TAN Suo, SI Ruiru, QIANG Yueyue, et al. Optimization of the Extraction Process of Curcuminoid by Ionic Liquid-assisted Enzymatic Method[J]. Science and Technology of Food Industry, 2022, 43(17): 258−265. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120114.
Citation: TAN Suo, SI Ruiru, QIANG Yueyue, et al. Optimization of the Extraction Process of Curcuminoid by Ionic Liquid-assisted Enzymatic Method[J]. Science and Technology of Food Industry, 2022, 43(17): 258−265. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120114.

Optimization of the Extraction Process of Curcuminoid by Ionic Liquid-assisted Enzymatic Method

More Information
  • Received Date: December 12, 2021
  • Available Online: July 04, 2022
  • In this study, curcuminoid were extracted from turmeric by ionic liquid-assisted enzymatic method. On the basis of single factor test, five factors including enzymatic hydrolysis time, enzymatic hydrolysis temperature, enzymatic hydrolysis pH, enzyme dosage and ionic liquid dosage were selected as response variables, and the extraction rate of curcuminoid was selected as response value. The response surface optimization test was conducted. The optimal process conditions were determined as follows: Enzymatic hydrolysis pH was 5.4, ionic liquid was 20%, enzyme dosage was 21%, enzymatic hydrolysis time was 90 min, enzymatic hydrolysis temperature was 59 ℃. Under these conditions, the theoretical yield of curcuminoid was 5.922%, the actual yield was 5.882%, and the relative error between the theoretical yield and the theoretical yield was 0.04%. This method can effectively extract curcuminoid from turmeric, providing reference for the development and utilization of curcumin resources.
  • [1]
    徐佳琳. 姜黄素类化合物的提取、合成及活性研究[D]. 杭州: 浙江工业大学, 2019

    XU Jialin. Extraction, synthesis and bioactivity of curcumin analogues[D]. Hangzhou: Zhejiang University of Technology, 2019.
    [2]
    黄浩河, 黄崇杏, 张霖雲, 等. 姜黄素在食品保鲜中应用的研究进展[J]. 食品工业科技,2020,41(7):320−324, 331. [HUANG Haohe, HUANG Congxing, ZHANG Linyun, et al. Research progress of curcumin in food preservation application[J]. Science and Technology of Food Industry,2020,41(7):320−324, 331.

    HUANG Haohe, HUANG Congxing, ZHANG Linyun, et al. Research progress of curcumin in food preservation application[J]. Science and Technology of Food Industry, 2020, 41(7): 320-324, 331.
    [3]
    JEONG AH S, BOYUN K, DANNY N D, et al. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells[J]. Cancer Letters,2016,371(1):30−37. doi: 10.1016/j.canlet.2015.11.021
    [4]
    TETER B, MORIHARA T, LIM G P, et al. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate alzheimer pathogenesis[J]. Neurobiology of Disease,2019,127:432−448. doi: 10.1016/j.nbd.2019.02.015
    [5]
    MOMTAZI A A, SHAHABIPOUR F, KHATIBIS, et al. Curcumin as a microRNA regulator in cancer: A review[J]. Reviews of Physiology, Biochemistry and Pharmacology,2016,171:1−38.
    [6]
    CHOONGJIN B, MYEONGSU J, YOUNG H P, et al. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles[J]. Food Chemistry,2020,302(C):125328.
    [7]
    PIERRE D, VERENA H, EVAMARIA H, et al. Solubilization and extraction of curcumin from Curcuma longa using green, sustainable, and food-approved surfactant-free microemulsions[J]. Food Chemistry,2021,336:127660. doi: 10.1016/j.foodchem.2020.127660
    [8]
    于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2021,42(4):259−263, 270. [YU Jinshen, ZHANG Fang. Effects of curcumin-mediated photodynamic technology on bactericidal efficacy of fresh-cut potatoes[J]. Science and Technology of Food Industry,2021,42(4):259−263, 270.

    YU Jinshen, ZHANG Fang. Effects of curcumin-mediated photodynamic technology on bactericidal efficacy of fresh-cut potatoes[J]. Science and Technology of Food Industry, 2021, 42(4): 259-263, 270.
    [9]
    黄兆翔, 庞道睿, 王卫飞, 等. 超声波辅助酶法提取花生红衣中白藜芦醇的工艺优化[J]. 中国油脂,2020,45(2):122−126. [HUANG Zhaoxiang, PANG Daorui, WANG Weifei, et al. Optimization of extracting resveratrol from peanut skin by ultrasound-assisted enzymolysis[J]. China Oils and Fats,2020,45(2):122−126. doi: 10.12166/j.zgyz.1003-7969/2020.02.024

    HUANG Zhaoxiang, PANG Daorui, WANG Weifei, et al. Optimization of extracting resveratrol from peanut skin by ultrasound-assisted enzymolysis [J]. China Oils and Fats, 2020, 45(2): 122-126. doi: 10.12166/j.zgyz.1003-7969/2020.02.024
    [10]
    赖爱萍, 陆国权, 王颖. 超声波辅助酶法制备甘薯渣膳食纤维工艺研究[J]. 中国粮油学报,2015,30(8):99−104. [LAI Aiping, LU Guoquan, WANG Ying. Ultrasonic-assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Chinese Cereals and Oils Association,2015,30(8):99−104. doi: 10.3969/j.issn.1003-0174.2015.08.019

    LA Aiping, LU Guoquan, WANG Ying. Ultrasonic-assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Chinese Cereals and Oils Association, 2015, 30(8): 99-104. doi: 10.3969/j.issn.1003-0174.2015.08.019
    [11]
    齐瑞芳, 高洪波, 方欣, 等. 一种酶法预处理辅助提取姜黄素的工艺[P]. 内蒙古: CN105061168A, 2015-11-18.

    QI R F, GAO H B, FANG X, et al. An enzymatic pretreatment assisted extraction process of curcumin[P]. Inner Mongolia: CN105061168A, 2015-11-18.
    [12]
    肖秀丽. 一种从生姜中提取姜黄素的方法[P]. 浙江: CN108147955A, 2018-06-12.

    XIAO X L. A method of extracting curcumin from ginger[P]. Zhejiang: CN108147955A, 2018-06-12.
    [13]
    孙鹏尧, 李丹丹, 牟德华. 响应面法优化超声波辅助提取姜黄素类化合物工艺及动力学分析[J]. 中国食品添加剂,2016(12):99−108. [SUN Pengyao, LI Dandan, MOU Dehua, et al. Technology and kinetic analysis of curcumin extraction from Curcuma longa L. using ultrasonic-assisted method[J]. Chana Food Add Itives,2016(12):99−108. doi: 10.3969/j.issn.1006-2513.2016.12.009

    SUN Pengrao, LI Dandan, MO Dehua, et al. Technology and kinetic analysis of curcumin extraction from Curcuma longa L. using ultrasonic-assisted method[J]. Chana Food Add Itives, 2016(12): 99-108. doi: 10.3969/j.issn.1006-2513.2016.12.009
    [14]
    冯甜华, 侯长军, 霍丹群, 等. 姜黄素不同提取方法比较研究[J]. 应用化工,2016,45(6):1011−1014. [FENG Tianhua, HOU Changjun, HUO Danqun, et al. Comparative research on the extraction of curcumin[J]. Applide Chemical Industry,2016,45(6):1011−1014.

    FENG Tianhua, HOU Changjun, HUO Danqun, et al. Comparative research on the extraction of curcumin[J]. Applide Chemical Industry, 2016, 45(6): 1011-1014.
    [15]
    KIMTHET C, WAHYUDIONO W, HIDEKI K, et al. Comparison of conventional and ultrasound assisted supercritical carbon dioxide extraction of curcumin from turmeric (Curcuma longa L.)[J]. Engineering Journal,2017,21(5):53−65. doi: 10.4186/ej.2017.21.5.53
    [16]
    BÜŞRA G, NILAY B, SÜHEYLA Ç. Application of a novel ionic liquid as an alternative green solvent for the extraction of curcumin from Turmeric with response surface methodology: Determination and optimization study[J]. Analytical Letters,2020,53(13):111−2121. doi: 10.1080/00032719.2020.1730394
    [17]
    马铭研, 陈维. 超声辅助离子液体提取反相高效液相色谱法同时测定温郁金中姜黄素和吉马酮的含量[J]. 中国药学杂志,2017,52(7):592−596. [MA Mingyan, CHEN Wei. Simultaneous determination of curcumin and germacrone in curcuma wenyujin by ultrasound-assisted ionic liquid-reversed phase liquid chromatography[J]. Chinese Pharmaceutical Journal,2017,52(7):592−596.

    MA Mingyan, CHEN Wei. Simultaneous determination of curcumin and germacrone in curcuma wenyujin by ultrasound-assisted ionic liquid-reversed phase liquid chromatography[J]. Chinese Pharmaceutical Journal, 2017, 52(7): 592-596.
    [18]
    卢彩会, 牟德华. 离子液体PF6酶法辅助提取姜黄挥发油工艺优化及成分分析[J]. 食品科学,2017,38(10):264−271. [LU Caihui, MOU Dehua. Optimization of PF6 ionic liquid-assisted enzymatic extraction of curcuma oil and analysis of its composition[J]. Food Science,2017,38(10):264−271. doi: 10.7506/spkx1002-6630-201710043

    LU Caihui, MOU Dehua. Optimization of [BMIM]PF6 ionic liquid-assisted enzymatic extraction of curcuma oil and analysis of its composition[J]. Food Science, 2017, 38(10): 264-271. doi: 10.7506/spkx1002-6630-201710043
    [19]
    杨宏黎, 毕杉, 焦冠茹, 等. 离子液体中酶的稳定性及活化方法研究进展[J]. 粮食与油脂,2020,33(11):5−7. [YANG Hongli, BI Shan, JIAO Guanru, et al. Study on the stability and activation methods of enzymes in ionic liquids[J]. Cereals & Oils,2020,33(11):5−7. doi: 10.3969/j.issn.1008-9578.2020.11.002

    YANG Hongli, BI Chan, JIAO Guanru, et al. Study on the stability and activation methods of enzymes in ionic liquids[J]. Cereals & Oils, 2020, 33(11): 5-7. doi: 10.3969/j.issn.1008-9578.2020.11.002
    [20]
    王佳, 高苏亚, 杨妙洁, 等. 离子液体辅助提取姜黄中的姜黄素[J]. 科技视界,2019(7):93−94. [WANG Jia, GAO Suya, YANG Miaojie, et al. Auxiliary extraction curcumin in Curcuma longa L. with ionic liguid[J]. Science & Technology Vision,2019(7):93−94.

    WANG Jia, GAO Suya, YANG Miaojie, et al. Auxiliary extraction curcumin in Curcuma longa L. with ionic liguid[J]. Science & Technology Vision, 2019(7): 93-94.
    [21]
    DB 34/T 1537-2011 食品中姜黄素含量的测定 液相色谱法[S]. 安徽省质量技术监督局, 2011

    DB 34/T 1537-2011 Determination of curcumin in food Liquid chromatography[S]. Anhui Provincial Bureau of Quality and Technical Supervision, 2011.
    [22]
    LI Jinghang, WANG Zhixia, YAO Shun, et al. Aqueous solubilization and extraction of curcumin enhanced by imidazolium, quaternary ammonium, and tropine ionic liquids, and insight of ionic liquids-curcumin interaction[J]. Journal of Molecular Liquids,2020,317:113906. doi: 10.1016/j.molliq.2020.113906
    [23]
    WHITE K E, REEVES J B, COALE F J. Cell wall compositional changes during incubation of plant roots measured by mid-infrared diffuse reflectance spectroscopy and fiber analysis[J]. Geoderma,2016,264:205−213. doi: 10.1016/j.geoderma.2015.10.018
    [24]
    张凌, 尹立冲, 朱诗萌, 等. 响应面分析法优化酶协同超声波法提取姜黄素工艺[J]. 中国调味品,2015,40(8):126−131. [ZHANG Ling, YIN LIchong, ZHU Shimeng, et al. Research on the optimization of enzyme-ultrasonic extraction process of curcumin with response surface analysis[J]. China Condimen,2015,40(8):126−131. doi: 10.3969/j.issn.1000-9973.2015.08.030

    ZHANG Ling, YIN LIchong, ZHU Shimeng, et al. Research on the optimization of enzyme-ultrasonic extraction process of curcumin with response surface analysis[J]. China Condimen, 2015, 40(8): 126-131. doi: 10.3969/j.issn.1000-9973.2015.08.030
    [25]
    邵丽杰, 寇巍, 曹焱鑫, 等. 纤维素酶、半纤维素酶降解膨化玉米秸秆工艺优化[J]. 环境工程学报,2014,8(10):4373−4378. [SHAO Lijie, KOU Wei, CAO Yanxin, et al. Optimization of degradation of expanded corn straw by cellulase and hemicellulase[J]. Chinese Journal of Environmental Engineering,2014,8(10):4373−4378.

    SHAO Lijie, KOU Wei, CAO Yanxin, et al. Optimization of degradation of expanded corn straw by cellulase and hemicellulase[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4373-4378.
    [26]
    李晓严, 郭蔚, 刘鑫玉. 响应面法优化超声辅助离子液体提取栀子中的西红花苷[J]. 化学试剂,2021,43(3):376−382. [LI Xiaoyan, GUO Wei, LIU Xinyu. Optimization of ultrasonic-assisted ionic liquid extraction of crocin from Gardenia by response surface methodology[J]. Chemical Reagent,2021,43(3):376−382.

    LI Xiaoyan, GUO Wei, LIU Xinyu. Optimization of ultrasonic-assisted ionic liquid extraction of crocin from Gardenia by response surface methodology[J]. Chemical Reagent, 2021, 43(3): 376-382.
    [27]
    陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学,2015,36(6):18−23. [CHEN Xiaoju, WU Xuefeng, JIANG Shaotong, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science,2015,36(6):18−23. doi: 10.7506/spkx1002-6630-201506004

    CHEN Xiaoju, WU Xuefeng, JIANG Shaotong, et al. Applying response surface methodology to optimize extraction of soluble dietary fiber from pear residue using hemicellulase[J]. Food Science, 2015, 36(6): 18-23. doi: 10.7506/spkx1002-6630-201506004
    [28]
    戴浩, 张晓伟, 李风涛, 等. 酶解组合高速匀浆法提取人参总皂苷和多糖[J]. 保鲜与加工,2020,20(3):137−145. [DAI Hao, ZHANG Xiaowei, LI Fengtao, et al. Extraction of total ginsenosides and polysaccharides from ginseng by enzymatic hydrolysis combined with high-speed homogenization[J]. Storage and Process,2020,20(3):137−145. doi: 10.3969/j.issn.1009-6221.2020.03.021

    DAI Hao, ZHANG Xiaowei, LI Fengtao, et al. Extraction of total ginsenosides and polysaccharides from ginseng by enzymatic hydrolysis combined with high-speed homogenization[J]. Storage and Process, 2020, 20(3): 137-145. doi: 10.3969/j.issn.1009-6221.2020.03.021
    [29]
    CHEN Wenwei, JIA Zhenbao, ZHU Jiajie, et al. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel ( Mytilus coruscus) and their antioxidant activities[J]. International Journal of Biological Macromolecules,2019,140:1116−1125. doi: 10.1016/j.ijbiomac.2019.08.136
    [30]
    CHENG Zhenyu, SONG Haiyan, YANG Yingjie, et al. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill[J]. International Joumal of Biological Macromolecules,2015,76:161−168. doi: 10.1016/j.ijbiomac.2015.01.048
  • Related Articles

    [1]ZHANG Nan, WANG Xue, WANG Kewen, MI Lu, YANG Shini, XU Lei, XU Zhenzhen. Comparative Study of Different Extraction Solvents and Liquid Chromatography Separation Modes on Metabolomics Analysis of Mango Pulp[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024080198
    [2]LAN Tian, DUAN Guozhen, QI Youchao, FAN Guanghui, BAI Chunyan, ZHANG Yede. Extensively Targeted Metabolomics Analysis of Red and Yellow Wolfberries[J]. Science and Technology of Food Industry, 2024, 45(24): 9-20. DOI: 10.13386/j.issn1002-0306.2024020267
    [3]GU Ye, YANG Cheng, TANG Chao, HUAN Yu, MIAO Xiong. Differential Analysis of Five Chinese Fresh Peach Metabolites Based on Non-target Metabolomics[J]. Science and Technology of Food Industry, 2024, 45(17): 262-272. DOI: 10.13386/j.issn1002-0306.2023090132
    [4]SHAO Shijuan, WANG Hao, SHI Wenxin, ZENG Fei, CHEN Yunzhong. Protective Effect of Puerarin on Chronic Alcoholic Liver Injury in Mice Based on Metabolomics[J]. Science and Technology of Food Industry, 2024, 45(16): 25-35. DOI: 10.13386/j.issn1002-0306.2023120219
    [5]FAN Qiqi, ZHAO Xiangxiang, WU Ming, LI Xiang, ZHANG Shuai, YU Jiang, LIU Xiaofei, ZHANG Na. Advances in the Application of Metabolomics in Cereal Foods[J]. Science and Technology of Food Industry, 2024, 45(7): 35-43. DOI: 10.13386/j.issn1002-0306.2023030303
    [6]NIU Dan, CHEN Lei, REN Jing, WANG Jindong. Research on the Anti-aging Effect of Rosa xanthina Lindl Fruits Based on 1H NMR Metabolomics[J]. Science and Technology of Food Industry, 2023, 44(12): 10-17. DOI: 10.13386/j.issn1002-0306.2022080287
    [7]WANG Haoqian, LI Bohai, ZHAO Jingna, LIU Wenjun, CHEN Yongfu, SUN Tiansong. Study on ACE Inhibitory Activity and Metabolomics of Lactobacillus helveticus H11 Fermented Milk Beverage[J]. Science and Technology of Food Industry, 2021, 42(22): 112-117. DOI: 10.13386/j.issn1002-0306.2021030290
    [8]FANG Fang, WANG Feng-zhong. Application of metabolomics techniques in grape physiology[J]. Science and Technology of Food Industry, 2018, 39(3): 338-342,352. DOI: 10.13386/j.issn1002-0306.2018.03.065
    [9]HU Chuan-qin, ZHANG Yu, WANG Jing. Applications of metabolomics method in the study of personalized functional food[J]. Science and Technology of Food Industry, 2017, (01): 386-390. DOI: 10.13386/j.issn1002-0306.2017.01.069
    [10]MIAO Lu- huan, DU Jing- fang, BAI Feng- ling, LI Jian-rong. Progress of toxic metabolite analysis in fermented food by metabolomics[J]. Science and Technology of Food Industry, 2016, (05): 388-393. DOI: 10.13386/j.issn1002-0306.2016.05.071

Catalog

    Article Metrics

    Article views (311) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return