Citation: | WEI Yuping, ZHAO Yan, SONG Lijun, et al. Optimization of Ultrasonic-Assisted DES Extraction Process, Kinetics and Antioxidant Activity of Cistanche tubulosa Polyphenols[J]. Science and Technology of Food Industry, 2023, 44(16): 246−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100230. |
[1] |
裴文静. 管花肉苁蓉中苯乙醇苷的分离纯化研究[D]. 石河子: 石河子大学, 2019.
PEI W J. Isolation and purification of phenylethanol glycosides from Cistanche tubulosa[D]. Shihezi: Shihezi University, 2019.
|
[2] |
国家药典委员会. 中华人民共和国药典[M]. 北京: 化学工业出版社, 2005: 90.
National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China[M]. Beijing: Chemical Industry Press, 2005: 90.
|
[3] |
郭元亨. 荒漠肉苁蓉资源的综合利用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017.
GUO Y H. Comprehensive utilization of Cistanch deserticola resources[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2017.
|
[4] |
CAI R, YANG M, SHI Y, et al. Antifatigue activity of phenylethanoid-rich extract from Cistanche deserticola[J]. Phytotherapy Research,2010,24(2):313−315. doi: 10.1002/ptr.2927
|
[5] |
JIANG Z, WANG J, LI X, et al. Echinacoside and Cistanche tubulosa (Schenk) R. wight ameliorate bisphenol a-induced testicular and sperm damage in rats through gonad axis regulated steroidogenic enzymes[J]. Journal of Ethnopharmacology,2016,193:321−328. doi: 10.1016/j.jep.2016.07.033
|
[6] |
LI X, GOU C, YANG H, et al. Echinacoside ameliorates D-galactosamine plus lipopolysaccharide-induced acute liver injury in mice via inhibition of apoptosis and inflammation[J]. Scandinavian Journal of Gastroenterology,2014,49(8):993−1000. doi: 10.3109/00365521.2014.913190
|
[7] |
JING W, CHUNHUA M, SHUMIN W. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro[J]. Toxicology and Applied Pharmacology,2015,285(2):128−135. doi: 10.1016/j.taap.2015.04.004
|
[8] |
GAO L, PENG X, HUO S, et al. Memory enhancement of acteoside (Verbascoside) in a senescent mice model induced by a combination of d-gal and AlCl3[J]. Phytotherapy Research,2015,29(8):1131−1136. doi: 10.1002/ptr.5357
|
[9] |
MA Z, YANG Z, LU D, et al. Determination of bioactive components of Cistanche deserticola (Roucongrong) by high-performance liquid chromatography with diode array and mass spectrometry detectors[J]. Analytical Letters,2014,47:2783−2794. doi: 10.1080/00032719.2014.924012
|
[10] |
JIANG Y, TU P F. Analysis of chemical constituents in Cistanche species[J]. J Chromatogr A,2009,1216(11):1970−1979. doi: 10.1016/j.chroma.2008.07.031
|
[11] |
WANG T, LI P, MA X, et al. MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-α-induced apoptosis by targeting JunD[J]. Biochimie,2015,115:1−7. doi: 10.1016/j.biochi.2015.04.011
|
[12] |
JIANHUA Y, BOWEI J, JUNPING H. Effects of phenylethanoid glycosides extracted from Herba cistanches on the learning and memory of the APP/PSI transgenic mice with Alzheimer's disease[J]. BioMed Research International, 2021: 1291549.
|
[13] |
YUAN P F, FU CH. Cistanche tubulosa phenylethanoid glycosides induce apoptosis of hepatocellular carcinoma cells by mitochondria-dependent and MAPK pathways and enhance antitumor effect through combination with cisplatin[J]. Integrative Cancer Therapies,2021,20:1−19.
|
[14] |
WEN L, HU J, ZHANG J, et al. Phenylethanol glycosides from Herba cistanche improve the hypoxic tumor microenvironment and enhance the effects of oxaliplatin via the HIF-1α signaling pathway[J]. Mol Med Rep,2021,24(1):12156.
|
[15] |
JIA Y, GUAN Q, JIANG Y, et al. Amelioration of dextran sulphate sodium-induced colitis in mice by echinacoside-enriched extract of Cistanche tubulosa[J]. Phytotherapy Research,2014,28(1):110−119. doi: 10.1002/ptr.4967
|
[16] |
GUO Y, CUI Q, REN S, et al. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from Cistanches herba and their metabolites based on intestinal bacteria and network pharmacology[J]. Journal of Natural Medicines,2021,75(4):784−797. doi: 10.1007/s11418-021-01508-y
|
[17] |
SAVIC I M, SAVIC G I M. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.)[J]. Journal of Food Science and Technology,2020,57(8):2809−2818. doi: 10.1007/s13197-020-04312-w
|
[18] |
CVJETKO B M, ĆURKO N. Green extraction of grape skin phenolics by using deep eutectic solvents[J]. Food Chemistry,2016,200:159−166. doi: 10.1016/j.foodchem.2016.01.040
|
[19] |
BAJKACZ S, ADAMEK J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products[J]. Talanta,2017,168:329−335. doi: 10.1016/j.talanta.2017.02.065
|
[20] |
BOSILJKOV T, CVJETKO B M. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins[J]. Food and Bioproducts Processing,2017,102:195−203. doi: 10.1016/j.fbp.2016.12.005
|
[21] |
HADIDI M, IBARZ A, PAGAN J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology[J]. Food Chemistry,2020,309:125786. doi: 10.1016/j.foodchem.2019.125786
|
[22] |
LAZAR L, TALMACIU A I, VOLF I, et al. Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark[J]. Ultrasonics Sonochemistry,2016,32:191−197. doi: 10.1016/j.ultsonch.2016.03.009
|
[23] |
BABA S A, MALIK S A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume[J]. Journal of Taibah University for Science,2018,9(4):449−454.
|
[24] |
MEJRI F, BAATI T, MARTINS A, et al. Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: Towards the valorization of food by-products[J]. Food Chemistry,2020,333:127506. doi: 10.1016/j.foodchem.2020.127506
|
[25] |
WANG J, JING W, TIAN H, et al. Investigation of deep eutectic solvent-based microwave-assisted extraction and efficient recovery of natural products[J]. ACS Sustainable Chemistry & Engineering,2020,8(32):12080−12088.
|
[26] |
WANG X, WANG J. Effective extraction with deep eutectic solvents and enrichment by macroporous adsorption resin of flavonoids from Carthamus tinctorius L.[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,176:112804. doi: 10.1016/j.jpba.2019.112804
|
[27] |
ZUO J, MA P, GENG S, et al. Optimization of the extraction process of flavonoids from Trollius ledebouri with natural deep eutectic solvents[J]. Journal of Separation Science,2022,45(3):717−727. doi: 10.1002/jssc.202100802
|
[28] |
尚宪超, 谭家能, 杜咏梅, 等. 超声辅助深共熔溶剂提取两种烟草多酚的方法研究[J]. 中国烟草科学,2017,38(6):55−60. [SHANG X C, TAN J N, DU Y M, et al. Ultrasonication-assisted deep eutectic solvent extraction of two tobacco polyphenols[J]. China Tobacco Science,2017,38(6):55−60. doi: 10.13496/j.issn.1007-5119.2017.06.008
SHANG X C, TAN J N, DU Y M, et al. Ultrasonication-assisted deep eutectic solvent extraction of two tobacco polyphenols[J]. China Tobacco Science, 2017, 38(6): 55-60. doi: 10.13496/j.issn.1007-5119.2017.06.008
|
[29] |
栾朝霞. 肉苁蓉总多酚纯化工艺及其抗运动性疲劳作用研究[J]. 食品工业科技,2020,41(15):59−64. [LUAN C X. Study on the purification process of total polyphenols of Cistanche and its anti-exercise fatigue effect[J]. Science and Technology of Food Industry,2020,41(15):59−64. doi: 10.13386/j.issn1002-0306.2020.15.010
LUAN C X. Study on the purification process of total polyphenols of Cistanche and its anti-exercise fatigue effect[J]. Science and Technology of Food Industry, 2020, 41(15): 59-64. doi: 10.13386/j.issn1002-0306.2020.15.010
|
[30] |
孙健. 甘蔗源功能成分创新性研究进展[M]. 北京: 中国农业科学技术出版社, 2016.
SUN J. Innovative research progress on functional components of sugarcane origin[M]. Beijing: China Agricultural Science and Technology Press, 2016.
|
[31] |
王虹玲, 武婷茹, 姜诗文, 等. 香蕉皮单宁的提取及其提取物的抑菌抗氧化活性[J]. 食品与发酵工业,2014,40(11):253−259. [WANG H L, WU T R, JIANG SH W, et al. Extraction of banana peel tannins and antibacterial and antioxidant activity of its extracts[J]. Food and Fermentation Industry,2014,40(11):253−259. doi: 10.13995/j.cnki.11-1802/ts.201411044
WANG H L, WU T R, JIANG SH W, et al. Extraction of banana peel tannins and antibacterial and antioxidant activity of its extracts[J]. Food and Fermentation Industry, 2014, 40(11): 253-259. doi: 10.13995/j.cnki.11-1802/ts.201411044
|
[32] |
CUI Q, PENG X, YAO X, et al. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots[J]. Separation and Purification Technology,2015,150:63−72. doi: 10.1016/j.seppur.2015.06.026
|
[33] |
刘旭, 孟继坤, 葛鑫会, 等. 低共熔溶剂提取的黄精多糖性质分析[J]. 食品工业科技,2022,43(11):52−57. [LIU X, MENG J K, GE X H, et al. Analysis of the properties of polysaccharides extracted from Flos Chrysanthemi with low eutectic solvent[J]. Science and Technology of Food Industry,2022,43(11):52−57. doi: 10.13386/j.issn1002-0306.2021080114
LIU X, MENG J K, GE X H, et al. Analysis of the properties of polysaccharides extracted from Flos Chrysanthemi with low eutectic solvent[J]. Science and Technology of Food Industry, 2022, 43(11): 52-57. doi: 10.13386/j.issn1002-0306.2021080114
|
[34] |
ALI, LIM, CHONG, et al. Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling[J]. Separation Science and Technology,2018,53(14):2192−2205. doi: 10.1080/01496395.2018.1443137
|
[35] |
刘伯言. 肉苁蓉苯乙醇苷的提取、纯化和抗氧化活性研究[D]. 北京: 北京林业大学, 2014.
LIU B Y. Extraction, purification and antioxidant activity of phenylethanol glycosides from Cistanche deserticola[D]. Beijing: Beijing Forestry University, 2014.
|
[1] | PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230 |
[2] | KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273 |
[3] | YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073 |
[4] | Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120 |
[5] | LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054 |
[6] | LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148 |
[7] | ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205 |
[8] | Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197 |
[9] | Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339 |
[10] | GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072 |
1. |
陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
![]() | |
2. |
雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
![]() | |
3. |
张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
![]() | |
4. |
杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
![]() | |
5. |
何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
![]() | |
6. |
张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
![]() | |
7. |
陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 .
![]() | |
8. |
余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
![]() | |
9. |
张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
![]() | |
10. |
张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
![]() | |
11. |
付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
![]() | |
12. |
岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
![]() | |
13. |
Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .
![]() |