LI Yaru, LUAN Hongwei, LI Wenjiao, et al. Effects of Aquatic Species on Gastrointestinal Digestibility of Allergen Tropomyosin[J]. Science and Technology of Food Industry, 2022, 43(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100251.
Citation: LI Yaru, LUAN Hongwei, LI Wenjiao, et al. Effects of Aquatic Species on Gastrointestinal Digestibility of Allergen Tropomyosin[J]. Science and Technology of Food Industry, 2022, 43(13): 103−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100251.

Effects of Aquatic Species on Gastrointestinal Digestibility of Allergen Tropomyosin

More Information
  • Received Date: October 25, 2021
  • Available Online: April 30, 2022
  • To study the effects of different types of aquatic products and gastrointestinal digestion on tropomyosin (TM), this article selects three crustaceans (Litopenaeus vannamei, Penaeus monodon and Eriocheir sisensis) and two shellfish (Venerupis philippinarum and Sinonovacula constricta) as the research object. Simulated gastric fluid (SGF) and intestinal fluid (SIF) were used to digest the boiled muscles of 5 kinds of aquatic products, the protein composition and immune activity of the subtracted products were analyzed by SDS-PAGE and ELISA. The results showed that all samples were digested faster in SIF, and intestinal was the main place where TM activity was lost. And shellfish (stomach: 86.5%~86.8%, intestine: 90.8%~92.2%) had a significantly better immune activity reduction effect than crustacean aquatic products (stomach: 64.7%~67.7%, intestine: 89.0%~91.5%). By electron microscopy, the myofibrils of crustaceans (156.4~185.8 μm) were significantly longer than that of shellfish (125.0~134.6 μm), and its width was about 3 times that of shellfish. This study found that the type of aquatic products will affect the digestive ability of the gastrointestinal tract of TM. The difference in the muscle tissue structure of crustaceans and shellfish is one of the reasons for the difference in digestibility and immune activity of crustaceans and shellfish. This study can provide a scientific basis for exploring the mechanism of gastrointestinal digestion to reduce the allergenicity of aquatic products.
  • [1]
    MUTHUKUMAR J, SELVASEKARAN P, LOKANADHAM M, et al. Food and food products associated with food allergy and food intolerance-an overview [J]. Food Res Int, 2020, 138 (Pt B): 109780.
    [2]
    FU L L, WANG C, ZHU Y, et al. Seafood allergy: Occurrence, mechanisms and measures[J]. Trends in Food Science & Technology,2019,88:80−92.
    [3]
    HAN T J, HUAN F, LIU M, et al. IgE epitope analysis of sarcoplasmic-calcium-binding protein, a heat-resistant allergen in Crassostrea angulata [J]. Food & Function, 2021, doi: 10.1039/d1fo01058a.
    [4]
    MARCHENKO M A, NEFEDOVA V V, YAMPOLSKAYA D S, et al. Comparative structural and functional studies of low molecular weight tropomyosin isoforms, the TPM3 gene products[J]. Archives of Biochemistry and Biophysics,2021,710:108999. doi: 10.1016/j.abb.2021.108999
    [5]
    AYUSO R, GRISHINA G, BARDINA L, et al. Myosin light chain is a novel shrimp allergen, Lit v3[J]. Journal of Allergy & Clinical Immunology,2008,122(4):795−802.
    [6]
    RAO P S, RAJAGOPAL D, GANESH K. B- and T-cell epitopes of tropomyosin, the major shrimp allergen[J]. Allergy,1998,53(46):44−47.
    [7]
    Food and Agriculture Organization of the United Nations (FAO). ROME I. Report of a Joint FAO/WHO expert consultation on allergenicity of foods derived from biotechnology[R]. Rome: WHO, 2001,
    [8]
    YAP P G, GAN C Y. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity[J]. Trends in Food Science & Technology,2020,105:161−175.
    [9]
    GÁMEZ C, ZAFRA M P, SANZ V, et al. Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin[J]. Food Chemistry,2015,173:475−481. doi: 10.1016/j.foodchem.2014.10.063
    [10]
    BENEDÉ S, LÓPEZ-EXPÓSITO I, GIMÉNEZ G, et al. In vitro digestibility of bovine b-casein with simulated and human oral and gastrointestinal fluids. Identifocation and IgE-reactivity of the resultant peptides[J]. Food Chemistry,2014,143:514−521. doi: 10.1016/j.foodchem.2013.07.110
    [11]
    LOPES J P, SICHERER S. Food allergy: Epidemiology, pathogenesis, diagnosis, prevention, and treatment[J]. Current Opinion in Immunology,2020,66:57−64. doi: 10.1016/j.coi.2020.03.014
    [12]
    SHIMAKURA K, TONOMURA Y, HAMADA Y, et al. Allergenicity of crustacean extractives and its reduction by protease digestion[J]. Food Chemistry,2005,91(2):247−53. doi: 10.1016/j.foodchem.2003.11.010
    [13]
    TAPAL A, TIKU P K. Nutritional and nutraceutical improvement by enzymatic modification of food proteins[J]. Enzymes in Food Biotechnology,2019:471−481.
    [14]
    孙廷华. 青岛文昌鱼弹性蛋白酶基因的鉴定、表达分析和功能研究 [D]. 青岛: 中国海洋大学, 2009.

    SUN T H. Identification, expression analysis and functional study of the elastase gene of Amphioxus qingdaoensis[D]. Qingdao: Ocean University of China, 2009
    [15]
    ERICKSON R, KIM Y. Digestion and absorption of dietary protein[J]. Annual Review of Medicine,1990,41(1):133−139. doi: 10.1146/annurev.me.41.020190.001025
    [16]
    HUANG Y Y, LIU G M, CAI Q F, et al. Stability of major allergen tropomyosin and other food proteins of mud crab (Scylla serrata) by in vitro gastrointestinal digestion.[J]. Food and Chemical Toxicology,2010,48(5):1196−1201. doi: 10.1016/j.fct.2010.02.010
    [17]
    唐棋. 酶解香菇鸡汤流变学特性研究 [D]. 重庆: 西南大学, 2020.

    TANG Q. Study on the rheological characteristics of enzymatic hydrolysis of mushroom chicken soup[D]. Chongqing: Southwest University, 2020.
    [18]
    WU L S, LI Z X, LU Z C, et al. In-vitro simulated gastric fluid digestion and immunogenicity of different crustacean protein extracts.[J]. International Journal of Food Properties,2015,18:43−53. doi: 10.1080/10942912.2013.805766
    [19]
    RUETHERS T, TAKI A C, JOHNSTON E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology, 2018: S0161589018301251.
    [20]
    HUANG R F, LI Z X, LIN H, et al. Determination of microheterogeneous substitution in shrimp tropomyosin and its effect on IgE-binding capacity[J]. European Food Research & Technology,2014,239:941−949.
    [21]
    黄天娇, 王梦梦, 高永艳, 等. 不同烹饪方式及体外模拟消化对凡纳滨对虾主要过敏原原肌球蛋白免疫活性的影响[J]. 水产学报,2019,43(11):2424−2430. [HUANG T J, WANG M M, GAO Y Y, et al. Effects of different cooking methods and in vitro simulated digestion on the immune activity of the main allergen myosin of Litopenaeus vannamei[J]. Journal of Fisheries,2019,43(11):2424−2430.

    HUANG T J, WANG M M, GAO Y Y, et al. Effects of different cooking methods and in vitro simulated digestion on the immune activity of the main allergen myosin of Litopenaeus vannamei[J]. Journal of Fisheries, 2019, 43(11): 2424-2430.
    [22]
    赵玉娟, 段翠翠, 高磊, 等. 乳清中α-乳白蛋白和β-乳球蛋白分离制备技术研究[J]. 东北农业科学,2017,42(2):53−59. [ZHAO Y J, DUAN C C, GAO L, et al. Study on the separation and preparation technology of α-lactalbumin and β-lactoglobulin in whey[J]. Northeast Agricultural Science,2017,42(2):53−59.

    ZHAO Y J, DUAN C C, GAO L, et al. Study on the separation and preparation technology of α-lactalbumin and β-lactoglobulin in whey[J]. Northeast Agricultural Science, 2017, 42(2): 53-59.
    [23]
    LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
    [24]
    ZHANG H, LU Y, USHIO H, et al. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody[J]. Food Chemistry,2014,150(5):151−157.
    [25]
    LU Y, TOSHIAKI O, USHIO H, et al. Immunological characteristics of monoclonal antibodies against shellfish major allergen tropomyosin[J]. Food Chemistry,2007,100(3):1093−1099. doi: 10.1016/j.foodchem.2005.11.015
    [26]
    马福金. 食源性蛋白诱导血清特异性IgG产生效果的研究 [D]. 保定: 河北农业大学, 2014.

    MA F J. Study on the effect of food-derived protein in inducing serum specific IgG[D]. Baoding: Hebei Agricultural University , 2014.
    [27]
    封青, 郭春艳, 王珍, 等. 抗人IgG和抗人IgM单克隆抗体的特性鉴定及应用[J]. 生物技术通讯,2018,29(4):511−515. [FENG Q, GUO C Y, WANG Z, et al. Characterization and application of anti-human IgG and anti-human IgM monoclonal antibodies[J]. Biotechnology Newsletter,2018,29(4):511−515. doi: 10.3969/j.issn.1009-0002.2018.04.012

    FENG Q, GUO C Y, WANG Z, et al. Characterization and application of anti-human IgG and anti-human IgM monoclonal antibodies[J]. Biotechnology newsletter, 2018, 29(4): 511-515. doi: 10.3969/j.issn.1009-0002.2018.04.012
    [28]
    United States Pharmacopeia ConventionInc. The United States pharmacopeia 23, The national formulary 18[M]. The United States Pharmacopeial Convention, Inc: Rockville, MD, 1995: 2052-2053.
    [29]
    黄园园. 水产过敏原的模拟胃肠液消化 [D]. 厦门: 集美大学, 2009.

    HUANG Y Y. Simulated gastrointestinal digestion of aquatic allergens[D]. Xiamen: Jimei University, 2009.
    [30]
    万楚君. 不同加工方式对鲍鱼模拟胃肠液消化特性的影响及产物活性分析 [D]. 厦门: 集美大学, 2018.

    WAN C J. Effect of different processing methods on the digestion characteristics of abalone simulated gastrointestinal juice and analysis of product activity[D]. Xiamen: Jimei University, 2018.
    [31]
    程华峰. 不同加工处理方式对中华绒螯蟹主要过敏原的影响 [D]. 合肥: 合肥工业大学, 2020.

    CHENG H F. Effects of different processing methods on the main allergens of Chinese mitten crab [D]. Hefei: Hefei University of Technology, 2020.
    [32]
    赵鑫. 模拟消化对Pen a1及其抗原表位免疫原性的影响 [D]. 北京: 中国农业科学院, 2015.

    ZHAO X. The effect of simulated digestion on the immunogenicity of Pen a1 and its epitope[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [33]
    周然, 刘源, 谢晶, 等. 一种河豚鱼肉品质鉴别及分级的方法: 中国, 专利号CN102192851A [P]. 2011,

    ZHOU R, LIU Y, XIE J, et al. The invention relates to a method for quality identification and grading of puffer fish fish: China, CN102192851A [P]. 2011.
    [34]
    LIU G M, HUANG Y Y, CAI Q F, et al. Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei)[J]. Journal of the Science of Food & Agriculture,2011,91(1):163−170.
    [35]
    LIU M, LIU G Y, YANG Y, et al. Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain[J]. LWT-Food Science and Technology,2018,98:559−567. doi: 10.1016/j.lwt.2018.09.027
    [36]
    MARCIANI L, GOWLAND P A, SPILLER R C, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by mri[J]. American Journal of Physiology Gastrointestinal & Liver Physiology,2001,280(6):1227−1233.
    [37]
    冯文荣. 文昌鱼胰蛋白酶基因的鉴定、表达和功能研究 [D]. 青岛: 中国海洋大学, 2011.

    FENG W R. Study on the identification, expression and function of amphioxus trypsin gene[D]. Qingdao: Ocean University of China, 2011
    [38]
    王学丽, 李娅茹, 王梦梦, 等. 体外模拟胃液消化对虾中主要过敏原原肌球蛋白抗原表位的影响[J]. 中国免疫学杂志,2019,35(19):2319−2325. [WANG X L, LI Y R, WANG M M, et al. Effect of in vitro simulated gastric juice digestion on the epitope of the main allergen myosin in shrimp[J]. Chinese Journal of Immunology,2019,35(19):2319−2325. doi: 10.3969/j.issn.1000-484X.2019.19.004

    WANG X L, LI Y R, WANG M M, et al. Effect of in vitro simulated gastric juice digestion on the epitope of the main allergen myosin in shrimp[J]. Chinese Journal of Immunology, 2019, 35(19): 2319-2325. doi: 10.3969/j.issn.1000-484X.2019.19.004
    [39]
    WICKHAM M, FAULKS R, MILLS C. In vitro digestion methods forassessing the effect of food structure on allergen breakdown[J]. Molecular Nutrition & Food Research,2009,53:952−958.
    [40]
    HUR S J, LIM B O, DECKER E A, et al. In vitro human digestion models for food applications[J]. Food Chemistry,2011,125:1−12. doi: 10.1016/j.foodchem.2010.08.036
    [41]
    GUO Y M, LUO C, XU L L, et al. Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems[J]. Food Chemistry,2021,345:128831. doi: 10.1016/j.foodchem.2020.128831
    [42]
    THIMO R, TAKI A C, JOHNSTON E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology,2018,100:28−57. doi: 10.1016/j.molimm.2018.04.008
    [43]
    吴忠, 刘俊荣, 田元勇. 虾夷扇贝闭壳肌和外套膜肌原纤维蛋白的特性分析[J]. 水产学报,2015,39(11):1640−1649. [WU Z, LIU J R, TIAN Y Y. Characteristics of the adductor and mantle myofibrils from Patinopecten yessoensis[J]. Journal of Fisheries,2015,39(11):1640−1649.

    WU Z, LIU J R, TIAN Y Y. Characteristics of the adductor and mantle myofibrils from Patinopecten yessoensis [J]. Journal of Fisheries, 2015, 39(11): 1640-1649.
    [44]
    XIAO Y, WU L, GUO S. First identification of B-cell linear epitopes of outer membrane protein A (OmpA) of Edwardsiella anguillarum in rabbit and European eels (Anguilla anguilla)[J]. Aquaculture,2020,533(3):736092.
    [45]
    陈铮, 朱蓓薇, 李冬梅, 等. 热处理过程中牡蛎闭壳肌肌原纤维蛋白部分理化特性的变化[J]. 食品与发酵工业,2012,38(7):53−57. [CHEN Z, ZHU B W, LI D M, et al. Changes in some physical and chemical properties of myofibrillar protein in oyster adductor muscle during heat treatment[J]. Food and Fermentation Industry,2012,38(7):53−57.

    CHEN Z, ZHU B W, LI D M, et al. Changes in some physical and chemical properties of myofibrillar protein in oyster adductor muscle during heat treatment [J]. Food and Fermentation Industry, 2012, 38(7): 53-57.
  • Related Articles

    [1]CHEN Xiaojing, ZHU Jinwei, ZHANG Chen, ZHOU Zhengjiang, YU Lihui, FANG Chongye. Research Progress on Anti-tumor Effects of Theaflavins[J]. Science and Technology of Food Industry, 2022, 43(12): 398-406. DOI: 10.13386/j.issn1002-0306.2021060134
    [2]LAI Xiaohua, DENG Tian, HU Jingfei, CHEN Dening, LV Mingsheng, WANG Shujun. Optimization of Inhibition of α-Glucosidase by Rice Bran Fermentation Products[J]. Science and Technology of Food Industry, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183
    [3]LU Jing-jing, SONG Yue, YUE Ying-xue, HUO Gui-cheng. Two Lactobacillus plantarum Combined to Inhibit the Formation of Obesity Induced by High Fat in Mice[J]. Science and Technology of Food Industry, 2019, 40(19): 286-290. DOI: 10.13386/j.issn1002-0306.2019.19.049
    [4]LI Hui-zhen, LI Bai-liang, LI Zi-ye, ZHAN Meng, LU Jing-jing, HUO Gui-cheng. Research Progress of Anti-tumor Effect of Lactobacillus[J]. Science and Technology of Food Industry, 2019, 40(2): 336-341. DOI: 10.13386/j.issn1002-0306.2019.02.059
    [5]ZHAO Guan-hua, TONG Chang-qing, LI Wei, QU Min. Effect of sulfated polysaccharide from Crassostrea gigas on inhibition and induction of three kinds of carcinoma cell[J]. Science and Technology of Food Industry, 2017, (13): 302-306. DOI: 10.13386/j.issn1002-0306.2017.13.056
    [6]YI Juan-juan, WANG Zhen-yu, QU Hang, LI Jing-tong. Research progress in the anti- tumor activities and related mechanisms of plant polyphenols[J]. Science and Technology of Food Industry, 2016, (18): 391-395. DOI: 10.13386/j.issn1002-0306.2016.18.067
    [7]XIE Shu-yue, MU Li-xia, LIAO Sen-tai, ZOU Yu-xiao, LIU Jun, SHI Ying, WANG Wei-min. Research progress on the anti-tumor peptides[J]. Science and Technology of Food Industry, 2015, (02): 368-372. DOI: 10.13386/j.issn1002-0306.2015.02.072
    [8]GENG Li-jing, QU Xing-yuan, SUN Zhu-ping, GENG Jia-ling, LIU Bing, ZHOU Wei. Research progress in the tumor suppression mechanisms of marine polyunsaturated fatty acids DHA[J]. Science and Technology of Food Industry, 2013, (22): 385-391. DOI: 10.13386/j.issn1002-0306.2013.22.015
    [9]The role of its anti-tumor of the flavonoids in the tea flower[J]. Science and Technology of Food Industry, 2013, (12): 157-160. DOI: 10.13386/j.issn1002-0306.2013.12.006
  • Cited by

    Periodical cited type(2)

    1. 李清,马广礼,翟艺恒,孟涛. 沙棘多糖对小鼠酒精性肝炎和肠道屏障功能的治疗研究. 食品工业科技. 2025(08): 351-361 . 本站查看
    2. 赵亚萍,杨丽霞,甘德成,朱向东,梁永林. 基于肠道菌群探讨葛根芩连汤治疗湿热型2型糖尿病研究进展. 现代中医药. 2023(02): 1-7 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (143) PDF downloads (15) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return