FAN Yunting, LIN Xiaojun, ZHENG Jiang, et al. Classification and Selection of Deoxyribozymes and Its Applications[J]. Science and Technology of Food Industry, 2023, 44(1): 413−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090123.
Citation: FAN Yunting, LIN Xiaojun, ZHENG Jiang, et al. Classification and Selection of Deoxyribozymes and Its Applications[J]. Science and Technology of Food Industry, 2023, 44(1): 413−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090123.

Classification and Selection of Deoxyribozymes and Its Applications

More Information
  • Received Date: September 09, 2021
  • Available Online: October 25, 2022
  • Deoxyribozyme is a kind of DNA molecule with catalytic activity. It can be selected by systematic evolution of ligands by exponential enrichment (SELEX). This review focuses on the classification, selection and main applications of deoxyribozymes. According to the catalysis, deoxyribozymes can be classified into cleaved, ligated, phosphorylated and other types. Nowadays the cleaved and ligated types account for a large proportion, and nucleic acids are the main substrates of deoxyribozymes. Biotin-streptavidin method or polyacrylamide gel electrophoresis is often used to separate the catalytic DNA in selection of deoxyribozymes. Deoxyribozymes have good application prospect in metal ion detection, gene therapy and DNA molecular encryption system.
  • [1]
    KRUGER K, GRABOWSKI P J, ZAUG A J, et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena[J]. Cell,1982,31(1):147−157. doi: 10.1016/0092-8674(82)90414-7
    [2]
    GUERRIER-TAKADA C, GARDINER K, MARSH T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme[J]. Cell,1983,35(3):849−857. doi: 10.1016/0092-8674(83)90117-4
    [3]
    ROBERTSOND L, JOYCE G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J]. Nature,1990,344(6265):467−468. doi: 10.1038/344467a0
    [4]
    STRECKEROVA T, KURFURSTJ, CURTIS E A. Single-round deoxyribozyme discovery[J]. Nucleic Acids Research,2021,49(12):6971−6981. doi: 10.1093/nar/gkab504
    [5]
    PONCE S A, BOCCALETTO P, BUJNICKI J M. DNAmoreDB, a database of DNAzymes[J]. Nucleic Acids Research,2021,49(D1):D76−D81. doi: 10.1093/nar/gkaa867
    [6]
    BREAKER R R, JOYCE G F. A DNA enzyme that cleaves RNA[J]. Chemistry & Biology,1994,1(4):223−229.
    [7]
    ZHANG D P, WANG H I. Fluorescence anisotropy reduction of an allosteric G-rich oligonucleotide for specific silver ion and cysteine detection based on the G-Ag+-G base pair[J]. Analytical Chemistry,2019,91(22):14538−14544. doi: 10.1021/acs.analchem.9b03556
    [8]
    ZHU C, ZHAO X Y, YANG G, et al. Capillary electrophoresis involving in high efficiency screening for aptamers[J]. Chinese Journal of Analytical Chemistry,2020,48(5):583−589. doi: 10.1016/S1872-2040(20)60014-7
    [9]
    WANG H Y, LI X, LAI L A, et al. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma[J]. Biochimie,2021,181:25−33. doi: 10.1016/j.biochi.2020.11.018
    [10]
    LIU H M, HAO J M, XU J, et al. Selection and identification of common aptamers against both Vibrio harveyi and Vibrio alginolyticus[J]. Chinese Journal of Analytical Chemistry,2020,48(5):623−631. doi: 10.1016/S1872-2040(20)60018-4
    [11]
    ZHENG Y, ZHAO Y W, DI Y, et al. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer[J]. RSC Advances,2019,9(2):950−957. doi: 10.1039/C8RA08642G
    [12]
    SUN C Y, SU R F, BIE J X, et al. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline[J]. Dyes and Pigments,2018,149:867−875. doi: 10.1016/j.dyepig.2017.11.031
    [13]
    WANG T, CHEN C, LARCHER L M, et al. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development[J]. Biotechnology Advances,2019,37(1):28−50. doi: 10.1016/j.biotechadv.2018.11.001
    [14]
    BAUM D A, SILVERMAN S K. Deoxyribozymes: Useful DNA catalysts in vitro and in vivo[J]. Cellular & Molecular Life Sciences Cmls,2008,65(14):2156−2174.
    [15]
    ROSENBACH H, BORGGRÄFE J, VICTOR J, et al. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme[J]. Biological Chemistry,2021,402(1):99−111.
    [16]
    WANG Y, YANG F, YANG X. Label-free colorimetric biosensing of copper (II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes[J]. Nanotechnology,2010,21(20):205502. doi: 10.1088/0957-4484/21/20/205502
    [17]
    LEE Y, KLAUSER P C, BRANDSEN B M, et al. DNA-catalyzed DNA cleavage by a radical pathway with well-defined products[J]. Journal of the American Chemical Society,2017,139(1):255−261. doi: 10.1021/jacs.6b10274
    [18]
    GU H, FURUKAWA K, WEINBERG Z, et al. Small, highly active DNAs that hydrolyze DNA[J]. Journal of the American Chemical Society,2013,135(24):9121−9129. doi: 10.1021/ja403585e
    [19]
    BARLEV A, SEKHON G S, BENNET A J, et al. DNA repair by DNA: The UV1C DNA zyme catalyzes photoreactivation of cyclobutane thymine dimers in DNA more effectively than their de novo formation[J]. Biochemistry,2016,55(43):6010−6018. doi: 10.1021/acs.biochem.6b00951
    [20]
    BRANDSEN B M, HESSER A R, CASTNER M A, et al. DNA-catalyzed hydrolysis of esters and aromatic amides[J]. Journal of the American Chemical Society,2013,135(43):16014−16017. doi: 10.1021/ja4077233
    [21]
    ZHOU C, AVINS J L, KLAUSER P C, et al. DNA-catalyzed amide hydrolysis[J]. Journal of the American Chemical Society,2016,138(7):2106−2109. doi: 10.1021/jacs.5b12647
    [22]
    WANG Y M, SILVERMAN S K. Directing the outcome of deoxyribozyme selections to favor native 3'-5' RNA ligation[J]. Biochemistry,2005,44(8):3017−3023. doi: 10.1021/bi0478291
    [23]
    CUENOUD B, SZOSTAK J W. A DNA metalloenzyme with DNA ligase activity[J]. Nature,1995,375(6532):611−614. doi: 10.1038/375611a0
    [24]
    CHANDRA M, SILVERMAN S K. DNA and RNA can be equally efficient catalysts for carbon-carbon bond formation[J]. Journal of the American Chemical Society,2008,130(10):2936−2937. doi: 10.1021/ja7111965
    [25]
    WONG O Y, PRADEEPKUMAR P I, SILVERMAN S K. DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates[J]. Biochemistry,2011,50(21):4741−4749. doi: 10.1021/bi200585n
    [26]
    CHU C C, WONG O Y, SILVERMAN S K. A generalizable DNA-catalyzed approach to peptide-nucleic acid conjugation[J]. ChemBioChem,2014,15(13):1905−1910. doi: 10.1002/cbic.201402255
    [27]
    LI Y F, BREAKER R R. Phosphorylating DNA with DNA[J]. Proceedings of the National Academy of Sciences,1999,96(6):2746−2751. doi: 10.1073/pnas.96.6.2746
    [28]
    MCMANUS S A, LI Y F. Multiple occurrences of an efficient self-phosphorylating deoxyribozyme motif[J]. Biochemistry,2007,46(8):2198−2204. doi: 10.1021/bi061613c
    [29]
    WALSH S M, SACHDEVA A, SILVERMAN S K. DNA catalysts with tyrosine kinase activity[J]. Journal of the American Chemical Society,2013,135(40):14928−14931. doi: 10.1021/ja407586u
    [30]
    CHANDRASEKAR J, WYLDER A C, SILVERMAN S K. Phosphoserine lyase deoxyribozymes: DNA-catalyzed formation of dehydroalanine residues in peptides[J]. Journal of the American Chemical Society,2015,137(30):9575−9578. doi: 10.1021/jacs.5b06308
    [31]
    LI Y F, LIU Y, BREAKER R R. Capping DNA with DNA[J]. Biochemistry,2000,39(11):3106−3114. doi: 10.1021/bi992710r
    [32]
    LI Y F, SEN D. Toward an efficient DNAzyme[J]. Biochemistry,1997,36(18):5589−5599. doi: 10.1021/bi962694n
    [33]
    YAO T J, PRZYBYLA J J, YEH P, et al. DNAzymes for amine and peptide lysine acylation[J]. Organic & Biomolecular Chemistry,2020,19(1):171−181.
    [34]
    HUANG P J J, LIU J. In vitro selection of chemically modified DNAzymes[J]. Chemistryopen,2020,9(10):1046−1059. doi: 10.1002/open.202000134
    [35]
    佟宗轩, 胡沁沁, 顾宏周. DNA酶: 筛选, 生物传感及展望[J]. 高等学校化学学报,2020,41(11):2345−2355. [TONG Z X, HU Q Q, GU H Z. Deoxyribozymes: Selection, biosensing and outlook[J]. Chemical Journal of Chinese Universities-Chinese,2020,41(11):2345−2355.
    [36]
    王月瑶. 催化RNA切割反应的新型短结合臂脱氧核酶[D]. 南京: 南京大学, 2019.

    WANG Y Y. A novel small RNA-cleaving deoxyribozyme with a short binding arm[D]. Nanjing: Nanjing University, 2019.
    [37]
    SCHEITL C P M, LANGE S, HOBARTNER C. New deoxyribozymes for the native ligation of RNA[J]. Molecules,2020,25(16):3650. doi: 10.3390/molecules25163650
    [38]
    MORRISON D, ROTHENBROKER M, LI Y F. DNAzymes: Selected for applications[J]. Small Methods,2018,2(3):1700319. doi: 10.1002/smtd.201700319
    [39]
    SILVERMAN S K. Catalytic DNA: Scope, applications, and biochemistry of deoxyribozymes[J]. Trends in Biochemical Sciences,2016,41(7):595−609. doi: 10.1016/j.tibs.2016.04.010
    [40]
    ZHANG X B, KONG R M, LU Y. Metal ion sensors based on DNAzymes and related DNA molecules[J]. Annual Review of Analytical Chemistry,2011,4:105−128. doi: 10.1146/annurev.anchem.111808.073617
    [41]
    TORABI S F, WU P, MCGHEE C E, et al. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing[J]. Proceedings of the National Academy of Sciences,2015,112(19):5903−5908. doi: 10.1073/pnas.1420361112
    [42]
    LI H, HUANG X X, KONG D M, et al. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substratecomplex[J]. Biosensors and Bioelectronics,2013,42:225−228. doi: 10.1016/j.bios.2012.10.070
    [43]
    LI H, ZHANG Q, CAI Y, et al. Single-stranded DNAzyme-based Pb2+ fluorescent sensor that can work well over a wide temperature range[J]. Biosensors and Bioelectronics,2012,34(1):159−164. doi: 10.1016/j.bios.2012.01.037
    [44]
    MOON W J, LIU J. Interfacing catalytic DNA with nanomaterials[J]. Advanced Materials Interfaces,2020,7(21):2001017. doi: 10.1002/admi.202001017
    [45]
    ZHAO X H, KONG R M, ZHANG X B, et al. Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity[J]. Analytical Chemistry,2011,83(13):5062−5066. doi: 10.1021/ac200843x
    [46]
    YANG Z L, LOH K Y, CHU Y T, et al. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles[J]. Journal of the American Chemical Society,2018,140(50):17656−17665. doi: 10.1021/jacs.8b09867
    [47]
    范思思, 程进, 冀斌, 等. 脱氧核酶在生物检测及基因治疗中的研究进展[J]. 科学通报,2019,64:1027−1036. [FAN S S, CHEN J, JI B, et al. DNAzymes in biological detection and gene therapy[J]. Chin Sci Bull,2019,64:1027−1036. doi: 10.1360/N972018-00874
    [48]
    FAN H, ZHAO Z, YAN G, et al. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing[J]. Angewandte Chemie,2015,127(16):4883−4887. doi: 10.1002/ange.201411417
    [49]
    ZHANG J H, MA R, BLANCHARD A, et al. Conditional deoxyribozyme-nanoparticle conjugates for miRNA-triggered gene regulation[J]. ACS Applied Materials & Interfaces,2020,12(34):37851−37861.
    [50]
    李一凡, 吴燃峰, 杨静, 等. 基于DNA核酶的分子加密系统[J]. 信息网络安全,2017(6):43−48. [LI YF, WU R F, YANG J, et al. A molecule encryption system based on DNAzyme[J]. Netinfo Security,2017(6):43−48. doi: 10.3969/j.issn.1671-1122.2017.06.007
    [51]
    彭维平, 程丹华, 宋成. 基于多碱基组合映射编码和DNA计算的一次一密算法[J]. 计算机应用研究,2019,36(7):2190−2194. [PENG W P, CHENG D, SONG C. A one-cipher algorithm based on multi-base combination mapping coding and DNA calculation[J]. Application Research of Computers,2019,36(7):2190−2194. doi: 10.19734/j.issn.1001-3695.2018.01.0100
  • Related Articles

    [1]WANG Xiaoyu, WANG Zhenzhen, HU Mengya, DAI Jing, SHA Ruyi, MAO Jianwei. Metabolomics Analysis of Five Types of Wangdu Chili Peppers Based on HPLC and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(20): 14-22. DOI: 10.13386/j.issn1002-0306.2024010245
    [2]HUANG Chen, GUO Dejun, YOU Gang, QIN Ningjing. Effect of Different Baking Degrees of Oak on Lychee Brandy Volatility Flavor Based on Electronic Nose and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(2): 252-259. DOI: 10.13386/j.issn1002-0306.2023030239
    [3]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
    [4]BAI Xue, YANG Shuang, MENG Xin. Effect of Microbial Lipase on the Flavor of Dairy Products by GC-MS Combined with Electronic Nose[J]. Science and Technology of Food Industry, 2018, 39(14): 209-212,218. DOI: 10.13386/j.issn1002-0306.2018.14.039
    [5]YANG Shuang, BAI Xue, MENG Xin. Effect of Chicken Protease on Chicken Flavor by Electronic Nose Combined with GC-MS Detection[J]. Science and Technology of Food Industry, 2018, 39(13): 252-256. DOI: 10.13386/j.issn1002-0306.2018.13.046
    [6]ZHANG Di-ya, XIE Dan-ting, LI Ye. Comparison of volatile components in different parts of beef by electronic nose and GC-MS[J]. Science and Technology of Food Industry, 2017, (21): 241-246. DOI: 10.13386/j.issn1002-0306.2017.21.048
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]FUN Qin-bao, CAI Wei-rong, XIE Liang-liang, PAN Hui, CAO Xue, ZENG Heng. Characterisation of volatile components of Lotus leaves by HS-SPME and SDE coupled to GC-MS[J]. Science and Technology of Food Industry, 2017, (15): 253-258. DOI: 10.13386/j.issn1002-0306.2017.15.047
    [9]YANG Ying-chun, WANG Qiang, YANG Jie. Fatty acid composition of Portulaca oleracea seeds oil with GC-MS[J]. Science and Technology of Food Industry, 2014, (14): 147-150. DOI: 10.13386/j.issn1002-0306.2014.14.024
    [10]ZHAO Lin-min, QI Cheng-mei, LIU Xiao-wen, LUO Ying, YUAN Zhi-hui, ZHANG Zu-jiao, WANG Zong-cheng. Analysis of ginger oleoresin in Jiangyong fragrant-ginger by GC-MS[J]. Science and Technology of Food Industry, 2014, (06): 78-80. DOI: 10.13386/j.issn1002-0306.2014.06.005
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (368) PDF downloads (60) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return