DU Yingqi, FAN Lili, OU Changrong, et al. Correlation between Volatile Flavor Components and Bacterial Population Succession during Mackerel Fermentation[J]. Science and Technology of Food Industry, 2022, 43(20): 152−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010124.
Citation: DU Yingqi, FAN Lili, OU Changrong, et al. Correlation between Volatile Flavor Components and Bacterial Population Succession during Mackerel Fermentation[J]. Science and Technology of Food Industry, 2022, 43(20): 152−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010124.

Correlation between Volatile Flavor Components and Bacterial Population Succession during Mackerel Fermentation

More Information
  • Received Date: January 17, 2022
  • Available Online: July 28, 2022
  • Complex microbial metabolism is key to the unique flavor formation of Chinese fermented mandarin fish (mackerel). In this study, gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the formation of volatile flavor compounds in fermented mackerel and high-throughput sequencing of 16S rRNA technology was used to analyze the succession of bacterial populations during mackerel fermentation, revealing the relationship between functional microorganisms and volatile properties in mackerel fermentation. Results showed that there were 51 volatile flavor components in mackerel fermentation process, mainly including esters, alcohols, acids, ketones, aldehydes, furans and others. The main dominant bacterial genera included Lactobacillus, Staphylococcus, Macrococcus, etc. The correlation analysis results showed that Lactobacillus was the main factor that led to the high contents of ketones and alcohols. The Staphylococcus played an important role in the production of esters in mackerel, and negatively correlated with ketones. Although the relative abundance of Weissella, Acinetobacter, Methylophilus and other microorganisms was not high, they were also significantly correlated with the formation of volatile flavors (P<0.05). This study would provide the bacterial genera for improving the quality mackerel and controlling the fermentation process.
  • [1]
    ALGHAZEER R, SAEED S, HOWELL N K. Aldehyde formation in frozen mackerel (Scomber scombrus) in the presence and absence of instant green tea[J]. Food Chemistry,2008,108(3):801−810. doi: 10.1016/j.foodchem.2007.08.067
    [2]
    CROPOTOVA J, MOZURAITYTE R, STANDAL I B, et al. A non-invasive approach to assess texture changes in sous-vide cooked Atlantic mackerel during chilled storage by fluorescence imaging[J]. Food Control,2018,92:216−224. doi: 10.1016/j.foodcont.2018.04.060
    [3]
    WU Y, QIN L, CHEN J, et al. Nitrite, biogenic amines and volatile N-nitrosamines in commercial Chinese traditional fermented fish products[J]. Food Additives & Contaminants: Part B Surveillance,2021:1−10.
    [4]
    JUNG J Y, LEE S H, LEE H J, et al. Microbial succession and metabolite changes during fermentation of saeu-jeot: Traditional Korean salted seafood[J]. Food Microbiology,2013,34(2):360−368. doi: 10.1016/j.fm.2013.01.009
    [5]
    ZANG J, XU Y, XIA W, et al. Quality, functionality, and microbiology of fermented fish: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(7):1228−1242. doi: 10.1080/10408398.2019.1565491
    [6]
    ZHOU Y, WU S, PENG Y, et al. Effect of lactic acid bacteria on mackerel (Pneumatophorus japonicus) seasoning quality and flavor during fermentation[J]. Food Bioscience,2021:41.
    [7]
    OZYURT C E, BOGA E K, OZKUTUK A S, et al. Bioconversion of discard fish (Equulites klunzingeri and Carassius gibelio) fermented with natural lactic acid bacteria; the chemical and microbiological quality of ensilage[J]. Waste and Biomass Valorization,2018,11(4):1435−1442.
    [8]
    HAN J, ZHANG J, LIN X, et al. Effect of autochthonous lactic acid bacteria on fermented Yucha quality[J]. LWT-Food Science and Technology,2020:123.
    [9]
    SIVAMARUTHI B S, KESIKA P, CHAIYASUT C. A narrative review on biogenic amines in fermented fish and meat products[J]. Journal of Food Science and Technology,2021,58(5):1623−1639. doi: 10.1007/s13197-020-04686-x
    [10]
    CHAMBERLAIN C A, HATCH M, GARRETT T J. Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri[J]. PLoS One,2019,14(9):e0222393. doi: 10.1371/journal.pone.0222393
    [11]
    XU X, WU B, ZHAO W, et al. Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper (Capsicum annuum L.)[J]. Food Microbiology,2020,91:103510. doi: 10.1016/j.fm.2020.103510
    [12]
    JIANG C, LIU M, YAN X, et al. Lipase addition promoted the growth of proteus and the formation of volatile compounds in Suanzhayu, a traditional fermented fish product[J]. Foods,2021,10(11):2529. doi: 10.3390/foods10112529
    [13]
    XU Y, LI L, REGENSTEIN J M, et al. The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish[J]. Food Chemistry,2018,256:259−267. doi: 10.1016/j.foodchem.2018.02.142
    [14]
    DE LIMA ALVES L, DONADEL J Z, ATHAYDE D R, et al. Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages[J]. Ultrasonics-Sonochemistry,2020,67:105161. doi: 10.1016/j.ultsonch.2020.105161
    [15]
    MOONGA H B, SCHOUSTRA S E, LINNEMANN A R, et al. Influence of fermentation temperature on microbial community composition and physicochemical properties of mabisi, a traditionally fermented milk[J]. LWT-Food Science and Technology,2021,136:110−350.
    [16]
    FRABERGER V, UNGER C, KUMMER C, et al. Insights into microbial diversity of traditional Austrian sourdough[J]. LWT-Food Science and Technology,2020:127.
    [17]
    XU Y, HE L, XIA W, et al. The impact of fermentation at elevated temperature on quality attributes and biogenic amines formation of low-salt fermented fish[J]. International Journal of Food Science & Technology,2018,54(3):723−733.
    [18]
    ZHAO D, HU J, CHEN W. Analysis of the relationship between microorganisms and flavour development in dry-cured grass carp by high-throughput sequencing, volatile flavour analysis and metabolomics[J]. Food Chemistry,2022,368:130889. doi: 10.1016/j.foodchem.2021.130889
    [19]
    LIAO E, XU Y, JIANG Q, et al. Effects of inoculating autochthonous starter cultures on biogenic amines accumulation of Chinese traditional fermented fish[J]. Journal of Food Processing and Preservation,2018,42(8):e13694. doi: 10.1111/jfpp.13694
    [20]
    陈蒙恩, 侯建光, 张振科, 等. 陶融型大曲微生物多样性与挥发性风味成分的相关性研究[J]. 中国酿造,2020,39(10):54−60. [CHEN Mengen, HOU Jianguang, ZHANG Zhenke, et al. Correlation between microbial diversity and volatile flavor components in Taorong Daqu[J]. China Brewing,2020,39(10):54−60. doi: 10.11882/j.issn.0254-5071.2020.10.011
    [21]
    母雨, 苏伟, 母应春. 盘县火腿深度腐败的微生物及挥发性风味化合物表征[J]. 食品科学,2021,42(8):221−228. [MU Yu, SU Wei, MU Yingchun. Characterization of microorganisms and volatile flavor compounds in deep spoilage of Panxian ham[J]. Food Science,2021,42(8):221−228. doi: 10.7506/spkx1002-6630-20191111-143
    [22]
    DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology,2006,72(7):5069−5072. doi: 10.1128/AEM.03006-05
    [23]
    TIAN X, LI Z J, CHAO Y Z, et al. Evaluation by electronic tongue and headspace-GC-IMS analyses of the flavor compounds in dry-cured pork with different salt content[J]. Food Research International,2020,137:109456. doi: 10.1016/j.foodres.2020.109456
    [24]
    CHEN Y, LI P, LIAO L, et al. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS[J]. Food Chemistry,2021,361:130055. doi: 10.1016/j.foodchem.2021.130055
    [25]
    FENG Y, SU G, ZHAO H, et al. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test[J]. Food Chemistry,2015,167:220−228. doi: 10.1016/j.foodchem.2014.06.057
    [26]
    ZHU W, LUAN H, BU Y, et al. Flavor characteristics of shrimp sauces with different fermentation and storage time[J]. LWT-Food Science and Technology,2019,110:142−151. doi: 10.1016/j.lwt.2019.04.091
    [27]
    顾赛麒, 唐锦晶, 周绪霞, 等. 腌腊鱼传统日晒干制过程中品质变化与香气形成[J]. 食品科学,2019,40(17):36−44. [GU Saiqi, TANG Jinjing, ZHOU Xuxia, et al. Quality changes and aroma formation of cured fish during traditional sun drying[J]. Food Science,2019,40(17):36−44. doi: 10.7506/spkx1002-6630-20180716-201
    [28]
    项怡, 李洪军, 徐明悦, 等. 甲鱼脱腥方法的研究[J]. 肉类工业,2015,413(9):30−35. [XIANG Yi, LI Hongjun, XU Mingyue, et al. Research on the deodorization method of soft-shelled turtle[J]. Meat Industry,2015,413(9):30−35. doi: 10.3969/j.issn.1008-5467.2015.09.011
    [29]
    DOI R, WU Y, KAWAI Y, et al. Transition and regulation mechanism of bacterial biota in Kishu saba-narezushi (Mackerel narezushi) during its fermentation step[J]. Journal of Bioscience and Bioengineering,2021,132(6):606−612. doi: 10.1016/j.jbiosc.2021.09.002
    [30]
    SABIO E, VIDAL-ARAGÓN M C, BERNALTE M J, et al. Volatile compounds present in six types of dry-cured ham from south European countries[J]. Food Chemistry,1998,61(4):493−503. doi: 10.1016/S0308-8146(97)00079-4
    [31]
    JIANG S, MA C, PENG Q, et al. Microbial profile and genetic polymorphism of predominant species in some traditional fermented seafoods of the Hainan area in China[J]. Frontiers in Microbiology,2019,10:564. doi: 10.3389/fmicb.2019.00564
    [32]
    SEAL M, KUNDA P, DHAL P K, et al. Phenotypic and molecular characterizations of haemolytic and penicillin-resistant Bacillus cereus and its control by plant extracts[J]. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences,2021,91(3):533−541. doi: 10.1007/s40011-021-01255-w
    [33]
    CASABURI A, ARISTOY M C, CAVELLA S, et al. Biochemical and sensory characteristics of traditional fermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures[J]. Meat Science,2007,76(2):295−307. doi: 10.1016/j.meatsci.2006.11.011
    [34]
    孙海鑫, 陈智慧, 王盛美, 等. 发酵鱼中菌群组成及发酵特性研究进展[J]. 食品工业科技,2021:1−12. [SUN Haixin, CHEN Zhihui, WANG Shengmei, et al. Research progress on bacterial composition and fermentation characteristics in fermented fish[J]. Science and Technology of Food Industry,2021:1−12.
    [35]
    XIANG Y Z, LI X Y, ZHENG H L, et al. Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments[J]. LWT-Food Science and Technology,2021:146.
    [36]
    刘剀剡, 丁勤, 袁梦玹, 等. 鞘氨醇单胞菌对微囊藻毒素-RR的降解作用与影响因素分析[J]. 东南大学学报(自然科学版),2021,51(3):496−502. [LIU Yanyan, DING Qin, YUAN Mengxuan, et al. Degradation of microcystin-rr by sphingomonas and analysis of influencing factors[J]. Journal of Southeast University (Natural Science Edition),2021,51(3):496−502. doi: 10.3969/j.issn.1001-0505.2021.03.019
    [37]
    刘爱芳, 谢晶, 钱韻芳. 冷藏金枪鱼优势腐败菌致腐败能力[J]. 食品科学,2018,39(3):7−14. [LIU Aifang, XIE Jing, QIAN Yunfang. The spoilage ability of dominant spoilage bacteria in refrigerated tuna[J]. Food Science,2018,39(3):7−14. doi: 10.7506/spkx1002-6630-201803002
    [38]
    杨恩东, 崔丹曦, 汪维云. 马赛菌属细菌研究进展[J]. 微生物学通报,2019,46(6):1537−1548. [YANG Endong, CUI Danxi, WANG Weiyun. Research progress on bacteria of the genus Marseille[J]. Bulletin of Microbiology,2019,46(6):1537−1548.
    [39]
    刘境, 李福君. 魏斯氏菌在发酵食品中的应用研究[J]. 食品安全导刊,2020(33):181. [LIU Jing, LI Fujun. Application of Weissella in fermented food[J]. Food Safety Guide,2020(33):181.
    [40]
    陈丽, 赵薇, 陈名洪, 等. 嗜盐糖单孢菌FIM SY0001-1次级代谢产物的研究[J]. 中国抗生素杂志,2017,42(11):940−944. [CHEN Li, ZHAO Wei, CHEN Minghong, et al. Study on the secondary metabolites of Saccharomonas halophilus FIM SY0001-1[J]. Chinese Journal of Antibiotics,2017,42(11):940−944. doi: 10.3969/j.issn.1001-8689.2017.11.003
    [41]
    PITTA D W, PINCHAK W E, DOWD S E, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial Ecology,2010,59(3):511−522. doi: 10.1007/s00248-009-9609-6
    [42]
    MAHAFFEE W F, KLOEPPER J W. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.)[J]. Microbial Ecology,1997,34(3):210−223. doi: 10.1007/s002489900050
    [43]
    吴燕燕, 钱茜茜, 李来好, 等. 基于Illumina MiSeq技术分析腌干鱼加工过程中微生物群落多样性[J]. 食品科学,2017,38(12):1−8. [WU Yanyan, QIAN Qianqian, LI Laihao, et al. Analysis of microbial community diversity during processing of salted and dried fish based on Illumina MiSeq technology[J]. Food Science,2017,38(12):1−8. doi: 10.7506/spkx1002-6630-201712001
    [44]
    FENG L, TANG N, LIU R, et al. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products[J]. Food & Function,2021,12(13):5685−5702.
    [45]
    刘国丽, 牛世伟, 徐嘉翼, 等. 基于高通量测序分析优化施氮对养蟹稻田土壤细菌多样性的影响[J]. 吉林农业大学学报,2019,41(6):686−694. [LIU Guoli, NIU Shiwei, XU Jiayi, et al. Effects of optimized nitrogen application on soil bacterial diversity in crab-raising paddy fields based on high-throughput sequencing analysis[J]. Journal of Jilin Agricultural University,2019,41(6):686−694.
    [46]
    WANG Y, SHEN Y, WU Y, et al. Comparison of the microbial community and flavor compounds in fermented mandarin fish (Siniperca chuatsi): Three typical types of Chinese fermented mandarin fish products[J]. Food Research International,2021,144:110365. doi: 10.1016/j.foodres.2021.110365
  • Related Articles

    [1]XIE Na, CHENG Junwen, XU Juan, WU Xueqian, LI Chunru, WANG Yuqin, XIONG Kehui, HE Liang. Process Optimization of Enzyme-Assisted Extraction of Polysaccharides from Artificially-Cultivated Cordyceps cicadae and Its Kinetic, Thermodynamic and Antioxidant Activities Analysis[J]. Science and Technology of Food Industry, 2024, 45(4): 151-160. DOI: 10.13386/j.issn1002-0306.2023040116
    [2]WEI Yuping, ZHAO Yan, SONG Lijun, PAN Leiqing, HOU Xujie. Optimization of Ultrasonic-Assisted DES Extraction Process, Kinetics and Antioxidant Activity of Cistanche tubulosa Polyphenols[J]. Science and Technology of Food Industry, 2023, 44(16): 246-254. DOI: 10.13386/j.issn1002-0306.2022100230
    [3]SHEN Xiaojing, HUANG Lulu, NIE Fanqiu, WANG Qing, YANG Juntao, YAN Chenghui, JIANG Weiwei. Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers[J]. Science and Technology of Food Industry, 2022, 43(4): 238-245. DOI: 10.13386/j.issn1002-0306.2021060237
    [4]LIU Yang, ZHANG Cuan, HE Xiao-ning, CHEN Zhi-hong, HE Xiao-wei, ZHAO Wei-ping, ZHU Guo-mei, ZHA Ming-fang. Optimization Extraction Process of Polysaccharide from the Pericarp Residues of Euryale ferox and Its Antioxidant Activity in Vitro[J]. Science and Technology of Food Industry, 2020, 41(22): 142-149. DOI: 10.13386/j.issn1002-0306.2020020291
    [5]CHEN Hong-hui, NIUNIAN La-mu. Ultrasonic Extraction and Antioxidant Activity of Polysaccharide from Dixu Tea[J]. Science and Technology of Food Industry, 2020, 41(21): 179-184. DOI: 10.13386/j.issn1002-0306.2020040275
    [6]CHEN Huai-qing, LIAO Xing-hong, ZHAO Hui, YANG Jun-qi, WANG Wen-jun, ZHANG Yan. Extraction of Tyrosinase from Potatoes and Activation of Tyrosinase by Plant Essential Oils and Its Kinetics[J]. Science and Technology of Food Industry, 2020, 41(7): 25-29,36. DOI: 10.13386/j.issn1002-0306.2020.07.005
    [7]DONG Yan-hui. Study on extraction and antioxidant activity of total flavonids from Polygonum chinense[J]. Science and Technology of Food Industry, 2015, (14): 299-302. DOI: 10.13386/j.issn1002-0306.2015.14.052
    [8]WANG Ya-ling, LI Wei-feng, GUO Fen, ZHANG Chuan-li, WU Rong-shu. Study on microwave- assisted extraction and the antioxidant activities of polysaccharide from Russula vesca[J]. Science and Technology of Food Industry, 2015, (09): 251-254. DOI: 10.13386/j.issn1002-0306.2015.09.046
    [9]SUN Jie, YIN Guo-you, DING Meng-meng, TAO Zhan-xia. Study on extraction and antioxidant activity of protein from Chinese chive seed[J]. Science and Technology of Food Industry, 2014, (12): 291-294. DOI: 10.13386/j.issn1002-0306.2014.12.055
    [10]FAN Qiao-ning, ZHANG Wei-gang, ZHAO Pei, LI Qing-yu, ZHANG Ying-na, TIAN Tian, DUAN Yu-feng. Extraction and antioxidant activity in vitro of polysaccharides from Pileus of Dictyophora echinovolvata[J]. Science and Technology of Food Industry, 2013, (23): 112-117. DOI: 10.13386/j.issn1002-0306.2013.23.026
  • Cited by

    Periodical cited type(7)

    1. 夏明杰,杨立娜,余科金,王胜男,何余堂,刘贺. 天然多糖基纳米递送载体在功能性食品中的应用. 中国食品学报. 2025(01): 442-454 .
    2. 王健霞,余元善,吴继军,温靖,邹波,胡腾根,徐玉娟. 花青素降解机制与稳态化研究进展. 食品安全质量检测学报. 2024(11): 244-253 .
    3. 张胜梦,陈雨晴,游益,谢世英,于靖薇,李岳豪,孙雨婷,王雪琴,赵英源,续晓琪. 多糖-蛋白质纳米载体研究进展. 河南工业大学学报(自然科学版). 2024(06): 137-149 .
    4. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    5. 姚家钰,曹可轩,邹云帆,单媛媛. 蛋清蛋白/壳聚糖复合物和微凝胶理化性质的比较研究. 食品与发酵工业. 2022(08): 120-127 .
    6. 唐月婷,孟凯,张克勤,赵荟菁. 瞬时纳米沉淀法制备pH变色微胶囊及其性能. 染整技术. 2022(07): 14-21 .
    7. 刘琨毅,王琪,李秀萍,彭春芳,郭云霞,吴霞. D-最优混料设计优化富含花青素的复合果蔬酒主料配比. 中国食品添加剂. 2021(09): 105-112 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (257) PDF downloads (26) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return