WANG Jinmeng, ZHANG Siwei, ZHAO Kangyun, et al. Comparison of Physicochemical and Structural Properties of Different Varieties of Cassava Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 115−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040075.
Citation: WANG Jinmeng, ZHANG Siwei, ZHAO Kangyun, et al. Comparison of Physicochemical and Structural Properties of Different Varieties of Cassava Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 115−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040075.

Comparison of Physicochemical and Structural Properties of Different Varieties of Cassava Starch

More Information
  • Received Date: April 10, 2022
  • Available Online: November 13, 2022
  • In this paper, five different species of cassava (SC9, SC10, SC11, GR891 and GR911) were used as raw materials and starch was isolated to study the differences in physicochemical and structure properties. The results showed that the amylose content of SC9 was the lowest (22.56%), and GR911 was the highest (27.49%). The surface of all species of cassava starch showed smooth and irregular spherical shape with the particle size of 12.43~19.03 μm. SC9 had the smallest particle size (12.43 μm), solubility and swelling power (10.35%, 28.00%), while GR911 showed the largest particle size (19.03 μm), solubility and swelling power (15.21%, 35.00%). All starches showed typical A-type crystal structure. The SC9 showed the highest (26.49%) relative crystallinity and GR911 was the lowest (21.92%). The SC9 had the lowest (0.756) short-range order structure compared to the highest (0.882) for GR911. According to the gelatinization properties, the species of SC9 and SC10 could be used as food thickeners or gelling agents. The species of GR911 was suitable for filling candy or weaned food. The species of SC11 and GR891 could be used as sticky food. The results of this study could provide a theoretical reference for the selection of cassava starch suitable for processing in the food industry.
  • [1]
    熊贤坤, 易怀锋, 宋记明, 等. 不同木薯品种生长发育、产量及抗根腐病评价[J]. 中国热带农业,2021(6):44−49. [XIONG X K, YI H F, SONG J M, et al. Evaluation of growth, yield, root rot resistance of different cassava cultivars[J]. China Tropical Agriculture,2021(6):44−49. doi: 10.3969/j.issn.1673-0658.2021.06.009
    [2]
    ZHU F. Composition, structure, physicochemical properties, and modifications of cassava starch[J]. Carbohydrate Polymers,2015,122:456−480. doi: 10.1016/j.carbpol.2014.10.063
    [3]
    TAPPIBAN P, SRAPHET S, SRISAWAD N, et al. Effects of cassava variety and growth location on starch fine structure and physicochemical properties[J]. Food Hydrocolloids,2020,108:106074. doi: 10.1016/j.foodhyd.2020.106074
    [4]
    曹英, 夏文, 李积华, 等. 超微粉碎处理对木薯淀粉结构及消化特性的影响[J]. 食品工业科技,2019,40(7):30−34,40. [CAO Y, XIA W, LI J H, et al. Effect of micronization on the structure and digestibility of tapioca starch[J]. Science and Technology of Food Industry,2019,40(7):30−34,40. doi: 10.13386/j.issn1002-0306.2019.07.006
    [5]
    杨栋林, 陈燕珍, 庞月圆, 等. 不同品种的木薯淀粉理化特性研究[J]. 安徽农业科学,2009,37(19):8935−8936, 8938. [YANG D L, CHEN Y Z, PANG Y Y, et al. Research on the physicochemical property of the starch in different cassava varieties[J]. Journal of Anhui Agricultural Sciences,2009,37(19):8935−8936, 8938. doi: 10.3969/j.issn.0517-6611.2009.19.060
    [6]
    古碧, 林莹, 李凯, 等. 不同生长期木薯块根淀粉糊化特性的差异[J]. 热带作物学报,2011,32(2):334−338. [GU B, LIN Y, LI K, et al. Gelatinization characteristics variation of starch during the growth and development of cassava[J]. Chinese Journal of Tropical Crops,2011,32(2):334−338.
    [7]
    HE R, FU N F, CHEN H M, et al. Comparison of the structural characterizatics and physicochemical properties of starches from sixteen cassava germplasms cultivated in China[J]. International Journal of Food Properties,2020,23(1):693−707. doi: 10.1080/10942912.2020.1752714
    [8]
    GOURILEKSHMI S S, JYOTHI A N, SREEKUMAR J. Physicochemical and structural properties of starch from cassava roots differing in growing duration and ploidy level[J]. Starch-Stärke,2020,72(11−12):1900237.
    [9]
    LI B, WANG Y, ZHU L, et al. Starch characterizations of two kinds of seedless Artocarpus altilis (Parkinson) Fosberg originated from China[J]. Food Hydrocolloids,2022,123:107145. doi: 10.1016/j.foodhyd.2021.107145
    [10]
    ITURBIDE-CASAS M A, MOLINA-RECIO G, CÁMARA-MARTOS F. Macronutrients and trace elements in enteral nutrition formulas: Compliance with label, bioaccessibility and contribution to reference intakes through a probabilistic assessment[J]. Journal of Food Composition and Analysis,2019,83:103250. doi: 10.1016/j.jfca.2019.103250
    [11]
    樊艳叶, 林日辉, 杨慧, 等. 不同碱对木薯淀粉结构的影响[J]. 食品工业科技,2020,41(4):13−18, 24. [FAN Y Y, LIN R H, YANG H, et al. Effect of different alkali on the structure of cassava starch[J]. Science and Technology of Food Industry,2020,41(4):13−18, 24. doi: 10.13386/j.issn1002-0306.2020.04.003
    [12]
    梅既强. 木薯淀粉的化学改性及其衍生物的结构、性质和体外消化率的研究[D]. 合肥: 合肥工业大学, 2016

    MEI J Q. Studies on chemical modification of cassava starch and structure, properties ang in vitro digestibility of its derivatives[D]. Hefei: Hefei University of Technology, 2016.
    [13]
    WONGSAGONSUP R, PUJCHAKARN T, JITRAKBUMRUNG S, et al. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product[J]. Carbohydrate Polymers,2014,101:656−665. doi: 10.1016/j.carbpol.2013.09.100
    [14]
    DUDU O E, LI L, OYEDEJI A B, et al. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch[J]. International Journal of Biological Macromolecules,2019,133:1219−1227. doi: 10.1016/j.ijbiomac.2019.04.202
    [15]
    SRICHUWONG S, ISONO N, JIANG H, et al. Freeze–thaw stability of starches from different botanical sources: Correlation with structural features[J]. Carbohydrate Polymers,2012,87(2):1275−1279. doi: 10.1016/j.carbpol.2011.09.004
    [16]
    LI B, ZHANG Y, ZHANG Y, et al. A novel underutilized starch resource—Lucuma nervosa A. DC seed and fruit[J]. Food Hydrocolloids,2021,120:106934. doi: 10.1016/j.foodhyd.2021.106934
    [17]
    ZHANG Y, HU M, ZHU K, et al. Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China[J]. International Journal of Biological Macromolecules,2018,107:1395−1405. doi: 10.1016/j.ijbiomac.2017.10.001
    [18]
    MOORTHY S N, RAMANUJAM T. Variation in properties of starch in cassava varieties in relation to age of the crop[J]. Starch-Stärke,1986,38(2):58−61.
    [19]
    MÉNDEZ P A, MÉNDEZ Á M, MARTÍNEZ L N, et al. Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings[J]. International Journal of Biological Macromolecules,2022,205:1−14. doi: 10.1016/j.ijbiomac.2022.02.053
    [20]
    TOAE R, SRIROTH K, ROJANARIDPICHED C, et al. Outstanding characteristics of Thai non-GM bred waxy cassava starches compared with normal cassava starch, waxy cereal starches and stabilized cassava starches[J]. Plants,2019,8(11):447. doi: 10.3390/plants8110447
    [21]
    LI P, HE X, DHITAL S, et al. Structural and physicochemical properties of granular starches after treatment with debranching enzyme[J]. Carbohydrate Polymers,2017,169:351−356. doi: 10.1016/j.carbpol.2017.04.036
    [22]
    CHISENGA S M, WORKNEH T S, BULTOSA G, et al. Progress in research and applications of cassava flour and starch: A review[J]. Journal of Food Science and Technology,2019,56(6):2799−2813. doi: 10.1007/s13197-019-03814-6
    [23]
    ZHANG Y, ZHU K, HE S, et al. Characterizations of high purity starches isolated from five different jackfruit cultivars[J]. Food Hydrocolloids,2016,52:785−794. doi: 10.1016/j.foodhyd.2015.07.037
    [24]
    QI Q, HONG Y, ZHANG Y, et al. Effect of cassava starch structure on scalding of dough and baking expansion ability[J]. Food Chemistry,2021,352:129350. doi: 10.1016/j.foodchem.2021.129350
    [25]
    ZHU D, ZHANG H, GUO B, et al. Effects of nitrogen level on structure and physicochemical properties of rice starch[J]. Food Hydrocolloids,2017,63:525−532. doi: 10.1016/j.foodhyd.2016.09.042
    [26]
    LOS F G B, CHEZINI A, PIROSKI C S, et al. Evaluation of physicochemical properties of starch from Brazilian Carioca beans (Phaseolus vulgaris)[J]. Starch-Stärke,2022,74(1−2):2000281.
    [27]
    OYEYINKA S A, ADELOYE A A, OLAOMO O O, et al. Effect of fermentation time on physicochemical properties of starch extracted from cassava root[J]. Food Bioscience,2020,33:100485. doi: 10.1016/j.fbio.2019.100485
    [28]
    FALADE K O, OKAFOR C A. Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches[J]. Food Hydrocolloids,2013,30(1):173−181. doi: 10.1016/j.foodhyd.2012.05.006
    [29]
    MACHADO C M, BENELLI P, TESSARO I C. Effect of acetylated starch on the development of peanut skin-cassava starch foams[J]. International Journal of Biological Macromolecules,2020,165:1706−1716. doi: 10.1016/j.ijbiomac.2020.10.048
    [30]
    ROMANO A, MACKIE A, FARINA F, et al. Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients[J]. Journal of Food Science and Technology,2016,53(12):4126−4134. doi: 10.1007/s13197-016-2375-9
    [31]
    LI G, ZHU F. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch[J]. Carbohydrate Polymers,2017,164:396−402. doi: 10.1016/j.carbpol.2017.02.014
    [32]
    HSIEH C F, LIU W, WHALEY J K, et al. Structure and functional properties of waxy starches[J]. Food Hydrocolloids,2019,94:238−254. doi: 10.1016/j.foodhyd.2019.03.026
    [33]
    GRANZA A G, HORNUNG P S, ZIELINSKI A A F, et al. Gluten-free baked foods with extended shelf-life[J]. Journal of Food Science and Technology,2018,55(8):3035−3045. doi: 10.1007/s13197-018-3225-8
    [34]
    LIU Y, XU B, AN F, et al. Physicochemical properties of cassava starch-konjac glucomannan composites[J]. Starch-Stärke,2021,73(7−8):2000186.
  • Cited by

    Periodical cited type(6)

    1. 徐于珽,于泓博,王晶,高文越,关云鹏,易思彤,任广辉,白长川,朱英. 基于肠肝轴中医药调节肠道功能防治肝细胞癌作用机制的研究进展. 中国中西医结合消化杂志. 2024(03): 222-225+232 .
    2. 闫晓慧,姜思亮,刘雪晴,梁军,夏永刚. 灵芝多糖的构效关系、提取工艺及药理作用研究进展. 中医药学报. 2024(04): 117-122 .
    3. 李秀清,纪宝玉,何江龙,李盼盼,吴婉阁,陈随清,董诚明,裴莉昕. 基于“习性-生境-部位-药性”的菌类中药相关性分析. 中国实验方剂学杂志. 2024(10): 133-139 .
    4. 罗世博,刘伟,谢星,冯亚萍,彭春彦,张露. 紫色野生樱桃李提取物抗氧化和降血糖活性研究及化学成分鉴定. 食品与发酵工业. 2024(19): 191-200 .
    5. 池妍,王雅芝,王昊,汲晨锋. 基于Citespace可视化分析5种真菌多糖研究进展. 中草药. 2024(23): 8130-8152 .
    6. 周美伶,范春艳,王宏艳. 中药多糖在非酒精性脂肪性肝病中的研究进展. 现代畜牧兽医. 2023(12): 89-93 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (598) PDF downloads (42) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return