FAN Yunting, LIN Xiaojun, ZHENG Jiang, et al. Classification and Selection of Deoxyribozymes and Its Applications[J]. Science and Technology of Food Industry, 2023, 44(1): 413−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090123.
Citation: FAN Yunting, LIN Xiaojun, ZHENG Jiang, et al. Classification and Selection of Deoxyribozymes and Its Applications[J]. Science and Technology of Food Industry, 2023, 44(1): 413−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090123.

Classification and Selection of Deoxyribozymes and Its Applications

More Information
  • Received Date: September 09, 2021
  • Available Online: October 25, 2022
  • Deoxyribozyme is a kind of DNA molecule with catalytic activity. It can be selected by systematic evolution of ligands by exponential enrichment (SELEX). This review focuses on the classification, selection and main applications of deoxyribozymes. According to the catalysis, deoxyribozymes can be classified into cleaved, ligated, phosphorylated and other types. Nowadays the cleaved and ligated types account for a large proportion, and nucleic acids are the main substrates of deoxyribozymes. Biotin-streptavidin method or polyacrylamide gel electrophoresis is often used to separate the catalytic DNA in selection of deoxyribozymes. Deoxyribozymes have good application prospect in metal ion detection, gene therapy and DNA molecular encryption system.
  • [1]
    KRUGER K, GRABOWSKI P J, ZAUG A J, et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena[J]. Cell,1982,31(1):147−157. doi: 10.1016/0092-8674(82)90414-7
    [2]
    GUERRIER-TAKADA C, GARDINER K, MARSH T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme[J]. Cell,1983,35(3):849−857. doi: 10.1016/0092-8674(83)90117-4
    [3]
    ROBERTSOND L, JOYCE G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J]. Nature,1990,344(6265):467−468. doi: 10.1038/344467a0
    [4]
    STRECKEROVA T, KURFURSTJ, CURTIS E A. Single-round deoxyribozyme discovery[J]. Nucleic Acids Research,2021,49(12):6971−6981. doi: 10.1093/nar/gkab504
    [5]
    PONCE S A, BOCCALETTO P, BUJNICKI J M. DNAmoreDB, a database of DNAzymes[J]. Nucleic Acids Research,2021,49(D1):D76−D81. doi: 10.1093/nar/gkaa867
    [6]
    BREAKER R R, JOYCE G F. A DNA enzyme that cleaves RNA[J]. Chemistry & Biology,1994,1(4):223−229.
    [7]
    ZHANG D P, WANG H I. Fluorescence anisotropy reduction of an allosteric G-rich oligonucleotide for specific silver ion and cysteine detection based on the G-Ag+-G base pair[J]. Analytical Chemistry,2019,91(22):14538−14544. doi: 10.1021/acs.analchem.9b03556
    [8]
    ZHU C, ZHAO X Y, YANG G, et al. Capillary electrophoresis involving in high efficiency screening for aptamers[J]. Chinese Journal of Analytical Chemistry,2020,48(5):583−589. doi: 10.1016/S1872-2040(20)60014-7
    [9]
    WANG H Y, LI X, LAI L A, et al. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma[J]. Biochimie,2021,181:25−33. doi: 10.1016/j.biochi.2020.11.018
    [10]
    LIU H M, HAO J M, XU J, et al. Selection and identification of common aptamers against both Vibrio harveyi and Vibrio alginolyticus[J]. Chinese Journal of Analytical Chemistry,2020,48(5):623−631. doi: 10.1016/S1872-2040(20)60018-4
    [11]
    ZHENG Y, ZHAO Y W, DI Y, et al. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer[J]. RSC Advances,2019,9(2):950−957. doi: 10.1039/C8RA08642G
    [12]
    SUN C Y, SU R F, BIE J X, et al. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline[J]. Dyes and Pigments,2018,149:867−875. doi: 10.1016/j.dyepig.2017.11.031
    [13]
    WANG T, CHEN C, LARCHER L M, et al. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development[J]. Biotechnology Advances,2019,37(1):28−50. doi: 10.1016/j.biotechadv.2018.11.001
    [14]
    BAUM D A, SILVERMAN S K. Deoxyribozymes: Useful DNA catalysts in vitro and in vivo[J]. Cellular & Molecular Life Sciences Cmls,2008,65(14):2156−2174.
    [15]
    ROSENBACH H, BORGGRÄFE J, VICTOR J, et al. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme[J]. Biological Chemistry,2021,402(1):99−111.
    [16]
    WANG Y, YANG F, YANG X. Label-free colorimetric biosensing of copper (II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes[J]. Nanotechnology,2010,21(20):205502. doi: 10.1088/0957-4484/21/20/205502
    [17]
    LEE Y, KLAUSER P C, BRANDSEN B M, et al. DNA-catalyzed DNA cleavage by a radical pathway with well-defined products[J]. Journal of the American Chemical Society,2017,139(1):255−261. doi: 10.1021/jacs.6b10274
    [18]
    GU H, FURUKAWA K, WEINBERG Z, et al. Small, highly active DNAs that hydrolyze DNA[J]. Journal of the American Chemical Society,2013,135(24):9121−9129. doi: 10.1021/ja403585e
    [19]
    BARLEV A, SEKHON G S, BENNET A J, et al. DNA repair by DNA: The UV1C DNA zyme catalyzes photoreactivation of cyclobutane thymine dimers in DNA more effectively than their de novo formation[J]. Biochemistry,2016,55(43):6010−6018. doi: 10.1021/acs.biochem.6b00951
    [20]
    BRANDSEN B M, HESSER A R, CASTNER M A, et al. DNA-catalyzed hydrolysis of esters and aromatic amides[J]. Journal of the American Chemical Society,2013,135(43):16014−16017. doi: 10.1021/ja4077233
    [21]
    ZHOU C, AVINS J L, KLAUSER P C, et al. DNA-catalyzed amide hydrolysis[J]. Journal of the American Chemical Society,2016,138(7):2106−2109. doi: 10.1021/jacs.5b12647
    [22]
    WANG Y M, SILVERMAN S K. Directing the outcome of deoxyribozyme selections to favor native 3'-5' RNA ligation[J]. Biochemistry,2005,44(8):3017−3023. doi: 10.1021/bi0478291
    [23]
    CUENOUD B, SZOSTAK J W. A DNA metalloenzyme with DNA ligase activity[J]. Nature,1995,375(6532):611−614. doi: 10.1038/375611a0
    [24]
    CHANDRA M, SILVERMAN S K. DNA and RNA can be equally efficient catalysts for carbon-carbon bond formation[J]. Journal of the American Chemical Society,2008,130(10):2936−2937. doi: 10.1021/ja7111965
    [25]
    WONG O Y, PRADEEPKUMAR P I, SILVERMAN S K. DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates[J]. Biochemistry,2011,50(21):4741−4749. doi: 10.1021/bi200585n
    [26]
    CHU C C, WONG O Y, SILVERMAN S K. A generalizable DNA-catalyzed approach to peptide-nucleic acid conjugation[J]. ChemBioChem,2014,15(13):1905−1910. doi: 10.1002/cbic.201402255
    [27]
    LI Y F, BREAKER R R. Phosphorylating DNA with DNA[J]. Proceedings of the National Academy of Sciences,1999,96(6):2746−2751. doi: 10.1073/pnas.96.6.2746
    [28]
    MCMANUS S A, LI Y F. Multiple occurrences of an efficient self-phosphorylating deoxyribozyme motif[J]. Biochemistry,2007,46(8):2198−2204. doi: 10.1021/bi061613c
    [29]
    WALSH S M, SACHDEVA A, SILVERMAN S K. DNA catalysts with tyrosine kinase activity[J]. Journal of the American Chemical Society,2013,135(40):14928−14931. doi: 10.1021/ja407586u
    [30]
    CHANDRASEKAR J, WYLDER A C, SILVERMAN S K. Phosphoserine lyase deoxyribozymes: DNA-catalyzed formation of dehydroalanine residues in peptides[J]. Journal of the American Chemical Society,2015,137(30):9575−9578. doi: 10.1021/jacs.5b06308
    [31]
    LI Y F, LIU Y, BREAKER R R. Capping DNA with DNA[J]. Biochemistry,2000,39(11):3106−3114. doi: 10.1021/bi992710r
    [32]
    LI Y F, SEN D. Toward an efficient DNAzyme[J]. Biochemistry,1997,36(18):5589−5599. doi: 10.1021/bi962694n
    [33]
    YAO T J, PRZYBYLA J J, YEH P, et al. DNAzymes for amine and peptide lysine acylation[J]. Organic & Biomolecular Chemistry,2020,19(1):171−181.
    [34]
    HUANG P J J, LIU J. In vitro selection of chemically modified DNAzymes[J]. Chemistryopen,2020,9(10):1046−1059. doi: 10.1002/open.202000134
    [35]
    佟宗轩, 胡沁沁, 顾宏周. DNA酶: 筛选, 生物传感及展望[J]. 高等学校化学学报,2020,41(11):2345−2355. [TONG Z X, HU Q Q, GU H Z. Deoxyribozymes: Selection, biosensing and outlook[J]. Chemical Journal of Chinese Universities-Chinese,2020,41(11):2345−2355.
    [36]
    王月瑶. 催化RNA切割反应的新型短结合臂脱氧核酶[D]. 南京: 南京大学, 2019.

    WANG Y Y. A novel small RNA-cleaving deoxyribozyme with a short binding arm[D]. Nanjing: Nanjing University, 2019.
    [37]
    SCHEITL C P M, LANGE S, HOBARTNER C. New deoxyribozymes for the native ligation of RNA[J]. Molecules,2020,25(16):3650. doi: 10.3390/molecules25163650
    [38]
    MORRISON D, ROTHENBROKER M, LI Y F. DNAzymes: Selected for applications[J]. Small Methods,2018,2(3):1700319. doi: 10.1002/smtd.201700319
    [39]
    SILVERMAN S K. Catalytic DNA: Scope, applications, and biochemistry of deoxyribozymes[J]. Trends in Biochemical Sciences,2016,41(7):595−609. doi: 10.1016/j.tibs.2016.04.010
    [40]
    ZHANG X B, KONG R M, LU Y. Metal ion sensors based on DNAzymes and related DNA molecules[J]. Annual Review of Analytical Chemistry,2011,4:105−128. doi: 10.1146/annurev.anchem.111808.073617
    [41]
    TORABI S F, WU P, MCGHEE C E, et al. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing[J]. Proceedings of the National Academy of Sciences,2015,112(19):5903−5908. doi: 10.1073/pnas.1420361112
    [42]
    LI H, HUANG X X, KONG D M, et al. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substratecomplex[J]. Biosensors and Bioelectronics,2013,42:225−228. doi: 10.1016/j.bios.2012.10.070
    [43]
    LI H, ZHANG Q, CAI Y, et al. Single-stranded DNAzyme-based Pb2+ fluorescent sensor that can work well over a wide temperature range[J]. Biosensors and Bioelectronics,2012,34(1):159−164. doi: 10.1016/j.bios.2012.01.037
    [44]
    MOON W J, LIU J. Interfacing catalytic DNA with nanomaterials[J]. Advanced Materials Interfaces,2020,7(21):2001017. doi: 10.1002/admi.202001017
    [45]
    ZHAO X H, KONG R M, ZHANG X B, et al. Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity[J]. Analytical Chemistry,2011,83(13):5062−5066. doi: 10.1021/ac200843x
    [46]
    YANG Z L, LOH K Y, CHU Y T, et al. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles[J]. Journal of the American Chemical Society,2018,140(50):17656−17665. doi: 10.1021/jacs.8b09867
    [47]
    范思思, 程进, 冀斌, 等. 脱氧核酶在生物检测及基因治疗中的研究进展[J]. 科学通报,2019,64:1027−1036. [FAN S S, CHEN J, JI B, et al. DNAzymes in biological detection and gene therapy[J]. Chin Sci Bull,2019,64:1027−1036. doi: 10.1360/N972018-00874
    [48]
    FAN H, ZHAO Z, YAN G, et al. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing[J]. Angewandte Chemie,2015,127(16):4883−4887. doi: 10.1002/ange.201411417
    [49]
    ZHANG J H, MA R, BLANCHARD A, et al. Conditional deoxyribozyme-nanoparticle conjugates for miRNA-triggered gene regulation[J]. ACS Applied Materials & Interfaces,2020,12(34):37851−37861.
    [50]
    李一凡, 吴燃峰, 杨静, 等. 基于DNA核酶的分子加密系统[J]. 信息网络安全,2017(6):43−48. [LI YF, WU R F, YANG J, et al. A molecule encryption system based on DNAzyme[J]. Netinfo Security,2017(6):43−48. doi: 10.3969/j.issn.1671-1122.2017.06.007
    [51]
    彭维平, 程丹华, 宋成. 基于多碱基组合映射编码和DNA计算的一次一密算法[J]. 计算机应用研究,2019,36(7):2190−2194. [PENG W P, CHENG D, SONG C. A one-cipher algorithm based on multi-base combination mapping coding and DNA calculation[J]. Application Research of Computers,2019,36(7):2190−2194. doi: 10.19734/j.issn.1001-3695.2018.01.0100

Catalog

    Article Metrics

    Article views (365) PDF downloads (60) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return