Citation: | LIANG Shiyang, ZHANG Ying, ZENG Xiaofang, et al. Research Progress on the Application of Ultrasound in Food Processing[J]. Science and Technology of Food Industry, 2023, 44(4): 462−471. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040091. |
[1] |
KNORR D, AUGUSTIN M A, TIWARI B. Advancing the role of food processing for improved integration in sustainable food chains[J]. Frontiers in Nutrition,2020,7:34. doi: 10.3389/fnut.2020.00034
|
[2] |
KILIC-AKYILMAZ M, OZER B, BULAT T, et al. Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk[J]. International Dairy Journal,2022,126:105231. doi: 10.1016/j.idairyj.2021.105231
|
[3] |
BARBHUIYA R I, SINGHA P, SINGH S K. A comprehensive review on impact of non-thermal processing on the structural changes of food components[J]. Food Research International,2021,149:110647. doi: 10.1016/j.foodres.2021.110647
|
[4] |
FU X, BELWAL T, CRAVOTTO G, et al. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components[J]. Ultrasonics Sonochemistry,2020,60:104726. doi: 10.1016/j.ultsonch.2019.104726
|
[5] |
CHAVAN P, SHARMA P, SHARMA S R, et al. Application of high-intensity ultrasound to improve food processing efficiency: A review[J]. Foods,2022,11(1):122. doi: 10.3390/foods11010122
|
[6] |
ALARCON-ROJO A D, JANACUA H, RODRIGUEZ J C, et al. Power ultrasound in meat processing[J]. Meat Science,2015,107:86−93. doi: 10.1016/j.meatsci.2015.04.015
|
[7] |
CHAROUX C M G, OJHA K S, O’DONNELL C P, et al. Applications of airborne ultrasonic technology in the food industry[J]. Journal of Food Engineering,2017,208:28−36. doi: 10.1016/j.jfoodeng.2017.03.030
|
[8] |
WANG X, MAJZOOBI M, FARAHNAKY A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review[J]. Ultrasonics Sonochemistry,2020,65:105057. doi: 10.1016/j.ultsonch.2020.105057
|
[9] |
ASTRÁIN-REDÍN L, ALEJANDRE M, RASO J, et al. Direct contact ultrasound in food processing: Impact on food quality[J]. Frontiers in Nutrition,2021,8:633070. doi: 10.3389/fnut.2021.633070
|
[10] |
WEN C, ZHANG J, ZHANG H, et al. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review[J]. Ultrasonics Sonochemistry,2018,48:538−549. doi: 10.1016/j.ultsonch.2018.07.018
|
[11] |
SUSLICK K S, EDDINGSAAS N C, FLANNIGAN D J, et al. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe[J]. Ultrasonics Sonochemistry,2011,18(4):842−846. doi: 10.1016/j.ultsonch.2010.12.012
|
[12] |
LUO X, CAO J, GONG H, et al. Phase separation technology based on ultrasonic standing waves: A review[J]. Ultrasonics Sonochemistry,2018,48:287−298. doi: 10.1016/j.ultsonch.2018.06.006
|
[13] |
MCKENZIE T G, KARIMI F, ASHOKKUMAR M, et al. Ultrasound and sonochemistry for radical polymerization: Sound synthesis[J]. Chemistry-A European Journal,2019,25(21):5372−5388. doi: 10.1002/chem.201803771
|
[14] |
OLADEJO A O, EKPENE M M, ONWUDE D I, et al. Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying[J]. Journal of Food Processing and Preservation, 2021, 45(3).
|
[15] |
WU B, GUO X, GUO Y, et al. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure[J]. Food Chemistry,2021,358:129845. doi: 10.1016/j.foodchem.2021.129845
|
[16] |
YADAV S, MISHRA S, PRADHAN R C. Ultrasound-assisted hydration of finger millet (Eleusine coracana) and its effects on starch isolates and antinutrients[J]. Ultrasonics Sonochemistry,2021,73:105542. doi: 10.1016/j.ultsonch.2021.105542
|
[17] |
MIANO A C, ROJAS M L, AUGUSTO P E D. Using ultrasound for improving hydration and debittering of andean lupin grains[J]. Journal of Food Process Engineering,2019,42(6):e13170.
|
[18] |
GADALKAR S M, RATHOD V K. Extraction of watermelon seed proteins with enhanced functional properties using ultrasound[J]. Preparative Biochemistry & Biotechnology,2020,50(2):133−140.
|
[19] |
SONG J, DONGQI S, HANG S, et al. Optimization of ultrasonic extraction of Lycium barbarum polysaccharides using response surface methodology[J]. International Journal of Food Engineering, 2020, 16 ( 11 ) : 20200153. doi: 10.1515/ijfe-2020-0153.
|
[20] |
YILDIZ G, PALMA S, FENG H. Ultrasonic cutting as a new method to produce fresh-cut red delicious and golden delicious apples[J]. Journal of Food Science,2019,84(12):3391−3398. doi: 10.1111/1750-3841.14798
|
[21] |
ARNOLD G, LEITERITZ L, ZAHN S, et al. Ultrasonic cutting of cheese: Composition affects cutting work reduction and energy demand[J]. International Dairy Journal,2009,19(5):314−320. doi: 10.1016/j.idairyj.2008.11.007
|
[22] |
PRABHUZANTYE T, KHAIRE R A, GOGATE P R. Enhancing the recovery of whey proteins based on application of ultrasound in ultrafiltration and spray drying[J]. Ultrasonics Sonochemistry,2019,55:125−134. doi: 10.1016/j.ultsonch.2019.03.008
|
[23] |
KHAIRE R A, SUNNY A A, GOGATE P R. Ultrasound assisted ultrafiltration of whey using dual frequency ultrasound for intensified recovery of lactose[J]. Chemical Engineering and Processing - Process Intensification,2019,142:107581. doi: 10.1016/j.cep.2019.107581
|
[24] |
LI Y, ZHANG Y, LIU X, et al. Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten[J]. Journal of Food Science and Technology,2019,56(7):3380−3390. doi: 10.1007/s13197-019-03822-6
|
[25] |
SUN Q, KONG B, LIU S, et al. Ultrasonic freezing reduces protein oxidation and myofibrillar gel quality loss of common carp (Cyprinus carpio) during long-time frozen storage[J]. Foods,2021,10(3):629. doi: 10.3390/foods10030629
|
[26] |
SUN Q, KONG B, LIU S, et al. Ultrasound-assisted thawing accelerates the thawing of common carp (Cyprinus carpio) and improves its muscle quality[J]. LWT,2021,141:111080. doi: 10.1016/j.lwt.2021.111080
|
[27] |
GUO Z, GE X, YANG L, et al. Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure[J]. Ultrasonics Sonochemistry,2021,70:105345. doi: 10.1016/j.ultsonch.2020.105345
|
[28] |
ZHOU L, ZHANG J, YIN Y, et al. Effects of ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein stabilized pork fat emulsions[J]. Foods,2021,10(6):1201. doi: 10.3390/foods10061201
|
[29] |
LI K, FU L, ZHAO Y-Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:105275. doi: 10.1016/j.foodhyd.2019.105275
|
[30] |
MARTÍNEZ-VELASCO A, LOBATO-CALLEROS C, HERNÁNDEZ-RODRÍGUEZ B E, et al. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes[J]. Ultrasonics Sonochemistry,2018,44:97−105. doi: 10.1016/j.ultsonch.2018.02.007
|
[31] |
TAN M C, CHIN N L, YUSOF Y A, et al. Effect of high power ultrasonic treatment on whey protein foaming quality[J]. International Journal of Food Science & Technology,2016,51(3):617−624.
|
[32] |
HE X, LÜ Y, LI X, et al. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating[J]. Ultrasonics Sonochemistry,2022,83:105942. doi: 10.1016/j.ultsonch.2022.105942
|
[33] |
姜昕, 陈晴, 田志航, 等. 超声时间对鲢鱼糜凝胶特性和蛋白结构的影响及相关性分析[J/OL]. 水产学报: 1−14[2023-01-03].http://kns.cnki.net/kcms/detail/31.1283.S.20211014.2321.005.html
JIANG X, CHEN Q, TIAN Z H, et al. Effect and correlation analysis of ultrasonic time on gel properties and protein structure of Hypophthalmichthys molitrix surimi[J/OL]. Journal of Fisheries of China: 1−14[2023-01-03]. http://kns.cnki.net/kcms/detail/31.1283.S.20211014.2321.005.html.
|
[34] |
MARGEAN A, LUPU M I, ALEXA E, et al. An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice[J]. Molecules,2020,25(7):1669. doi: 10.3390/molecules25071669
|
[35] |
AHMED Z, MANZOOR M F, BEGUM N, et al. Thermo-ultrasound-based sterilization approach for the quality improvement of wheat plantlets juice[J]. Processes,2019,7(8):518. doi: 10.3390/pr7080518
|
[36] |
INGUGLIA E S, BURGESS C M, KERRY J P, et al. Ultrasound-assisted marination: Role of frequencies and treatment time on the quality of sodium-reduced poultry meat[J]. Foods,2019,8(10):473. doi: 10.3390/foods8100473
|
[37] |
GÓMEZ-SALAZAR J A, OCHOA-MONTES D A, CERÓN-GARCÍA A, et al. Effect of acid marination assisted by power ultrasound on the quality of rabbit meat[J]. Journal of Food Quality,2018,2018:1−6.
|
[38] |
CHEN X, ZOU Y, WANG D, et al. Effects of ultrasound pretreatment on the extent of maillard reaction and the structure, taste and volatile compounds of chicken liver protein[J]. Food Chemistry,2020,331:127369. doi: 10.1016/j.foodchem.2020.127369
|
[39] |
HABINSHUTI I, ZHANG M, SUN H, et al. Effects of ultrasound-assisted enzymatic hydrolysis and monosaccharides on structural, antioxidant and flavour characteristics of maillard reaction products from sweet potato protein hydrolysates[J]. International Journal of Food Science & Technology,2021,56(11):6086−6099.
|
[40] |
MUSIELAK G, MIERZWA D, KROEHNKE J. Food drying enhancement by ultrasound–a review[J]. Trends in Food Science & Technology,2016,56:126−141.
|
[41] |
HUANG D, MEN K, LI D, et al. Application of ultrasound technology in the drying of food products[J]. Ultrasonics Sonochemistry,2020,63:104950. doi: 10.1016/j.ultsonch.2019.104950
|
[42] |
MOTHIBE K J, ZHANG M, NSOR-ATINDANA J, et al. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension[J]. Drying Technology,2011,29(14):1611−1621. doi: 10.1080/07373937.2011.602576
|
[43] |
薛扬, 刘恩宠, 耿鸣阳, 等. 铁棍山药超声强化热泵干燥的品质特性研究[J/OL]. 食品与发酵工业: 1−14[2022-12-05]. doi: 10.13995/j.cnki.11-1802/ts.030200.
XUE Y, LIU E C, GENG M Y, et al. Quality characteristics of Dioscorea opposite by ultrasound-enhanced heat pump drying[J/OL]. Food and Fermentation Industries: 1−14[2022-12-05]. doi: 10.13995/j.cnki.11-1802/ts.030200.
|
[44] |
AKSOY A, KARASU S, AKCICEK A, et al. Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat[J]. Foods,2019,8(6):216. doi: 10.3390/foods8060216
|
[45] |
YAO Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration[J]. Ultrasonics Sonochemistry,2016,31:512−531. doi: 10.1016/j.ultsonch.2016.01.039
|
[46] |
PATERO T, AUGUSTO P E D. Ultrasound (us) enhances the hydration of sorghum (Sorghum bicolor) grains[J]. Ultrasonics Sonochemistry,2015,23:11−15. doi: 10.1016/j.ultsonch.2014.10.021
|
[47] |
MIANO A C, PEREIRA J Da C, CASTANHA N, et al. Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components[J]. Scientific Reports,2016,6(1):38996. doi: 10.1038/srep38996
|
[48] |
MIANO A C, IBARZ A, AUGUSTO P E D. Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties[J]. Journal of Food Engineering,2017,197:34−43. doi: 10.1016/j.jfoodeng.2016.10.024
|
[49] |
ESPADA-BELLIDO E, FERREIRO-GONZÁLEZ M, CARRERA C, et al. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp[J]. Food Chemistry,2017,219:23−32. doi: 10.1016/j.foodchem.2016.09.122
|
[50] |
GEOW C H, TAN M C, YEAP S P, et al. A review on extraction techniques and its future applications in industry[J]. European Journal of Lipid Science and Technology,2021,123(4):2000302. doi: 10.1002/ejlt.202000302
|
[51] |
SANWAL N, MISHRA S, SAHU J K, et al. Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn (Hippophae salicipholia) seed oil[J]. LWT,2022,153:112386. doi: 10.1016/j.lwt.2021.112386
|
[52] |
GAZERAN S, TAJALLI F, MOHAMADI SANI A. Effect of ultrasonic extraction on qualitative parameters of saffron edible extract[J]. Journal of Essential Oil Bearing Plants,2016,19(5):1286−1291. doi: 10.1080/0972060X.2015.1004126
|
[53] |
YILDIZ G, RABABAH T M, FENG H. Ultrasound-assisted cutting of cheddar, mozzarella and swiss cheeses-effects on quality attributes during storage[J]. Innovative Food Science & Emerging Technologies,2016,37:1−9.
|
[54] |
LIU L, JIA W, XU D, et al. Applications of ultrasonic cutting in food processing: Application of ultrasonic cutting[J]. Journal of Food Processing and Preservation,2015,39(6):1762−1769. doi: 10.1111/jfpp.12408
|
[55] |
陈健. 面包超声波切割装置和实验研究[D]. 杭州: 杭州电子科技大学, 2018
CHEN J. Bread ultrasonic cutting device and experimental research [D]. Hangzhou: Dissertation Submitted to Hangzhou University, 2018.
|
[56] |
TAO Y, SUN D W. Enhancement of food processes by ultrasound: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(4):570−594. doi: 10.1080/10408398.2012.667849
|
[57] |
GROSSNER M T, BELOVICH J M, FEKE D L. Transport analysis and model for the performance of an ultrasonically enhanced filtration process[J]. Chemical Engineering Science,2005,60(12):3233−3238. doi: 10.1016/j.ces.2005.01.005
|
[58] |
DALVI-ISFAHAN M, HAMDAMI N, XANTHAKIS E, et al. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields[J]. Journal of Food Engineering,2017,195:222−234. doi: 10.1016/j.jfoodeng.2016.10.001
|
[59] |
MA X, MEI J, XIE J. Mechanism of ultrasound assisted nucleation during freezing and its application in food freezing process[J]. International Journal of Food Properties,2021,24(1):68−88. doi: 10.1080/10942912.2020.1858862
|
[60] |
ZHANG M, HAILI N, CHEN Q, et al. Influence of ultrasound-assisted immersion freezing on the freezing rate and quality of porcine longissimus muscles[J]. Meat Science,2018,136:1−8. doi: 10.1016/j.meatsci.2017.10.005
|
[61] |
TIAN Y, ZHANG P, ZHU Z, et al. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes[J]. Journal of Food Engineering,2020,286:110112. doi: 10.1016/j.jfoodeng.2020.110112
|
[62] |
ZHANG P, ZHU Z, SUN D-W. Using power ultrasound to accelerate food freezing processes: Effects on freezing efficiency and food microstructure[J]. Critical Reviews in Food Science and Nutrition,2018,58(16):2842−2853. doi: 10.1080/10408398.2018.1482528
|
[63] |
LI D, ZHAO H, MUHAMMAD A I, et al. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets[J]. Food Chemistry,2020,320:126614. doi: 10.1016/j.foodchem.2020.126614
|
[64] |
FARAHNAK R, NOURANI M, RIAHI E. Ultrasound thawing of mushroom (Agaricus bisporus): Effects on thawing rate, protein denaturation and some physical properties[J]. LWT,2021,151:112150. doi: 10.1016/j.lwt.2021.112150
|
[65] |
CHENG L, SUN D-W, ZHU Z, et al. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses[J]. Critical Reviews in Food Science and Nutrition,2017,57(4):769−781. doi: 10.1080/10408398.2015.1004569
|
[66] |
ZHANG C, SUN Q, CHEN Q, et al. Effectiveness of ultrasound-assisted immersion thawing on the thawing rate and physicochemical properties of chicken breast muscle[J]. Journal of Food Science,2021,86(5):1692−1703. doi: 10.1111/1750-3841.15699
|
[67] |
ABBAS S, HAYAT K, KARANGWA E, et al. An overview of ultrasound-assisted food-grade nanoemulsions[J]. Food Engineering Reviews,2013,5(3):139−157. doi: 10.1007/s12393-013-9066-3
|
[68] |
TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science & Technology,2020,105:363−377.
|
[69] |
SILVA K C G, SATO A C K. Sonication technique to produce emulsions: The impact of ultrasonic power and gelatin concentration[J]. Ultrasonics Sonochemistry,2019,52:286−293. doi: 10.1016/j.ultsonch.2018.12.001
|
[70] |
RAHMAN M M, LAMSAL B P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1457−1480. doi: 10.1111/1541-4337.12709
|
[71] |
SHENG L, WANG Y, CHEN J, et al. Influence of high-intensity ultrasound on foaming and structural properties of egg white[J]. Food Research International,2018,108:604−610. doi: 10.1016/j.foodres.2018.04.007
|
[72] |
YU C, WU F, CHA Y, et al. Effects of ultrasound on structure and functional properties of mussel (Mytilus edulis) protein isolates[J]. Journal of Food Processing and Preservation,2018,42(8):e13690. doi: 10.1111/jfpp.13690
|
[73] |
XUE H, TU Y, ZHANG G, et al. Mechanism of ultrasound and tea polyphenol assisted ultrasound modification of egg white protein gel[J]. Ultrasonics Sonochemistry,2021,81:105857. doi: 10.1016/j.ultsonch.2021.105857
|
[74] |
叶月华, 刘晓艳, 白卫东, 等. 响应面法优化微波-超声波联用改善低盐罗非鱼糜凝胶的特性[J]. 食品与发酵工业,2021,47(22):162−169. [YE Y H, LIU X Y, BAI W D, et al. Response surface methodology to optimize the combination of microwave and ultrasonic to improve the properties of low-salt tilapia surimi gel[J]. Food and Fermentation Industries,2021,47(22):162−169. doi: 10.13995/j.cnki.11-1802/ts.028394
|
[75] |
LIN L, WANG X, LI C, et al. Inactivation mechanism ofE. coli O157: H7 under ultrasonic sterilization[J]. Ultrasonics Sonochemistry,2019,59:104751. doi: 10.1016/j.ultsonch.2019.104751
|
[76] |
CARRILLO-LOPEZ L M, CRUZ-GARIBALDI B Y, HUERTA-JIMENEZ M, et al. The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition[J]. Molecules,2022,27(2):541. doi: 10.3390/molecules27020541
|
[77] |
LARISSA D, SILVA M, FLORES D, et al. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami[J]. Food Research International,2017,106(Apr.):363−373.
|
[78] |
YU H, LIU Y, LI L, et al. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms[J]. Trends in Food Science & Technology,2020,96:91−101.
|
[79] |
XIONG W, WANG Y, ZHANG C, et al. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
|
[80] |
YU H, ZHONG Q, LIU Y, et al. Recent advances of ultrasound-assisted maillard reaction[J]. Ultrasonics Sonochemistry,2020,64:104844. doi: 10.1016/j.ultsonch.2019.104844
|
[81] |
SFAKIANAKIS P, TZIA C. Flavour profiling by gas chromatography–mass spectrometry and sensory analysis of yoghurt derived from ultrasonicated and homogenised milk[J]. International Dairy Journal,2017,75:120−128. doi: 10.1016/j.idairyj.2017.08.003
|
[82] |
MUNIR M, NADEEM M, ALI B, et al. Investigating the impact of ultrasound, microwave, and high-pressure processing of milk on the volatile compounds and sensory properties of cheddar cheese[J]. Agriculture,2022,12(5):577. doi: 10.3390/agriculture12050577
|
[1] | WANG Shengyu, YANG Mei, HU Heyu, ZHU Caiqing, DONG Huanhuan, GUAN Yongmei, ZHU Weifeng. Research Progress on Release Patterns of Conjugated Phenolics During Plant Growth, Food Processing and Human Digestion[J]. Science and Technology of Food Industry, 2024, 45(14): 408-417. DOI: 10.13386/j.issn1002-0306.2023080269 |
[2] | YANG Hongxin, TANG Xingping, YANG Zhengming, ZHANG Ju, LU Yajuan, WU Wendou. Application Research and Prospects of Multispectral Technology in Non-destructive Testing of Food[J]. Science and Technology of Food Industry, 2024, 45(8): 350-357. DOI: 10.13386/j.issn1002-0306.2023040152 |
[3] | MENG Yuanyuan, LIU Haiquan, PAN Yingjie, ZHAO Yong. Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications[J]. Science and Technology of Food Industry, 2022, 43(22): 414-421. DOI: 10.13386/j.issn1002-0306.2021100149 |
[4] | YANG Xue-fan, ZHANG Wei, GU Xin-zhe, LI Wen-hui, WU Jin-hong, WANG Zheng-wu. The Application of Raman Spectroscopy in Quality Control and Food Processing[J]. Science and Technology of Food Industry, 2020, 41(19): 361-368. DOI: 10.13386/j.issn1002-0306.2020.19.056 |
[5] | YANG Yu-fan, CHEN Qian, WANG Hao, KONG Bao-hua. Research Progress of High Voltage Electric Field Technology in Food Processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320,325. DOI: 10.13386/j.issn1002-0306.2019.19.055 |
[6] | HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065 |
[7] | CHEN Yan-zhu, HU Wen-zhong, JIANG Ai-li, LIU Cheng-hui, YU Xue, LIU Xing-bo. Food processing and functional character of Aronia melanocarpa[J]. Science and Technology of Food Industry, 2016, (09): 397-400. DOI: 10.13386/j.issn1002-0306.2016.09.071 |
[8] | WANG Wei-wei, MENG Ting-ting, GUO Dan-zhao, MA Hai-le, CAO Ying, WANG Wen-xiu. Research progress on ultrasonic biological effect of food processing[J]. Science and Technology of Food Industry, 2015, (02): 379-383. DOI: 10.13386/j.issn1002-0306.2015.02.074 |
[9] | FAN Lin-lin, HAN Peng-xiang, FENG Xu-qiao, DUAN Xiao-ming, LI Meng-meng, ZHANG Bei, CAI Xi-tong. Research progress in the application development of electron beam irradiation in food industry[J]. Science and Technology of Food Industry, 2014, (14): 374-380. DOI: 10.13386/j.issn1002-0306.2014.14.074 |
[10] | QIU Liang-yan, LIU Mei, XIAO Hong-mei. Study on stability of exogenous genes in transgenic rice with Bar and Bt gene during food processing[J]. Science and Technology of Food Industry, 2013, (20): 125-129. DOI: 10.13386/j.issn1002-0306.2013.20.047 |
1. |
张月,杨新玥,黄莉,马帅宇,胥畅,杨腊梅,裴慧洁,何维,杨勇. 乳酸菌复配发酵对川味香肠品质及酪胺含量的影响. 食品与发酵工业. 2025(06): 83-90 .
![]() | |
2. |
李莹,钱敏,曾晓房,白卫东,吴清平,杨小鹃,董浩. 畜禽肉类预制菜肴全链条风险因子研究进展. 食品工业科技. 2025(07): 365-374 .
![]() | |
3. |
牟燕,赖茂佳,易宇文,范文教. 微生物发酵剂对川味牦牛肉香肠品质的影响. 中国酿造. 2024(02): 188-193 .
![]() | |
4. |
李晓,王成,郭楠楠,潘道东. 嗜酸乳杆菌发酵鸭肉脯工艺优化及品质分析. 肉类研究. 2024(01): 36-43 .
![]() | |
5. |
赵志磊,李昊轩,牛晓颖,陈萌,庞艳苹. γ射线辐照结合VC、烟酰胺对卤驴肉中亚硝酸盐的降解效果. 食品科学. 2024(16): 197-203 .
![]() | |
6. |
文静,许恒毅,甘蓓,周渊坤,张锦峰. 混合菌株发酵板鸭的研究进展. 江西科学. 2024(04): 710-715 .
![]() |