Citation: | JIANG Wei, SHEN Wenxiang, ZHENG Juanshan, et al. Mutation Breeding of Lactobacillus rhamnosus from Dairy Cow by 12C6+ Heavy Ion Beam[J]. Science and Technology of Food Industry, 2022, 43(17): 140−148. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110356. |
[1] |
ISLAM R, HOSSAIN M N, ALAM M K, et al. Antibacterial activity of lactic acid bacteria and extraction of bacteriocin protein[J]. Advances in Bioscience and Biotechnology,2020,11(2):49−59. doi: 10.4236/abb.2020.112004
|
[2] |
KAPRASOB R, KERDCHOECHUEN O, LAOHAKUNJIT N, et al. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria[J]. Process Biochemistry,2017,59:141−149. doi: 10.1016/j.procbio.2017.05.019
|
[3] |
DO T, BAO K T, TRAN T, et al. Decoding the capability of Lactobacillus plantarum W1 isolated from soybean whey in producing an exopolysaccharide[J]. ACS Omega,2020,5(51):33387−33394. doi: 10.1021/acsomega.0c05256
|
[4] |
TAMBUR Z, MILJKOVI-SELIMOVI B, OPAI D, et al. Inhibitory effects of different medicinal plants on growth of some oral microbiome member[J]. Medycyna Weterynaryjna,2020,76(8):6433−2020. doi: 10.21521/mw.6433
|
[5] |
SOPHATHA B, PIWAT S, TEANPAISAN R. Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: Study in Caco-2 and H357 cells[J]. Archives of Microbiology,2020,202(6):1349−1357. doi: 10.1007/s00203-020-01846-7
|
[6] |
SALEHIZADEH M, MODARRESSI M H, MOUSAVI S N, et al. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium[C]//Veterinary Research Forum. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, 2020, 11(1): 67.
|
[7] |
JACKMAN C M, DEANS K W, FORNEY L J, et al. Microdroplet co-cultivation and interaction characterization of human vaginal bacteria[J]. Integrative Biology,2019,11(3):69−78. doi: 10.1093/intbio/zyz006
|
[8] |
ADEOSHUN F G, RUPPITSCH W, ALLERBERGER F, et al. Prevalence and antimicrobial properties of lactic acid bacteria in Nigerian women during the menstrual cycle[J]. Polish Journal of Microbiology,2019,68(2):203−209. doi: 10.33073/pjm-2019-020
|
[9] |
KOSTELAC D, GERIĆ M, GAJSKI G, et al. Lactic acid bacteria isolated from equid milk and their extracellular metabolites show great probiotic properties and anti-inflammatory potential[J]. International Dairy Journal,2021,112:104828. doi: 10.1016/j.idairyj.2020.104828
|
[10] |
MILJKOVIC M, MARINKOVIC P, NOVOVIC K, et al. AggLr, a novel aggregation factor in Lactococcus raffinolactis BGTRK10-1: Its role in surface adhesion[J]. Biofouling,2018,34(5−6):685−698.
|
[11] |
陈舜华. 乳酸菌阴道胶囊对产后6周妇女特异性阴道炎防治作用的临床观察[J]. 家庭医药. 就医选药,2017(6):38−39. [CHEN S H. Clinical observation of Lactobacillus vaginalis capsule on prevention and treatment of specific vaginitis in women 6 weeks after delivery[J]. Family Medicine. Medical Selection of Medicine,2017(6):38−39.
CHEN S H. Clinical observation of Lactobacillus vaginalis capsule on prevention and treatment of specific vaginitis in women 6 weeks after delivery[J]. Family Medicine. Medical Selection of Medicine, 2017(6): 38-39.
|
[12] |
李艳欣. 犬源乳酸菌的筛选及其对番泻叶介导的犬腹泻的防治试验[D]. 长春: 吉林大学, 2018.
LI Y X. Screening of canine Lactobacillus and its prevention and treatment of senna leaf mediated diarrhea in dogs[D]. Changchun: Jilin University, 2018.
|
[13] |
BRON P A, MARCELLI B, MULDER J, et al. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria[J]. Current Opinion in Biotechnology,2019,56:61−68. doi: 10.1016/j.copbio.2018.09.004
|
[14] |
YOKOTA A. Breeding of useful microorganisms by mutation in energy metabolism[J]. Journal of the Agricultural Chemical Society of Japan,1997,71:9−14.
|
[15] |
刘璐. 重离子束辐照恩拉霉素菌株的选育研究[D]. 北京: 中国科学院大学(中国科学院近代物理研究所), 2020.
LIU L. Breeding of enramycin strain irradiated by heavy ion beam[D]. Beijing: University of Chinese Academy of Sciences (Institute of modern physics, Chinese Academy of Sciences), 2020.
|
[16] |
LÜ Y, LI J, CHEN Z, et al. Species identification and mutation breeding of silicon-activating bacteria isolated from electrolytic manganese residue[J]. Environmental Science and Pollution Research,2020,28(2):1491−1501.
|
[17] |
LIU K Y, FANG H, CUI F J, et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology,2020,104(14):6363−6373. doi: 10.1007/s00253-020-10703-y
|
[18] |
WANG D, ZHANG T, YE H, et al. In vitro probiotic screening and evaluation of space-induced mutant Lactobacillus plantarum[J]. Food Science & Nutrition,2020,8(11):6031−6036.
|
[19] |
GUO X, ZHANG M, GAO Y, et al. Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: A comparison with X-ray irradiation[J]. Applied Microbiology and Biotechnology,2020,104(4):4043−4057.
|
[20] |
杨阳. 重离子诱变谷氨酸高产菌株选育及阿莫西林诱导发酵机理研究[D]. 兰州: 兰州理工大学, 2019.
YANG Y. Screening of high yield glutamate strain induced by heavy ion and study on the mechanism of amoxicillin induced fermentation[D]. Lanzhou: Lanzhou University of Technology, 2019.
|
[21] |
王志. 利用重离子碰撞研究原子核内核子的短程关联及高动量分布[D]. 南京: 南京大学, 2019.
WANG Z. Study of short-range correlation and high momentum distribution of nucleons in nuclei by heavy ion collisions[D]. Nanjing: Nanjing University, 2019.
|
[22] |
贾蓉, 苏锋涛, 胡步荣. 重离子的辐射生物效应及其在生命科学中的应用[J]. 生物技术通报,2018,34(1):67−78. [JIA R, SU F T, HU B R. Biological effects of heavy ions and their applications in life sciences[J]. Biotechnology Bulletin,2018,34(1):67−78. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0735
JIA R, SU F T, HU B R. Biological effects of heavy ions and their applications in life sciences[J]. Biotechnology Bulletin, 2018, 34(1): 67-78. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0735
|
[23] |
孙玲, 刘利平, 徐婉茹, 等. 物理诱变在药食用菌育种中的应用研究进展[J]. 安徽农业科学,2018,46(14):29−33, 153. [SUN L, LIU L P, XU W R, et al. Research progress in the application of physical mutagenesis in the breeding of medicinal edible fungi[J]. Journal of Anhui Agricultural Sciences,2018,46(14):29−33, 153. doi: 10.3969/j.issn.0517-6611.2018.14.009
SUN L, LIU L P, XU W R, et al. Research progress in the application of physical mutagenesis in the breeding of medicinal edible fungi[J]. Journal of Anhui Agricultural Sciences, 2018, 46(14): 29-33, 153. doi: 10.3969/j.issn.0517-6611.2018.14.009
|
[24] |
YANG Y N, LIU C L, WANG Y K, et al. Mutation effects of C2+ ion irradiation on the greasy Nitzschia sp.[J]. Mutation Research/Fundamental & Molecular Mechanisms of Mutagenesis,2013,751(4):24−28.
|
[25] |
李垄清. 重离子诱变技术选育高产β-葡聚糖酵母菌株的研究[D]. 北京: 中国科学院大学(中国科学院近代物理研究所), 2017.
LI L Q. Breeding of high-yield β-glucan yeast strains by heavy ion mutagenesis[D]. Beijing: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2017.
|
[26] |
WANG S, BO Y, CHEN J, et al. Effects of heavy-ion beam irradiation on avermectin B1a and its analogues production by Streptomyces avermitilis[J]. Engineering in Life Sciences,2018,18(10):711−720. doi: 10.1002/elsc.201800094
|
[27] |
JIANG A, HU W, LI W, et al. Enhanced production of l‐lactic acid by Lactobacillus thermophilus SRZ50 mutant generated by high-linear energy transfer heavy ion mutagenesis[J]. Engineering in Life Sciences,2018,18(9):626−634. doi: 10.1002/elsc.201800052
|
[28] |
缪建顺, 曹国珍, 张苗苗, 等. 重离子束诱变选育谷氨酸高产菌株[J]. 辐射研究与辐射工艺学报,2015,33(5):39−45. [MIAO J S, CAO G Z, ZHANG M M, et al. Breeding of high glutamic acid producing strain by heavy ion beam mutation[J]. Journal of Radiation Research and Radiation Processing Technology,2015,33(5):39−45. doi: 10.11889/j.1000-3436.2015.rrj.33.050401
MIAO J S, CAO G Z, ZHANG M M, et al. Breeding of high glutamic acid producing strain by heavy ion beam mutation[J]. Journal of Radiation Research and Radiation Processing Technology, 2015, 33(5): 39-45 doi: 10.11889/j.1000-3436.2015.rrj.33.050401
|
[29] |
DIANA R M, ERICA K, GONZALO M C, et al. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells[J]. Journal of Dairy Science,2016,103(9):7707−7718.
|
[30] |
张金露, 吴涛, 唐艳. 生物传感仪-除NH4+法测定发酵液中L-谷氨酸含量的研究[J]. 中国食品添加剂,2021,32(1):86−91. [ZHANG J L, WU T, TANG Y. Study on determination of L-glutamic acid by biosensor removing NH4+ method[J]. China Food Additives,2021,32(1):86−91.
ZHANG J L, WU T, TANG Y. Study on determination of L-glutamic acid by biosensor removing NH4+ method[J]. China Food Additives, 2021, 32(1): 86-91.
|
[31] |
王雨辰. 重离子辐照诱变选育高产酸乳酸菌株及其发酵条件优化研究[D]. 兰州: 甘肃农业大学, 2017
WANG Y C. Breeding of lactic acid producing strain by heavy ion irradiation and optimization of fermentation conditions[D]. Lanzhou: Gansu Agricultural University, 2017.
|
[32] |
陈积红, 胡伟, 李文建, 等. 重离子束12C6+累进辐照诱变柠檬酸菌株选育研究[J]. 原子核物理评论,2013,30(4):483−487. [CHEN J H, HU W, LI W J, et al. Breeding of citric acid strain induced by heavy ion beam 12C6+ progressive irradiation[J]. Nuclear Physics Review,2013,30(4):483−487. doi: 10.11804/NuclPhysRev.30.04.483
CHEN J H, HU W, LI W J, et al. Breeding of citric acid strain induced by heavy ion beam 12C6+ progressive irradiation[J]. Nuclear Physics Review, 2013, 30(4): 483-487. doi: 10.11804/NuclPhysRev.30.04.483
|
[33] |
ABOULOIFA H, ROKNI Y, BELLAOUCHI R, et al. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives[J]. Probiotics & Antimicrobial Proteins,2019,12(2):683−696.
|
[34] |
佘之蕴, 黄宝莹, 刘海卿, 等. 牛津杯法测定食品添加剂对五种益生菌的抑菌活力[J]. 食品工业,2016,37(1):171−174. [SHE Z Y, HUANG B Y, LIU H Q, et al. Determination of the antibacterial activity of food additives against five probiotics by Oxford cup method[J]. Food Industry,2016,37(1):171−174.
SHE Z Y, HUANG B Y, LIU H Q, et al. Determination of the antibacterial activity of food additives against five probiotics by Oxford cup method[J]. Food Industry, 2016, 37(1): 171-174.
|
[35] |
吴庆华, 陈积红, 张珍, 等. X射线对嗜热乳杆菌产L-乳酸的选育研究[J]. 食品工业科技,2015,36(3):116−118,127. [WU Q H, CHEN J H, ZHANG Z, et al. Breeding of L-lactic acid produced by Lactobacillus thermophilus by X-ray[J]. Science and Technology of Food Industry,2015,36(3):116−118,127. doi: 10.13386/j.issn1002-0306.2015.03.015
WU Q H, CHEN J H, ZHANG Z, et al. Breeding of L-lactic acid produced by Lactobacillus thermophilus by X-ray[J]. Science and Technology of Food Industry, 2015, 36(3): 116-118, 127. doi: 10.13386/j.issn1002-0306.2015.03.015
|
[36] |
徐颖, 贺黎, 吕嘉枥, 等. 富硒鼠李糖乳杆菌稳定性及其冻干保护剂研究[J]. 中国食品学报,2020,20(9):102−108. [XU Y, HE L, LÜ J Z, et al. Study on the stability of selenium enriched Lactobacillus rhamnosus and its freeze-drying protectant[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(9):102−108. doi: 10.16429/j.1009-7848.2020.09.013
XU Y, HE L, LÜ J Z, et al. Study on the stability of selenium enriched Lactobacillus rhamnosus and its freeze-drying protectant[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(9): 102-108. doi: 10.16429/j.1009-7848.2020.09.013
|
[37] |
罗素贤, 叶昱, 周信荣, 等. 一株鼠李糖乳杆菌的培养条件优化研究[J]. 江西农业大学学报,2018,40(2):365−370. [LUO S X, YE Y, ZHOU X R, et al. Optimization of culture conditions of a Lactobacillus rhamnosus[J]. Journal of Jiangxi Agricultural University,2018,40(2):365−370. doi: 10.13836/j.jjau.2018048
LUO S X, YE Y, ZHOU X R, et al. Optimization of culture conditions of a Lactobacillus rhamnosus[J]. Journal of Jiangxi Agricultural University, 2018, 40(2): 365-370. doi: 10.13836/j.jjau.2018048
|
[38] |
王雨辰, 王曙阳, 董妙音, 等. 重离子束辐照选育高产植物乳酸菌[J]. 辐射研究与辐射工艺学报,2017,35(1):52−58. [WANG Y C, WANG S Y, DONG M Y, et al. Breeding of high yield plant lactic acid bacteria by heavy ion beam irradiation[J]. Journal of Radiation Research and Radiation Processing Technology,2017,35(1):52−58. doi: 10.11889/j.1000-3436.2017.rrj.35.010401
WANG Y C, WANG S Y, DONG M Y, et al. Breeding of high yield plant lactic acid bacteria by heavy ion beam irradiation[J]. Journal of Radiation Research and Radiation Processing Technology, 2017, 35(1): 52-58. doi: 10.11889/j.1000-3436.2017.rrj.35.010401
|
[39] |
都雯玥. 重离子辐照并筛选截短侧耳素高产菌株的研究[D]. 兰州: 兰州理工大学, 2016.
DU W Y. Study on the high yield strains of truncated lateral otoxin by heavy ion irradiation[D]. Lanzhou: Lanzhou University of Technology, 2016.
|
[40] |
LIU J, QI Z, HUANG Q, et al. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy[J]. Journal of Molecular Structure,2013,1031:1−8. doi: 10.1016/j.molstruc.2012.07.025
|
[41] |
蔡聪, 姜婷, 郑兆娟, 等. 等离子体诱变凝结芽孢杆菌提高木糖利用能力高产 L-乳酸[J]. 食品科学,2014,35(1):125−129. [CAI C, JIANG T, ZHENG Z J, et al. Improved xylose utilization of Bacillus coagulans by atmospheric and room temperature plasma mutation for production of lactic acid[J]. Food Science,2014,35(1):125−129. doi: 10.7506/spkx1002-6630-201401024
CAI C, JIANG T, ZHENG Z J, et al. Improved xylose utilization of Bacillus coagulans by atmospheric and room temperature plasma mutation for production of lactic acid[J]. Food Science, 2014, 35(1): 125-129. doi: 10.7506/spkx1002-6630-201401024
|
[42] |
杨佩斯. ARTP诱变黑曲霉絮凝菌株及应用研究[D]. 贵阳: 贵州大学, 2020.
YANG P S. Mutation of Aspergillus niger flocculating strain by ARTP and its application[D]. Guiyang: Guizhou University, 2020.
|
[43] |
杨然, 范光森, 郦金龙, 等. 重组毕赤酵母高产木聚糖酶菌株筛选及发酵条件优化[J]. 中国食品学报,2017,17(12):95−104. [YANG R, FAN G S, LI J L, et al. Screening of recombinant Pichia pastoris strains with high xylanase production and optimization of fermentation conditions[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(12):95−104. doi: 10.16429/j.1009-7848.2017.12.013
YANG R, FAN G S, LI J L, et al. Screening of recombinant Pichia pastoris strains with high xylanase production and optimization of fermentation conditions[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(12): 95-104. doi: 10.16429/j.1009-7848.2017.12.013
|