Citation: | WANG Jinmeng, ZHANG Siwei, ZHAO Kangyun, et al. Comparison of Physicochemical and Structural Properties of Different Varieties of Cassava Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 115−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040075. |
[1] |
熊贤坤, 易怀锋, 宋记明, 等. 不同木薯品种生长发育、产量及抗根腐病评价[J]. 中国热带农业,2021(6):44−49. [XIONG X K, YI H F, SONG J M, et al. Evaluation of growth, yield, root rot resistance of different cassava cultivars[J]. China Tropical Agriculture,2021(6):44−49. doi: 10.3969/j.issn.1673-0658.2021.06.009
|
[2] |
ZHU F. Composition, structure, physicochemical properties, and modifications of cassava starch[J]. Carbohydrate Polymers,2015,122:456−480. doi: 10.1016/j.carbpol.2014.10.063
|
[3] |
TAPPIBAN P, SRAPHET S, SRISAWAD N, et al. Effects of cassava variety and growth location on starch fine structure and physicochemical properties[J]. Food Hydrocolloids,2020,108:106074. doi: 10.1016/j.foodhyd.2020.106074
|
[4] |
曹英, 夏文, 李积华, 等. 超微粉碎处理对木薯淀粉结构及消化特性的影响[J]. 食品工业科技,2019,40(7):30−34,40. [CAO Y, XIA W, LI J H, et al. Effect of micronization on the structure and digestibility of tapioca starch[J]. Science and Technology of Food Industry,2019,40(7):30−34,40. doi: 10.13386/j.issn1002-0306.2019.07.006
|
[5] |
杨栋林, 陈燕珍, 庞月圆, 等. 不同品种的木薯淀粉理化特性研究[J]. 安徽农业科学,2009,37(19):8935−8936, 8938. [YANG D L, CHEN Y Z, PANG Y Y, et al. Research on the physicochemical property of the starch in different cassava varieties[J]. Journal of Anhui Agricultural Sciences,2009,37(19):8935−8936, 8938. doi: 10.3969/j.issn.0517-6611.2009.19.060
|
[6] |
古碧, 林莹, 李凯, 等. 不同生长期木薯块根淀粉糊化特性的差异[J]. 热带作物学报,2011,32(2):334−338. [GU B, LIN Y, LI K, et al. Gelatinization characteristics variation of starch during the growth and development of cassava[J]. Chinese Journal of Tropical Crops,2011,32(2):334−338.
|
[7] |
HE R, FU N F, CHEN H M, et al. Comparison of the structural characterizatics and physicochemical properties of starches from sixteen cassava germplasms cultivated in China[J]. International Journal of Food Properties,2020,23(1):693−707. doi: 10.1080/10942912.2020.1752714
|
[8] |
GOURILEKSHMI S S, JYOTHI A N, SREEKUMAR J. Physicochemical and structural properties of starch from cassava roots differing in growing duration and ploidy level[J]. Starch-Stärke,2020,72(11−12):1900237.
|
[9] |
LI B, WANG Y, ZHU L, et al. Starch characterizations of two kinds of seedless Artocarpus altilis (Parkinson) Fosberg originated from China[J]. Food Hydrocolloids,2022,123:107145. doi: 10.1016/j.foodhyd.2021.107145
|
[10] |
ITURBIDE-CASAS M A, MOLINA-RECIO G, CÁMARA-MARTOS F. Macronutrients and trace elements in enteral nutrition formulas: Compliance with label, bioaccessibility and contribution to reference intakes through a probabilistic assessment[J]. Journal of Food Composition and Analysis,2019,83:103250. doi: 10.1016/j.jfca.2019.103250
|
[11] |
樊艳叶, 林日辉, 杨慧, 等. 不同碱对木薯淀粉结构的影响[J]. 食品工业科技,2020,41(4):13−18, 24. [FAN Y Y, LIN R H, YANG H, et al. Effect of different alkali on the structure of cassava starch[J]. Science and Technology of Food Industry,2020,41(4):13−18, 24. doi: 10.13386/j.issn1002-0306.2020.04.003
|
[12] |
梅既强. 木薯淀粉的化学改性及其衍生物的结构、性质和体外消化率的研究[D]. 合肥: 合肥工业大学, 2016
MEI J Q. Studies on chemical modification of cassava starch and structure, properties ang in vitro digestibility of its derivatives[D]. Hefei: Hefei University of Technology, 2016.
|
[13] |
WONGSAGONSUP R, PUJCHAKARN T, JITRAKBUMRUNG S, et al. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product[J]. Carbohydrate Polymers,2014,101:656−665. doi: 10.1016/j.carbpol.2013.09.100
|
[14] |
DUDU O E, LI L, OYEDEJI A B, et al. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch[J]. International Journal of Biological Macromolecules,2019,133:1219−1227. doi: 10.1016/j.ijbiomac.2019.04.202
|
[15] |
SRICHUWONG S, ISONO N, JIANG H, et al. Freeze–thaw stability of starches from different botanical sources: Correlation with structural features[J]. Carbohydrate Polymers,2012,87(2):1275−1279. doi: 10.1016/j.carbpol.2011.09.004
|
[16] |
LI B, ZHANG Y, ZHANG Y, et al. A novel underutilized starch resource—Lucuma nervosa A. DC seed and fruit[J]. Food Hydrocolloids,2021,120:106934. doi: 10.1016/j.foodhyd.2021.106934
|
[17] |
ZHANG Y, HU M, ZHU K, et al. Functional properties and utilization of Artocarpus heterophyllus Lam
|
[18] |
MOORTHY S N, RAMANUJAM T. Variation in properties of starch in cassava varieties in relation to age of the crop[J]. Starch-Stärke,1986,38(2):58−61.
|
[19] |
MÉNDEZ P A, MÉNDEZ Á M, MARTÍNEZ L N, et al. Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings[J]. International Journal of Biological Macromolecules,2022,205:1−14. doi: 10.1016/j.ijbiomac.2022.02.053
|
[20] |
TOAE R, SRIROTH K, ROJANARIDPICHED C, et al. Outstanding characteristics of Thai non-GM bred waxy cassava starches compared with normal cassava starch, waxy cereal starches and stabilized cassava starches[J]. Plants,2019,8(11):447. doi: 10.3390/plants8110447
|
[21] |
LI P, HE X, DHITAL S, et al. Structural and physicochemical properties of granular starches after treatment with debranching enzyme[J]. Carbohydrate Polymers,2017,169:351−356. doi: 10.1016/j.carbpol.2017.04.036
|
[22] |
CHISENGA S M, WORKNEH T S, BULTOSA G, et al. Progress in research and applications of cassava flour and starch: A review[J]. Journal of Food Science and Technology,2019,56(6):2799−2813. doi: 10.1007/s13197-019-03814-6
|
[23] |
ZHANG Y, ZHU K, HE S, et al. Characterizations of high purity starches isolated from five different jackfruit cultivars[J]. Food Hydrocolloids,2016,52:785−794. doi: 10.1016/j.foodhyd.2015.07.037
|
[24] |
QI Q, HONG Y, ZHANG Y, et al. Effect of cassava starch structure on scalding of dough and baking expansion ability[J]. Food Chemistry,2021,352:129350. doi: 10.1016/j.foodchem.2021.129350
|
[25] |
ZHU D, ZHANG H, GUO B, et al. Effects of nitrogen level on structure and physicochemical properties of rice starch[J]. Food Hydrocolloids,2017,63:525−532. doi: 10.1016/j.foodhyd.2016.09.042
|
[26] |
LOS F G B, CHEZINI A, PIROSKI C S, et al. Evaluation of physicochemical properties of starch from Brazilian Carioca beans
|
[27] |
OYEYINKA S A, ADELOYE A A, OLAOMO O O, et al. Effect of fermentation time on physicochemical properties of starch extracted from cassava root[J]. Food Bioscience,2020,33:100485. doi: 10.1016/j.fbio.2019.100485
|
[28] |
FALADE K O, OKAFOR C A. Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches[J]. Food Hydrocolloids,2013,30(1):173−181. doi: 10.1016/j.foodhyd.2012.05.006
|
[29] |
MACHADO C M, BENELLI P, TESSARO I C. Effect of acetylated starch on the development of peanut skin-cassava starch foams[J]. International Journal of Biological Macromolecules,2020,165:1706−1716. doi: 10.1016/j.ijbiomac.2020.10.048
|
[30] |
ROMANO A, MACKIE A, FARINA F, et al. Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients[J]. Journal of Food Science and Technology,2016,53(12):4126−4134. doi: 10.1007/s13197-016-2375-9
|
[31] |
LI G, ZHU F. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch[J]. Carbohydrate Polymers,2017,164:396−402. doi: 10.1016/j.carbpol.2017.02.014
|
[32] |
HSIEH C F, LIU W, WHALEY J K, et al. Structure and functional properties of waxy starches[J]. Food Hydrocolloids,2019,94:238−254. doi: 10.1016/j.foodhyd.2019.03.026
|
[33] |
GRANZA A G, HORNUNG P S, ZIELINSKI A A F, et al. Gluten-free baked foods with extended shelf-life[J]. Journal of Food Science and Technology,2018,55(8):3035−3045. doi: 10.1007/s13197-018-3225-8
|
[34] |
LIU Y, XU B, AN F, et al. Physicochemical properties of cassava starch-konjac glucomannan composites[J]. Starch-Stärke,2021,73(7−8):2000186.
|