帅宇,胥畅,杨腊梅,裴慧洁,何维,杨勇. 乳酸菌复配发酵对川味香肠品质及酪胺含量的影响. 食品与发酵工业. 2025(06): 83-90 .
    2. 李莹,钱敏,曾晓房,白卫东,吴清平,杨小鹃,董浩. 畜禽肉类预制菜肴全链条风险因子研究进展. 食品工业科技. 2025(07): 365-374 . 本站查看
    3. 牟燕,赖茂佳,易宇文,范文教. 微生物发酵剂对川味牦牛肉香肠品质的影响. 中国酿造. 2024(02): 188-193 .
    4. 李晓,王成,郭楠楠,潘道东. 嗜酸乳杆菌发酵鸭肉脯工艺优化及品质分析. 肉类研究. 2024(01): 36-43 .
    5. 赵志磊,李昊轩,牛晓颖,陈萌,庞艳苹. γ射线辐照结合VC、烟酰胺对卤驴肉中亚硝酸盐的降解效果. 食品科学. 2024(16): 197-203 .
    6. 文静,许恒毅,甘蓓,周渊坤,张锦峰. 混合菌株发酵板鸭的研究进展. 江西科学. 2024(04): 710-715 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1082) PDF downloads (94) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return