SUI Shiyou, JIN Limei, ZHU Chengcheng, et al. Research on Influencing Factors and Cleaning Effect of Forward Osmosis Membrane Fouling[J]. Science and Technology of Food Industry, 2022, 43(10): 64−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080023.
Citation: SUI Shiyou, JIN Limei, ZHU Chengcheng, et al. Research on Influencing Factors and Cleaning Effect of Forward Osmosis Membrane Fouling[J]. Science and Technology of Food Industry, 2022, 43(10): 64−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080023.

Research on Influencing Factors and Cleaning Effect of Forward Osmosis Membrane Fouling

More Information
  • Received Date: August 03, 2021
  • Available Online: March 10, 2022
  • In order to study the attenuation regularity of membrane flux in the process of forward osmosis (FO) concentration, the fouling rule of FO membrane affected by different parameters including ionic strength, BSA concentration in the feed and membrane orientation was studied with Bovine serum albumin (BSA) as the primary typical pollutants. In order to improve the membrane flux and rejection rate, the type and concentration of draw solution and the flow rate of feed solution were optimized and the appropriate membrane cleaning scheme was optimized. The results showed that the initial flux of FO membrane decreased with the increasing of ionic strength in feed solution, but the flux of FO membrane with BSA solution containing salt ions was higher than that of pure BSA solution as the running time went on. The lower the concentration of BSA, the lighter the membrane fouling was, and the water flux in FO mode (13.82±3.2 L/m2·h) was higher than that in PRO mode (5.08±2.1 L/m2·h), which indicated that FO mode should be adopted for concentration. Under the optimal operating conditions, the 1.5 mol/L NaCl as the draw solution and the flow rate of both feed and draw solution controlled at 2.89 m/s, FO flux was 11.23±2.13 L/m2·h, BSA retention rate was 97.83%, and reverse solute flux Js was 0.14 mol/m2·h. After the fouled membrane was immersed in 0.05% NaOH for 4 min, the flux recovery rate reached 98.39% and the flux recovery rate was still exceed 98% after reusing and cleaning many times, which indicated that the membrane had good cleaning resistance. This study would provide a certain technical reference for protein recovery from food materials.
  • [1]
    钱宇, 张忠国, 秦振平, 等. 阻垢剂PASP和DTPMP-Na7作为正渗透汲取液的比较研究[J]. 膜科学与技术,2019,39(1):101−109. [QIAN Y, ZHANG Z G, QIN Z P, et al. Comparative study on scale inhibitors PASP and DTPMP-Na7 as draw solution of forward osmosis process[J]. Membrane Science and Technology,2019,39(1):101−109.

    QIAN Y, ZHANG Z G, QIN Z P, et al. Comparative study on scale inhibitors PASP and DTPMP-Na7 as draw solution of forward osmosis process[J]. Membrane Science and Technology, 2019, 39(1): 101-109.
    [2]
    任潇, 王策, 李咏梅. 正渗透膜技术的研究与应用进展[J]. 环境污染与防治,2018,40(2):230−235. [REN X, WANG C, LI Y M. Research and application advances of forward osmosis membrane technology[J]. Environmental Pollution & Control,2018,40(2):230−235.

    REN X, WANG C, LI Y M. Research and application advances of forward osmosis membrane technology[J]. Environmental Pollution & Control, 2018, 40(2): 230-235.
    [3]
    潘淑芳, 张珠鸿, 陈金垒, 等. 基于正渗透的膜集成工艺应用研究进展[J]. 水处理技术,2018,44(10):11−15,21. [PAN S F, ZHANG Z H, CHEN J L, et al. Research progress on the application of hybrid forward osmosis membrane systems[J]. Technology of Water Treatment,2018,44(10):11−15,21.

    PAN S F, ZHANG Z H, CHEN J L, et al. Research progress on the application of hybrid forward osmosis membrane systems[J]. Technology of Water Treatment, 2018, 44(10): 11-15, 21.
    [4]
    齐亚兵, 张思敬, 杨清翠. 正渗透水处理技术研究现状及进展[J]. 现代化工,2021,41(8):52−57. [QI Y B, ZHANG S J, YANG Q C. Research status and progress on forward osmosis water treatment technologies[J]. Modern Chemical Industry,2021,41(8):52−57.

    QI Y B, ZHANG S J, YANG Q C. Research status and progress on forward osmosis water treatment technologies[J]. Modern Chemical Industry, 2021, 41(8): 52-57.
    [5]
    NAYAK C A, RASTOGY N K. Comparison of osmotic membrane distillation and forward osmosis membrane processes for concentration of anthocyanin[J]. Desalination and Water Treatment,2010,16(1/2/3):134−145.
    [6]
    SHALINI H N, NAYAK C A. Forward osmosis membrane concentration of raw sugarcane juice[M]. Singapore: Springer Singapore, 2016: 81-87.
    [7]
    WANG Y N, WANG R, LI W, et al. Whey recovery using forward osmosis–evaluating the factors limiting the flux performance[J]. Journal of Membrane Science,2017,533:179−189. doi: 10.1016/j.memsci.2017.03.047
    [8]
    PEI J F, PEI S Y, WANG W J, et al. Athermal forward osmosis process for the concentration of liquid egg white: Process performance and improved physicochemical property of protein[J]. Food Chemistry,2020,312:1−9.
    [9]
    肖芹芹, 徐世昌, 王越, 等. 正渗透膜污染影响因素的研究与分析[J]. 化工进展,2018,37(1):359−367. [XIAO Q Q, XU S C, WANG Y, et al. Research and analysis on influencing factors of forward osmosis membrane fouling[J]. Chemical Industry and Engineering Progress,2018,37(1):359−367.

    XIAO Q Q, XU S C, WANG Y, et al. Research and analysis on influencing factors of forward osmosis membrane fouling[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 359-367.
    [10]
    赵频. 正渗透技术中驱动剂的选择及其膜污染的研究[D]. 济南: 山东大学, 2018.

    ZHAO P. Study of draw solution selection and membrane fouling in forward osmosis[D]. Jinan: Shandong University, 2018.
    [11]
    李轻轻, 马伟芳, 聂超, 等. 正渗透汲取液类型及分离回收工艺研究进展[J]. 环境工程,2016,34(3):11−17. [LI Q Q, MA W F, NIE C, et al. Draw solution for forward osmosis processes: Types, separation and recovery process[J]. Environmental Engineering,2016,34(3):11−17.

    LI Q Q, MA W F, NIE C, et al. Draw solution for forward osmosis processes: Types, separation and recovery process[J]. Environmental Engineering, 2016, 34(3): 11-17.
    [12]
    刘彩虹. 聚酰胺复合膜功能层抗污染调控机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LIU C H. Antifouling modifications and mechanisms of surface functional layer of polyamide thin-film composite membranes[D]. Harbin: Harbin Institute of Technology, 2018.
    [13]
    LIN Y L, TSAI J Z, HUNG C H. Using in situ modification to enhance organic fouling resistance and rejection of pharmaceutical and personal care products in a thin-film composite nanofiltration membrane[J]. Environmental Science and Pollution Research,2019,26(33):34073−34084. doi: 10.1007/s11356-018-3234-1
    [14]
    顾正阳, 龚超, 杨望臻, 等. 基于水通道蛋白的水处理仿生膜研究进展[J]. 化工进展,2018,37(3):1037−1046. [GU Z Y, GONG C, YANG W Z, et al. Recent progress on AQP based biomimetic membranes for water treatment[J]. Chemical Industry and Engineering Progress,2018,37(3):1037−1046.

    GU Z Y, GONG C, YANG W Z, et al. Recent progress on AQP based biomimetic membranes for water treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1037-1046.
    [15]
    赵永军. 纳米氧化石墨烯共混复合正渗透膜的制备与表征[D]. 上海: 东华大学, 2016.

    ZHAO Y J. Preparation and characterization of GO-polyamidenanocomposite forward osmosis membranes[D]. Shanghai: Donghua University, 2016.
    [16]
    ENDRE N, IMRE H, EMILY W, et al. Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO)[J]. Journal of Membrane Science,2018,565:450−462. doi: 10.1016/j.memsci.2018.08.039
    [17]
    MACHAWE M M, BHEKIE B M, ARNER R D V. Forward osmosis membrane performance during simulated wastewater reclamation: Fouling mechanisms and fouling layer properties[J]. Journal of Water Process Engineering,2018,23:109−118. doi: 10.1016/j.jwpe.2018.03.007
    [18]
    EMILY W T, MARTIN M R, JOHN H L. In situ visualization of organic fouling and cleaning mechanisms in reverse osmosis and forward osmosis[J]. Desalination,2016,399:138−147. doi: 10.1016/j.desal.2016.08.024
    [19]
    EMADZADEN D, LAU W J, MATSUURA T, et al. The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process[J]. Desalination,2014,348:82−88. doi: 10.1016/j.desal.2014.06.008
    [20]
    刘彩虹. 正渗透工艺特性及膜污染特征研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    LIU C H. Basic principles of forward osmosis and its membrane fouling behavior[D]. Harbin: Harbin Institute of Technology, 2013.
    [21]
    ZHAO P, GAO B, YUE Q Y, et al. Fouling of forward osmosis membrane by protein (BSA): Effects of pH, calcium, ionic strength, initial permeate flux, membrane orientation and foulant composition[J]. Desalination and Water Treatment,2016,57(29):13415−13424. doi: 10.1080/19443994.2015.1060539
    [22]
    EIJI I, NOBUYUKI K. Developments of blocking filtration model in membrane filtration[J]. Kona Powder and Particle Journal,2016,33(5):179−202.
    [23]
    赵淑真. 正渗透非热浓缩苹果浊汁的研究[D]. 杨凌: 西北农林科技大学, 2021.

    ZHAO S Z. Forward osmosis process for nonthermal concentration of cloudy apple juice[D].Yangling: Northwest A & F University, 2021.
    [24]
    HEO J, HAN J, KIM Y, et al. Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system[J]. Journal of Korean Society of Water and Wastewater,2016,30(6):737−744. doi: 10.11001/jksww.2016.30.6.737
    [25]
    肖婷婷, 窦鹏佳, 王艳强, 等. 中空纤维正渗透膜浓缩灰水过程中的膜污染和清洗初探[J]. 膜科学与技术,2017,37(5):21−27. [XIAO T T, DOU J P, WANG Y Q, et al. Fouling and cleaning of hollow fiber forward osmosis membranes when concentrating grey water[J]. Membrane Science and Technology,2017,37(5):21−27.

    XIAO T T, DOU J P, WANG Y Q, et al. Fouling and cleaning of hollow fiber forward osmosis membranes when concentrating grey water[J]. Membrane Science and Technology, 2017, 37(5): 21-27.
    [26]
    刘宇, 张国治, 袁东振, 等. 豆制品废水综合利用现状[J]. 粮食与油脂,2015,28(3):22−25. [LIU Y, ZHANG G Z, YUAN D Z, et al. Fouling and cleaning of hollow fiber forward osmosis membranes when concentrating grey water[J]. Cereals & Oils,2015,28(3):22−25. doi: 10.3969/j.issn.1008-9578.2015.03.006

    LIU Y, ZHANG G Z, YUAN D Z, et al. Fouling and cleaning of hollow fiber forward osmosis membranes when concentrating grey water[J]. Cereals & Oils, 2015, 28(3): 22-25. doi: 10.3969/j.issn.1008-9578.2015.03.006
    [27]
    马藤, 王磊, 张慧慧, 等. 添加剂共混CA正渗透膜的制备及抗污染性研究[J]. 水处理技术,2017,43(10):68−71,75. [MA T, WANG L, ZHANG H H, et al. Preparation of CA forward osmosis membrane blended with additives and its anti-fouling performance[J]. Technology of Water Treatment,2017,43(10):68−71,75.

    MA T, WANG L, ZHANG H H, et al. Preparation of CA forward osmosis membrane blended with additives and its anti-fouling performance[J]. Technology of Water Treatment, 2017, 43(10): 68-71, 75.
    [28]
    刘帅, 谢朝新, 周宁玉, 等. 正渗透膜污染及其清洗研究进展综述[J]. 净水技术,2015,34(4):23−30. [LIU S, XIE C X, ZHOU N Y, et al. Overview of research progress in membrane fouling and cleaning for forward osmosis membrane[J]. Water Purification Technology,2015,34(4):23−30. doi: 10.3969/j.issn.1009-0177.2015.04.005

    LIU S, XIE C X, ZHOU N Y, et al. Overview of research progress in membrane fouling and cleaning for forward osmosis membrane[J]. Water Purification Technology, 2015, 34(4): 23-30. doi: 10.3969/j.issn.1009-0177.2015.04.005
    [29]
    程巍, 吕兴霖, 刘乾亮, 等. 三醋酸纤维素正渗透膜的双向离子传质机制研究[J]. 中国给水排水,2019,35(13):67−71. [CHENG W, LV X L, LIU Q L, et al. Bidirectional transport of lons in cellulose triacetate forward osmosis membrane[J]. China Water & Wastewater,2019,35(13):67−71.

    CHENG W, LV X L, LIU Q L, et al. Bidirectional transport of lons in cellulose triacetate forward osmosis membrane[J]. China Water & Wastewater, 2019, 35(13): 67-71.
    [30]
    王一博. 聚酰胺复合正渗透膜的结构与性能优化研究[D]. 大连: 大连海事大学, 2020.

    WANG Y B. Structure and property optimization of polyamide composite forward osmosis membrane[D]. Dalian: Dalian Maritime University, 2020.
    [31]
    CHUYANG Y T, SHE Q H, WINSON C L L, et al. Fane. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science,2010,354(1):123−133.
    [32]
    ZHOU Z Z, JIM Y L, CHUNG T S. Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction[J]. Chemical Engineering Journal,2014,249:236−245. doi: 10.1016/j.cej.2014.03.049
    [33]
    TAN C H, NG H Y. A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration[J]. Desalination and Water Treatment,2010,13(1−3):356−361. doi: 10.5004/dwt.2010.1733
    [34]
    吴晴. 正渗透过程中驱动溶质反渗规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    WU Q. Research on reverse permeation of draw solute in forward osmosis[D]. Harbin: Harbin Institute of Technology, 2013.
    [35]
    SHAN Z, WANG Y N, FILICIA W, et al. Direct microscopic observation of forward osmosis membrane fouling by microalgae: Critical flux and the role of operational conditions[J]. Journal of Membrane Science,2013,436:174−185. doi: 10.1016/j.memsci.2013.02.030
    [36]
    王根实. 基于膜面流场分析的正渗透性能研究及参数优化[D]. 天津: 天津工业大学, 2017.

    WANG G S. Research on forward osmosis performance and parameter optimization based on membrane flow field analysis[D]. Tianjin: Tianjin Polytechnic University, 2017.
    [37]
    LIU X J, WU J L, HOU L A, et al. Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment[J]. Nuclear Engineering and Technology,2020,52(3):581−588. doi: 10.1016/j.net.2019.08.007
    [38]
    缪畅, 邱运仁. NF-RO组合膜处理大豆乳清废水[J]. 中南大学学报(自然科学版),2010,41(4):1623−1627. [LIAO C, QIU Y R. Treatment of soybean whey wastewater by NF and RO membrane[J]. Journal of Central South University (Science and Technology),2010,41(4):1623−1627.

    LIAO C, QIU Y R. Treatment of soybean whey wastewater by NF and RO membrane[J]. Journal of Central South University (Science and Technology), 2010, 41(4): 1623-1627.
    [39]
    WUI S A, TIRAFERRI A, CHEN K L, et al. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent[J]. Journal of Membrane Science,2011,376(1):196−206.
    [40]
    吴思邈, 陈建明, 王爱廉, 等. 正渗透技术浓缩苹果汁过程中反向溶质扩散的研究[J]. 食品工业科技,2021,42(24):172−180. [WU S M, CHEN J M, WANG A L, et al. Study of reverse solute flux in apple juice concentration by forward osmosis[J]. Science and Technology of Food Industry,2021,42(24):172−180.

    WU S M, CHEN J M, WANG A L, et al. Study of reverse solute flux in apple juice concentration by forward osmosis[J]. Science and Technology of Food Industry, 2021, 42(24): 9.
  • Cited by

    Periodical cited type(9)

    1. 贾鑫,高鹏,周瑞,徐攀,王丹,黄敏,孟爱莲,张雁君,吴舸洋. 基于纯培养法结合高通量测序技术解析胀袋辐照凤爪中的微生物多样性. 食品与发酵工业. 2024(12): 135-141 .
    2. 钟娟,何静,陈晓珍,杨涛. 高通量测序技术分析浓香型白酒酒糟自然堆积发酵过程的微生物多样性. 酿酒. 2023(06): 50-56 .
    3. 姚晓红,孙宏,周航海,汤江武,吴逸飞,王新,沈琦. 发酵时间对西兰花茎叶发酵饲料的营养成分和发酵品质及微生物群落多样性的影响. 中国畜牧杂志. 2023(11): 259-264 .
    4. 李思雨,杜贺超,包佳亮,姚宏亮,蒋加进. 贵州腌鱼微生物多样性和益生特性分析. 农产品加工. 2023(24): 66-71 .
    5. 罗爱国,郗鑫瑞,郑同庆,杨兆艳,田艳花,马晓丽,赵红梅. 基于Illumina MiSeq高通量测序分析清香型白酒酒糟微生物群落多样性. 中国酿造. 2022(01): 98-102 .
    6. 刘都,张利鹏. 食品安全中微生物的危害及防治策略分析. 食品安全导刊. 2022(22): 13-15 .
    7. 罗爱国,王家彦,郝建伟,郭春燕,时晓丽,杨博雯,赵红梅. 山西老陈醋丟糟微生物群落多样性分析. 中国调味品. 2022(09): 53-58 .
    8. 孙胜敏,张宇鑫,王一村,周莉莉,高静静,李娜,才美佳,赵彤彤. 番茄酱中关键致腐菌快速筛选方法的建立. 中国果菜. 2022(08): 64-69 .
    9. 田存章,贺新平,万嘉欣,姬国杰,周红伟,崔靖,吴文龙. 怀菊不同部位内生细菌多样性分析. 农业与技术. 2021(17): 31-33 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (235) PDF downloads (22) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return