SUN Bingyu, GUO Ruqi, LIU Linlin, et al. Research Progress on the Effects of High Pressure Homogenization on the Properties of Soybean Protein Emulsions[J]. Science and Technology of Food Industry, 2023, 44(1): 465−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030135.
Citation: SUN Bingyu, GUO Ruqi, LIU Linlin, et al. Research Progress on the Effects of High Pressure Homogenization on the Properties of Soybean Protein Emulsions[J]. Science and Technology of Food Industry, 2023, 44(1): 465−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030135.

Research Progress on the Effects of High Pressure Homogenization on the Properties of Soybean Protein Emulsions

More Information
  • Received Date: March 10, 2022
  • Available Online: October 29, 2022
  • As a high-molecular-weight protein, soybean protein has good biphilicity and surface activity, and can play an emulsifying role in the emulsion by forming a viscoelastin layer at the interface of the oil droplet, thereby improving the stability of the emulsion system. High-pressure homogenization technology is a new non-thermal processing technology that changes the structure and processing characteristics of proteins through the comprehensive effect of static high pressure and homogenization valve, which can prepare nanoscale soybean protein emulsions. Soybean protein emulsion is focused on in this paper, the process of preparing soybean protein emulsion by high pressure homogenization and the influence of homogenization conditions are expounded, based on domestic and foreign research, the progress on the effects of high-pressure homogenization on the structure (particle size, ζ-potential, spatial structure) and functional properties (rheological properties, emulsifying properties and gel properties) of soybean protein emulsion is systematically introduced. Finally, according to the current research progress, the application of high-pressure homogenization in the processing of soybean protein emulsions is proposed to provide certain help for the research of soybean protein emulsions.
  • [1]
    MIKUS M, GALUS S, CIURZYŃSKA A, et al. Development and characterization of novel composite films based on soy protein isolate and oilseed flours[J]. Molecules,2021,26:3738. doi: 10.3390/molecules26123738
    [2]
    WU D, TU M, WANG Z, et al. Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity[J]. Biotechnology Advances,2019,40:107491.
    [3]
    KE M F, WANG Z J, DONG Q, et al. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury[J]. Nanoscale,2021,27:15743−15754.
    [4]
    YU P, DEWI D, KYRIAKOPOULOU K, et al. Effect of calcium hydroxide and fractionation process on the functional properties of soy protein concentrate[J]. Innovative Food Science & Emerging Technologies,2020,66:102501.
    [5]
    HU A N, LI L. Effect mechanism of ultrasound pretreatment on fibrillation kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils[J]. Ultrasonics Sonochemistry,2021,78:105741. doi: 10.1016/j.ultsonch.2021.105741
    [6]
    李杨, 闫世长, 徐静雯, 等. 超声复合碱处理大豆蛋白与EGCG复合物功能特性研究[J]. 农业机械学报,2021,52(2):364−370. [LI Y, YAN S Z, XU J W, et al. Effects of complexation with EGCG on structural and functional properties of soybean protein treated by ultrasound-assisted alkali[J]. Journal of Agricultural Machinery,2021,52(2):364−370. doi: 10.6041/j.issn.1000-1298.2021.02.036
    [7]
    SAINI A, MORYA S. A Review based study on soymilk: Focuses on production technology, prospects and progress scenario in last decade[J]. AkiNik Publications,2021,10(5):486−494.
    [8]
    XI J, LI Y. The effects of ultra-high-pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin[J]. International Journal of Food Science & Technology,2021,56(10):5211−5219.
    [9]
    纪慧杰, 朱彩平. 高压均质技术在植物天然活性成分提取中的应用[J]. 食品与发酵工业,2022,48(9):317−323. [JI H J, ZHU C P. Application of high pressure homogenization technology in the extraction of natural plant active ingredients[J]. Food and Fermentation Industries,2022,48(9):317−323.
    [10]
    FENG Y, XUE L, REN X, et al. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate[J]. Ultrasonics Sonochemistry,2018,42:471−481. doi: 10.1016/j.ultsonch.2017.12.014
    [11]
    BI C H, WANG P L, SUN D Y, et al. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel[J]. Journal of Food Engineering,2020,277:109923. doi: 10.1016/j.jfoodeng.2020.109923
    [12]
    WANG M Z, YAN W Q, ZHOU Y L, et al. Progress in the application of lecithins in water-in-oil emulsions[J]. Trends in Food Science & Technology,2021,118:388−398.
    [13]
    王娜, 吴长玲, 陈凡凡, 等. 高压均质对大豆分离蛋白-大豆异黄酮相互作用及其复合物功能性质的影响[J]. 食品科学,2020,41(19):146−153. [WANG N, WU C L, CHEN F F, et al. Effects of high-pressure homogenization on the interaction of soybean protein isolate-soy isoflavones and their functional properties[J]. Food Science,2020,41(19):146−153. doi: 10.7506/spkx1002-6630-20190929-344
    [14]
    肖志刚, 王依凡, 王可心, 等. 高压均质-冷冻干燥技术制备大豆分离蛋白微粒及其功能特性[J]. 农业工程学报,2021,37(13):306−313. [XIAO Z G, WANG Y F, WANG K X, et al. Preparation of soy protein isolate microparticles by high pressure homogenization-freeze drying technology and their functional properties[J]. Chinese Journal of Agricultural Engineering,2021,37(13):306−313. doi: 10.11975/j.issn.1002-6819.2021.13.035
    [15]
    HU M, XIE F, ZHANG S, et al. Homogenization pressure and soybean protein concentration impact the stability of perilla oil nanoemulsions[J]. Food Hydrocolloids,2019,101:105575.
    [16]
    JLA B, JB A, XUAN L A, et al. Modelling and optimization of high-pressure homogenization of not-from-concentrate juice: Achieving better juice quality using sustainable production[J]. Food Chemistry,2021,370:131058.
    [17]
    赵妍嫣, 卢星星, 夏楠, 等. 大豆蛋白乳液的研究进展[J]. 食品安全质量检测学报,2020,11(17):5942−5947. [ZHAO Y Y, LU X X, XIA N, et al. Research progress on soybean protein emulsion[J]. Journal of Food Safety and Quality Inspection,2020,11(17):5942−5947.
    [18]
    SABRINA V, SONIA C, PIERGIORGIO C. Effect of a yeast autolysate produced by high pressure homogenization on white wine evolution during ageing[J]. Journal of Food Science and Technology,2021,58(10):4045−4054. doi: 10.1007/s13197-020-04867-8
    [19]
    ZHANG M, YIN L, YAN W, et al. Preparation and characterization of a novel soy protein isolate-sugar beet pectin emulsion gel and its application as a multi-phased nutrient carrier[J]. Foods,2022,11(3):469. doi: 10.3390/foods11030469
    [20]
    JING X A, MING Z B, WW B, et al. Using flammulina velutipes derived chitin-glucan nanofibrils to stabilize palm oil emulsion: A novel food grade Pickering emulsifier[J]. International Journal of Biological Macromolecules,2020,164:4628−4637. doi: 10.1016/j.ijbiomac.2020.09.073
    [21]
    LI Y P, KANG Z L, SUKMANOV V, et al. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing[J]. Meat Science,2021,176:108471. doi: 10.1016/j.meatsci.2021.108471
    [22]
    PATRIGNANI F, ROSSI S, VANNINI L, et al. High-pressure homogenization effects on spoilage and pathogenic microorganisms in foods[J]. Innovative Food Processing Technologies,2021:274−292.
    [23]
    SONG X Z, ZHOU C J, FU F, et al. Effect of high-pressure homogenization on particle size and film properties of soy protein isolate[J]. Industrial Crops and Products,2013,43:538−544. doi: 10.1016/j.indcrop.2012.08.005
    [24]
    GUO L P, XUE H, YUN L, et al. Study on the thixotropy and structural recovery characteristics of waxy crude oil emulsion[J]. Petroleum Science,2021,18(4):1195−1202. doi: 10.1016/j.petsci.2021.07.003
    [25]
    江连洲, 王立敏, 隋晓楠, 等. 大豆生物解离过程中形成的乳状液结构特征[J]. 食品科学,2018,39(5):14−19. [JIANG L Z, WANG L M, SUI X N, et al. Structural characteristics of emulsion formed during soybean biodissociation[J]. Food Science,2018,39(5):14−19. doi: 10.7506/spkx1002-6630-201805003
    [26]
    吴长玲, 聂鑫, 史志玲, 等. 大豆蛋白-磷脂酰胆碱纳米乳液高压均质工艺研究[J]. 中国食品学报,2019,19(9):93−102. [WU C L, NIE X, SHI Z L, et al. Research on high pressure homogenization process of soybean protein-phosphatidylcholine nanoemulsion[J]. Chinese Journal of Food Science,2019,19(9):93−102.
    [27]
    ZHU Y, LI Y, WU C, et al. Stability mechanism of two soybean protein-phosphatidylcholine nanoemulsion preparation methods from a structural perspective: A raman spectroscopy analysis[J]. Scientific Reports,2019,9(1):6985. doi: 10.1038/s41598-019-43439-5
    [28]
    ZHANG A Q, WANG X B, ZHAO X H. Effect of homogenizing pressure on the properties of soy protein isolate-vitamin D3 nanoemulsion[J]. Journal of Food Process Engineering,2021,11:1417−1426.
    [29]
    CHEN S, WANG X D, XU Y Y, et al. Effect of high pressure treatment on interfacial properties, structure and oxidative stability of soy protein isolate-stabilized emulsions[J]. Journal of Oleo Science,2019,68(5):409−418. doi: 10.5650/jos.ess18228
    [30]
    FERNANDEZ-ÁVILA C, TRUJILLO A J. Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions[J]. Food Chemistry,2016,209:104−113.
    [31]
    XU J, MUKHERJEE D, CHANG S K C. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization[J]. Food Chemistry,2017,240:1005−1013.
    [32]
    ZHANG A, CUI Q, ZHOU M, et al. Improving freeze-thaw stability of soy protein isolate-glucosamine emulsion by transglutaminase glycosylation[J]. Food and Bioproducts Processing,2021,128:77−83. doi: 10.1016/j.fbp.2021.04.014
    [33]
    LI Y, WU C L, LIU J, et al. Soy proteinisolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization[J]. Nanomaterials,2018,8(5):307−318. doi: 10.3390/nano8050307
    [34]
    CUI Q, ZHANG A Q, LI R, et al. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates[J]. Food Bioscience,2020,38(2):100747.
    [35]
    ZHU M Q, HUAN S Q, LIU S X, et al. Recent development in food emulsion stabilized by plant-based cellulose nanoparticles[J]. Current Opinion in Colloid & Interface Science,2021,56:101512.
    [36]
    CANTI M, MURDIATI A, NARUKI S, et al. Quality characteristics of chicken sausages using a combination of jack bean (Canavalia ensiformis L.) and soy protein isolate as a binder[J]. Food Research,2021,5(3):249−261. doi: 10.26656/fr.2017.5(3).544
    [37]
    SALVIA-TRUJILLO L, ROJAS-GRAUE A, SOLIVA-FORTUNY R, et al. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils[J]. Food Hydrocolloids,2015,43:547−556. doi: 10.1016/j.foodhyd.2014.07.012
    [38]
    FIORAVANTI M I A, MILANI R F, PAIVA E L D, et al. Influence of various ingredients on mineral bioaccessibility in infant formula and whole milk[J]. International Dairy Journal,2020,110:104808. doi: 10.1016/j.idairyj.2020.104808
    [39]
    朱秀清, 刘燕清, 朱颖, 等. 挤压预处理酶解修饰大豆蛋白乳化特性的研究进展[J]. 食品科学,2021,42(21):365−371. [ZHU X Q, LIU Y Q, ZHU Y, et al. Research progress on the emulsification properties of soybean protein modified by extrusion pretreatment enzymatic hydrolysis[J]. Food Science,2021,42(21):365−371. doi: 10.7506/spkx1002-6630-20200819-245
    [40]
    焦博, 石爱民, 刘红芝, 等. 基于食品级固体颗粒稳定的Pickering乳液研究进展[J]. 食品科学,2018,39(5):296−303. [JIAO B, SHI A M, LIU H Z, et al. Research progress of pickering emulsions stabilized by food-grade solid particles[J]. Food Science,2018,39(5):296−303. doi: 10.7506/spkx1002-6630-201805044
    [41]
    GUPTA A, BADRUDDOZA A Z M, DOYLE P S. A general route for nanoemulsion synthesis using low-energy methods at constant temperature[J]. Langmuir the Acs Journal of Surfaces & Colloids,2017,33(28):7118−7123.
    [42]
    MONTES O J M, CANDAL R J, HERRERA M L. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods[J]. Food Research International,2017,100:143. doi: 10.1016/j.foodres.2017.06.035
    [43]
    WU D, WU C, WANG Z, et al. Effects of high pressure homogenize treatment on the physicochemical and emulsifying properties of proteins from scallop (Chlamys farreri)[J]. Food Hydrocolloids,2019,94:537−545. doi: 10.1016/j.foodhyd.2019.04.003
    [44]
    刘鹏, 先于王翘, 邵信儒, 等. 高压均质处理对大豆蛋白-乳清蛋白混合乳液性质的影响[J]. 西北农林科技大学学报(自然科学版),2020,48(9):147−154. [LIU P, XIAN Y W Q, SHAO X R, et al. Effects of high pressure homogenization on the properties of soybean protein-whey protein mixed emulsion[J]. Journal of Northwest A & F University: Natural Science Edition,2020,48(9):147−154.
    [45]
    KARLIS B, VOLKER G, ELKE W, et al. Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects[J]. Food Chemistry,2016,192(1):82−89.
    [46]
    GUL O, SARICAOGLU F T, MORTAS M, et al. Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk[J]. Innovative Food Science & Emerging Technologies,2017,41:411−420.
    [47]
    YANG J, LIU G, ZENG H, et al. Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties[J]. Food Hydrocolloids,2018,83:275−286. doi: 10.1016/j.foodhyd.2018.05.020
    [48]
    SHAO Y, TANG C H. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment[J]. Food Hydrocolloids,2014,37:149−158. doi: 10.1016/j.foodhyd.2013.10.030
    [49]
    王喜波, 陈爽, 孙立娜, 等. 不同均质次数SPI-维生素D3纳米粒子结构与性质研究[J]. 农业机械学报,2020,51(12):341−347. [WANG X B, CHEN S, SUN L N, et al. Study on the structure and properties of SPI-vitamin D3 nanoparticles with different homogenization times[J]. Chinese Journal of Agricultural Machinery,2020,51(12):341−347. doi: 10.6041/j.issn.1000-1298.2020.12.037
    [50]
    LI C, DOU Z, MA P, et al. Effect of homogenization at a lower pressure on structural and functional properties of soy protein isolate[J]. Journal of Oleo Science,2020,69(11):1417−1426. doi: 10.5650/jos.ess20076
    [51]
    TD O′FLYNN, HOGAN S A, DALY D, et al. Rheological and solubility properties of soy protein isolate[J]. Molecules,2021,26(10):3015−3030. doi: 10.3390/molecules26103015
    [52]
    ERDEM B G, KAYA S. Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates[J]. Food Chemistry,2020,339(1):127976.
    [53]
    SONG S N, ZHANG Q L, YANG H Y, et al. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure[J]. International Journal of Biological Macromolecules,2022,206:175−187.
    [54]
    郭增旺, 郭亚男, 李柏良, 等. 高压均质条件下大豆蛋白热聚集体结构和乳化特性研究[J]. 农业机械学报,2021,52(4):351−358, 374. [GUO Z W, GUO Y N, LI B L, et al. Study on the structure and emulsifying properties of soybean protein thermal aggregates under high pressure homogenization[J]. Chinese Journal of Agricultural Machinery,2021,52(4):351−358, 374. doi: 10.6041/j.issn.1000-1298.2021.04.038
    [55]
    ESSAM H, MARTIN B, BIBIANA J, et al. Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability[J]. LWT-Food Science and Technology,2016,76:57−66.
    [56]
    WU F, SHI X, ZOU H, et al. Effects of high-pressure homogenization on physicochemical, rheological and emulsifying properties of myofibrillar protein[J]. Journal of Food Engineering,2019,263:272−279. doi: 10.1016/j.jfoodeng.2019.07.009
    [57]
    ZHANG X, HAQUE Z Z. Generation and stabilization of whey based monodispered nanoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations[J]. 2015, 63(45): 10070-10077.
    [58]
    朱明明, 宁方建, 温平威, 等. 高压微射流处理对大豆分离蛋白结构功能特性及其乳液性质的影响[J]. 中国油脂,2020,45(1):61−67. [ZHU M M, NING F J, WEN P W, et al. Effects of high pressure microfluidic treatment on the structural and functional properties of soybean protein isolate and its emulsion properties[J]. China Oils and Fats,2020,45(1):61−67. doi: 10.12166/j.zgyz.1003-7969/2020.01.014
    [59]
    ZHANG Y, SHI R, XU Y, et al. Developing a stable high-performance soybean meal-based adhesive using a simple high-pressure homogenization technology[J]. Journal of Cleaner Production,2021,256:120336.
    [60]
    SHEN L, TANG C H. Microfluidization as a potential technique to modify surface properties of soy protein isolate[J]. Food Research International,2012,48(1):108−118. doi: 10.1016/j.foodres.2012.03.006
    [61]
    DUMAY E, CHEVALIER-LUCIA D, ICART-PALMADE L, et al. Technological aspects and potential applications of (ultra) high-pressure homogenisation[J]. Trends in Food Science & Technology,2013,31(1):13−26.
    [62]
    CASTRO L, ALEXANDRE E, SARAIVA J A, et al. Impact of high pressure on starch properties: A review[J]. Food Hydrocolloids,2020,106:105877. doi: 10.1016/j.foodhyd.2020.105877
    [63]
    CAI Y J, CHEN B F, ZENG D, et al. Rheology and stability of concentrated emulsions fabricated by insoluble soybean fiber with few combined-proteins: Influences of homogenization intensity[J]. Food Chemistry,2022,383:132428. doi: 10.1016/j.foodchem.2022.132428
    [64]
    KANG Z L, BAI R, LU F, et al. Effects of high pressure homogenization on the solubility, foaming, and gel properties of soy 11S globulin[J]. Food Hydrocolloids,2022,124:107261. doi: 10.1016/j.foodhyd.2021.107261
    [65]
    WANG Y, LIU C, MA T, et al. Physicochemical and functional properties of γ-aminobutyric acid-treated soy proteins[J]. Food Chemistry,2019,295:267−273. doi: 10.1016/j.foodchem.2019.05.128
    [66]
    XU Y, WANG G, WANG X, et al. Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate[J]. Food Science and Biotechnology,2018,27(5):1293−1299. doi: 10.1007/s10068-018-0361-x
    [67]
    GX A, XJ A, FEI X A, et al. Effect of high-pressure homogenization on structural changes and emulsifying properties of chicken liver proteins isolated by isoelectric solubilization/precipitation[J]. LWT,2021,151:112092. doi: 10.1016/j.lwt.2021.112092
    [68]
    FERNANDEZ-AVILA C, ESCRIU R, TRUJILLO A J. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions[J]. Food Research International,2015,75:357−366. doi: 10.1016/j.foodres.2015.05.026
    [69]
    PRIMOZIC M, DUCHEK A, NICKERSON M, et al. Formation, stability and in vitro digestibility of nanoemulsions stabilized by high-pressure homogenized lentil proteins isolate[J]. Food Hydrocolloids,2017,77:126−141.
    [70]
    ZHOU Y, YUE W, LUO Y, et al. Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization[J]. LWT,2022,154:112607. doi: 10.1016/j.lwt.2021.112607
    [71]
    IZMAILOVA V N, YAMPOLSKAYA G P, TULOVSKAYA Z D. Development of the Rehbinder's concept on structure-mechanical barrier in stability of dispersions stabilized with proteins[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,1999,160(2):89−106.
    [72]
    KEERATI-U-RAI M, CORREDIG M. Heat-induced changes in oil-in-water emulsions stabilized with soy protein isolate[J]. Food Hydrocolloids,2009,23(8):2141−2148. doi: 10.1016/j.foodhyd.2009.05.010
    [73]
    ZHOU L, ZHANG W, WANG J, et al. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization[J]. Ultrasonics Sonochemistry,2022,82:105885. doi: 10.1016/j.ultsonch.2021.105885
    [74]
    ZHANG Y H, ZHOU F B, SHEN P H, et al. Influence of thermal treatment on oil-water interfacial properties and emulsion stabilization prepared by sono-assembled soy peptide nanoparticles[J]. Food Hydrocolloids,2020,103:105646. doi: 10.1016/j.foodhyd.2020.105646
    [75]
    DESTRIBATS M, ROUVET M, GEHIN-DELVAL C, et al. Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions[J]. Soft Matter,2014,10(36):6941−6954. doi: 10.1039/C4SM00179F
    [76]
    刘竞男, 徐晔晔, 王一贺, 等. 高压均质对大豆分离蛋白乳液流变学特性和氧化稳定性的影响[J]. 食品科学,2020,41(1):80−85. [LIU J N, XU Y Y, WANG Y H, et al. Effects of high pressure homogenization on rheological properties and oxidative stability of soybean protein isolate emulsion[J]. Food Science,2020,41(1):80−85. doi: 10.7506/spkx1002-6630-20181119-221
    [77]
    王胜男, 杨晋杰, 邵国强, 等. 乳状液界面性质对油脂氧化及抑制的影响[J]. 渤海大学学报:自然科学版,2019,40(2):119−126. [WANG S N, YANG J J, SAO G Q, et al. Effects of emulsion interfacial properties on oil oxidation and inhibition[J]. Journal of Bohai University: Natural Science Edition,2019,40(2):119−126.
    [78]
    DECKER E A, MCCLEMENTS D J, BOURLIEU-LACANAL C, et al. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions[J]. Trends in Food Science & Technology,2017,67:183−194.
    [79]
    HEBISHY E, BUFFA M, JUAN B, et al. Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability[J]. LWT-Food Science and Technology,2017,76:57−66.
    [80]
    HEBISHY E, BUFFA M, GUAMIS B, et al. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics[J]. Innovative Food Science & Emerging Technologies,2015,32(3838):79−90.
    [81]
    WANG S, YANG J, SHAO G, et al. pH-Induced conformational changes and interfacial dilatational rheology of soy protein isolated/soy hull polysaccharide complex and its effects on emulsion stabilization[J]. Food Hydrocolloids,2020,109(13):106075.
    [82]
    BACIGALUPE A, COVA M, JP CEDRÉS, et al. Rheological characterization of a wood adhesive based on a hydrolyzed soy protein suspension[J]. Journal of Polymers and the Environment,2020,28(4):2490−2497.
    [83]
    HUANG L, DING X, LI Y, et al. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid[J]. Food Chemistry,2019,279:114−119. doi: 10.1016/j.foodchem.2018.11.147
    [84]
    YIN Z, WANG Z, HE Z, et al. Effect of particle size and microstructure on the physical properties of soybean insoluble dietary fiber in aqueous solution[J]. Food Bioscience,2021,41(4):100898.
    [85]
    COLLETTI A C, DELGADO J F, CABEZAS D M, et al. Soybean hull insoluble polysaccharides: Improvements of its physicochemical properties through high pressure homogenization[J]. Food Biophysics,2020,15(2):173−187.
    [86]
    TAN M, XU J, GAO H, et al. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates[J]. Journal of Food Engineering,2021,306(1):110622.
    [87]
    孙冰玉, 李志敏, 刘琳琳, 等. 高压均质技术对大豆蛋白结构和发酵特性影响研究进展[J]. 食品工业科技,2022,43(13):425−433. [SUN B Y, LI Z M, LIU L L, et al. Research progress on the influence of high pressure homogenization technology on the structure and fermentation characteristics of soybean protein[J]. Food Industry Science and Technology,2022,43(13):425−433. doi: 10.13386/j.issn1002-0306.2021070123
    [88]
    安迪, 洪瑞, 李良. 大豆蛋白自组装凝胶研究进展[J]. 食品科学,2020,41(3):254−259. [AN D, HONG R, LI L. Research progress on self-assembled gel of soybean protein[J]. Food Science,2020,41(3):254−259. doi: 10.7506/spkx1002-6630-20181218-212
    [89]
    唐晓婷, 孔保华, 刘骞, 等. 高压均质处理淀粉及大豆分离蛋白凝胶性质研究[J]. 中国食品学报,2016,16(9):68−76. [TANG X T, KONG B H, LIU Q, et al. Study on the gel properties of starch and soybean protein isolate treated with high pressure homogenization[J]. Chinese Journal of Food Science,2016,16(9):68−76.
    [90]
    龙小涛, 赵谋明, 罗东辉, 等. 高压均质对大豆分离蛋白功能特性的影响[J]. 食品与发酵工业,2009,35(3):49−52. [LONG X T, ZHAO M M, LUO D H, et al. Effects of high pressure homogenization on the functional properties of soybean protein isolate[J]. Food and Fermentation Industries,2009,35(3):49−52.
    [91]
    王革新, 徐捷, 何志勇, 等. 促凝剂及小分子表面活性剂对大豆分离蛋白乳状液凝胶性质的影响[J]. 食品与生物技术学报,2017,36(12):1269−1275. [WANG G X, XU J, HE Z Y, et al. Effects of coagulants and small molecule surfactants on the gel properties of soybean protein isolate emulsions[J]. Journal of Food and Biotechnology,2017,36(12):1269−1275. doi: 10.3969/j.issn.1673-1689.2017.12.007
    [92]
    LI F, KONG X, ZHANG C, et al. Gelation behaviour and rheological properties of acid-induced soy protein-stabilized emulsion gels[J]. Food Hydrocolloids,2012,29(2):347−355. doi: 10.1016/j.foodhyd.2012.03.011
    [93]
    LI Y, CHEN X, XUE S, et al. Effect of the disruption chamber geometry on the physicochemical and structural properties of water-soluble myofibrillar proteins prepared by high pressure homogenization (HPH)[J]. LWT,2019:215−223.
    [94]
    LIU F, TANG C H. Cold, gel-like whey protein emulsions by microfluidisation emulsification: Rheological properties and microstructures[J]. Food Chemistry,2011,127(4):1641−1647. doi: 10.1016/j.foodchem.2011.02.031
  • Related Articles

    [1]ZHUANG Xiaoqi, LIU Qiaoyu, LIN Zeqian, YAO Yanyan, QIAN Min, LI Xiangluan, BAI Weidong, DONG Hao. Effect of Low-salt Curing on the Quality of Crisp Grass Carp after Freeze-thaw Treatment[J]. Science and Technology of Food Industry, 2025, 46(8): 76-84. DOI: 10.13386/j.issn1002-0306.2024050062
    [2]ZHANG Shiqi, YANG Shanglin, WANG Xiangyu, CHEN Lianhong. Effects of Different Intermittent Microwave Thawing Methods on the Quality Characteristics and Lipid Oxidation of Yak Meat[J]. Science and Technology of Food Industry, 2024, 45(12): 38-46. DOI: 10.13386/j.issn1002-0306.2023070044
    [3]LIU Shuping, PENG Xiuwen, ZHANG Jiamei, LI Peizhao. Effect of Soybean Protein Isolate and Tea Polyphenol Stabilized High Interior Phase Pickering Emulsion Replacing Fat on Meatball Quality[J]. Science and Technology of Food Industry, 2024, 45(6): 59-66. DOI: 10.13386/j.issn1002-0306.2023050118
    [4]CHEN Fangxue, QIU Wenxing, SHEN Lingwei, LI Dongsheng, QIAO Yu, WU Wenjin, XIONG Guangquan, WANG Lan, DING Anzi, LI Xin, SHI Liu. Formation of Volatile Flavor Compounds and Changes in Fat Oxidation in Blunt-snout Bream by Traditional Sun-drying and Shade-drying[J]. Science and Technology of Food Industry, 2023, 44(14): 36-45. DOI: 10.13386/j.issn1002-0306.2022070072
    [5]JIANG Hao, YANG Lu, XU Wen-yi, YANG Hua, MA Li-zhen. Effects of Different Degrees of Raw Fat Oxidation on the Safety and Quality of Bacon[J]. Science and Technology of Food Industry, 2020, 41(23): 209-215,294. DOI: 10.13386/j.issn1002-0306.2020020063
    [6]LI Ya-ting, LI Ling, ZHOU Yi, GUO Yan-yun, DONG Jie. Effect of Star Anise Extracts on Lipid Oxidation and Quality of Beef Meatballs[J]. Science and Technology of Food Industry, 2019, 40(2): 58-62,69. DOI: 10.13386/j.issn1002-0306.2019.02.011
    [7]LI Xiang-li, LIU Jing, ZHU Le-le, XIA Chen, ZHANG Na, HOU Yi-chao, MA Long-chuan. Effect of Hot Air,Microwave and Combined Drying on the Quality of Garlic(Allium sativum)Slices[J]. Science and Technology of Food Industry, 2018, 39(15): 136-140,146. DOI: 10.13386/j.issn1002-0306.2018.15.025
    [8]GUO Jie, BAI Feng-qi, LI Xiao-yan, WANG Jie. Effect of low salt on scallop quality in hot air drying[J]. Science and Technology of Food Industry, 2015, (14): 303-307. DOI: 10.13386/j.issn1002-0306.2015.14.053
    [9]ZOU Ying, SU Feng-xian, ZHANG Lin-lin, ZHANG Bai-gang. Comprehensive applied research of low temperature drying technology and antioxidant of dried Large Yellow Croaker[J]. Science and Technology of Food Industry, 2015, (07): 261-265. DOI: 10.13386/j.issn1002-0306.2015.07.047
    [10]LU Miao-ling, LV Fei, DING Yu-ting. Study on heat pump drying characteristics of yellowfin tuna (Thunnus albacores) skin[J]. Science and Technology of Food Industry, 2013, (24): 110-113. DOI: 10.13386/j.issn1002-0306.2013.24.055
  • Cited by

    Periodical cited type(8)

    1. 陆英,罗静玲,王欣,祝加玉. 黑老虎叶提取物纯化及其在化妆品原料中的应用研究. 中国野生植物资源. 2024(10): 42-48+85 .
    2. 彭苏,崔艺燕,尹福泉,马现永. 中草药废弃物的营养价值、活性物质与生物学功能及在猪生产上的应用研究进展. 中国畜牧杂志. 2023(03): 33-39 .
    3. 高渐飞,周玮,杨艳. 基于广泛靶向代谢组学分析黑老虎不同部位成分差异. 热带亚热带植物学报. 2023(03): 424-432 .
    4. 朱俊秀,杨昌宏,徐艳明,李爽,曹春芽,吴卫华,张宁,刘建新,孙慧峰. 侗药黑老虎的研究进展. 中医药导报. 2022(01): 77-82+109 .
    5. 王丽军,廖苏奇,龙海荣,夏祥华,陈乾平,梁洁,韦树根. 黑老虎果的果皮和果肉营养成分分析及评价. 食品与发酵工业. 2021(10): 124-131 .
    6. 左毅成,王森,邵凤侠,何铁定,谭玉珊,杨昌宏. 不同品系黑老虎各器官精油挥发性成分的GC-MS分析. 经济林研究. 2021(03): 175-185 .
    7. 李亚军,姚丹丹,刘霜. 黑老虎不同部位化学成分及作用研究进展. 科技创新与生产力. 2021(11): 79-82 .
    8. 王丽军,廖苏奇,梁洁,龙海荣,夏祥华,陈乾平,韦树根. 黑老虎种子的营养成分分析及评价. 中国油脂. 2021(12): 112-117 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (365) PDF downloads (41) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return