CUI Yan, BAI Yalong, SHI Xianming. Progress on the Application of Aptamers in the Detection of Staphylococcus aureus [J]. Science and Technology of Food Industry, 2021, 42(21): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060130.
Citation: CUI Yan, BAI Yalong, SHI Xianming. Progress on the Application of Aptamers in the Detection of Staphylococcus aureus [J]. Science and Technology of Food Industry, 2021, 42(21): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060130.

Progress on the Application of Aptamers in the Detection of Staphylococcus aureus

More Information
  • Received Date: June 16, 2021
  • Available Online: August 26, 2021
  • Staphylococcus aureus is one of the most important foodborne pathogens. Rapid detection is of vital importance for the prevention and control of outbreaks caused by this bacterial pathogen. Biological recognition elements are the core of rapid detection. As the emerging biological recognition element, nucleic acid aptamers are easy to be prepared and modified, and have high affinity and specificity that can be combined with targets well, which have great potential and advantages when applied in the detection of foodborne pathogens. For the sake of broadening research ideas on development and application of detection methods for Staphylococcus aureus, aptamer screening technologies and detection methods based on aptamers are reviewed in this article.
  • [1]
    Vaiyapuri M, Joseph T C, Rao B M, et al. Methicillin-resistant Staphylococcus aureus in seafood: Prevalence, laboratory detection, clonal nature, and control in seafood chain[J]. Journal of Food Science,2019,84:3341−3351. doi: 10.1111/1750-3841.14915
    [2]
    司晓雪. 金黄色葡萄球菌可视化检测方法的建立与评价[D]. 长春: 吉林大学, 2020.

    Si Xiaoxue. Establishment and evaluation of visual detection method for Staphylococcus aureus[D]. Changchun: Jilin University, 2020.
    [3]
    Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning[J]. Genetics and Molecular Research,2003,2(1):63−76.
    [4]
    Brandão D, Liébana S, Pividori M I. Multiplexed detection of foodborne pathogens based on magnetic particles[J]. New Biotechnology,2015,32(5):511−520. doi: 10.1016/j.nbt.2015.03.011
    [5]
    Lantz P G, Knutsson R, Blixt Y, et al. Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR: A study of sample preparation and PCR-inhibitory components[J]. International Journal of Food Microbiology,1998,45(2):93−105. doi: 10.1016/S0168-1605(98)00152-4
    [6]
    Kim J S, Taitt C R, Ligler F S, et al. Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods[J]. Sensing and Instrumentation for Food Quality and Safety,2010,4(2):73−81.
    [7]
    Shan Yaqi, Xu Chunxiang, Wang Mingliang, et al. Bilinear Staphylococcus aureus detection based on suspension immunoassay[J]. Talanta,2019,192:154−159. doi: 10.1016/j.talanta.2018.09.027
    [8]
    Li Huiyan, Jia Wannan, Li Xinyi, et al. Advances in detection of infectious agents by aptamer-based technologies[J]. Emerging Microbes and Infections,2020,9(1):1671−1681. doi: 10.1080/22221751.2020.1792352
    [9]
    Zon G. Mini-Review: Recent advances in aptamer applications[J]. Journal of Cancer Treatment and Diagnosis,2020,4(3):1−5.
    [10]
    Devsing S M, Sarode R, Khandelwal S, et al. Aptamer as a targeted drug delivery[J]. Asian Journal of Pharmaceutical Research and Development,2020,8(4):150−159.
    [11]
    Li Fengqin, Yu Zhigang, Han Xianda, et al. Electrochemical aptamer-based sensors for food and water analysis: A review[J]. Analytica Chimica Acta,2019,1051:1−23. doi: 10.1016/j.aca.2018.10.058
    [12]
    Suman P, Chandra P. Immunodiagnostic technologies from laboratory to point-of-care testing[M]. Springer Singapore Pte. Limited, 2020.
    [13]
    Wang Bin. A new design for the fixed primer regions in an oligonucleotide library for SELEX aptamer screening[J]. Frontiers in Chemistry,2020,8:475. doi: 10.3389/fchem.2020.00475
    [14]
    Wang Lijun, Wang Ronghui, Wei Hua, et al. Selection of aptamers against pathogenic bacteria and their diagnostics application[J]. World Journal of Microbiology and Biotechnology,2018,34(10):1−11.
    [15]
    Torres-Chavolla E, Alocilja E C. Aptasensors for detection of microbial and viral pathogens[J]. Biosensors and Bioelectronics,2018,24(11):3175−3182.
    [16]
    秦川. SELEX技术筛选青霉素类抗生素适体及其运用方法的初步探索[D]. 重庆: 西南大学, 2008.

    Qin Chuan. Screening of affinity DNA aptamer binding to the penicillin-antibiotic by SELEX and preliminary exploration of utilization methods[D]. Chongqing: Southwest University, 2008.
    [17]
    徐龙峰, 王丽. 核酸适体筛选方法的研究进展[J]. 中国生物制品学杂志,2015,28(4):429−433. [Xu Longfeng, Wang Li. Advance in research on method for screening of aptamers[J]. Chinese Journal of Biologicals,2015,28(4):429−433.
    [18]
    Yan Jianhua, Xiong Hongjie, Cai Shundong, et al. Advances in aptamer screening technologies[J]. Talanta,2019,200:124−144. doi: 10.1016/j.talanta.2019.03.015
    [19]
    Ye Mao, Hu Jun, Peng Minyuan, et al. Generating aptamers by cell-SELEX for applications in molecular medicine[J]. International Journal of Molecular Sciences,2012,13(3):3341−3353. doi: 10.3390/ijms13033341
    [20]
    Moon J, Kim G, Park S B, et al. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers[J]. Sensors,2015,15(4):8884−8897. doi: 10.3390/s150408884
    [21]
    Ramlal S, Mondal B, Lavu P S, et al. Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components[J]. International Journal of Food Microbiology,2018,265:74−83. doi: 10.1016/j.ijfoodmicro.2017.11.002
    [22]
    Yazdi Yahyaabadi M, Dorraj G S, Heiat M, et al. Utilizing cell-SELEX, as a promising strategy to isolate ssDNA aptamer probes for detection of Staphylococcus aureus[J]. Journal of Applied Biotechnology Reports,2017,4(3):633−638.
    [23]
    Stoltenburg R, Strehlitz B. Refining the results of a classical SELEX experiment by expanding the sequence data set of an aptamer pool selected for protein a[J]. International Journal of Molecular Sciences,2018,19(2):642.
    [24]
    Han S R, Lee S W. In vitro selection of RNA aptamer specific to Staphylococcus aureus[J]. Annals of Microbiology,2014,64(2):883−885. doi: 10.1007/s13213-013-0720-z
    [25]
    Zhang Xuzhi, Wang Xiaochun, Yang Qianqian, et al. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer[J]. Microchimica Acta,2020,187:43.
    [26]
    Xu Yueshuang, Wang Huan, Luan Chengxin, et al. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria[J]. Biosensors and Bioelectronics,2018,100:404−410. doi: 10.1016/j.bios.2017.09.032
    [27]
    Liu Juewen, Cao Zehui, Lu Yi. Functional nucleic acid sensors[J]. Chemical Reviews,2009,109(5):1948−1998. doi: 10.1021/cr030183i
    [28]
    Wu Shijia, Wang Yinqiu, Duan Nuo, et al. Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus[J]. Journal of Agricultural and Food Chemistry,2015,63(35):7849−7854. doi: 10.1021/acs.jafc.5b03224
    [29]
    Hu Jingting, Ni Pengjuan, Dai Haichao, et al. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles[J]. Analyst,2015,140(10):3581−3586. doi: 10.1039/C5AN00107B
    [30]
    Yousefi S, Saraji M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,213:1−5.
    [31]
    Yu Tianxiao, Xu Hong, Zhao Yan, et al. Aptamer based high throughput colorimetric biosensor for detection of Staphylococcus aureus[J]. Scientific Reports,2020,10(1):9190.
    [32]
    Raji M A, Suaifan G, Shibl A, et al. Aptasensor for the detection of methicillin resistant Staphylococcus aureus on contaminated surfaces[J]. Biosensors and Bioelectronics,2020,176:112910.
    [33]
    Fan Yaofang, Cui Mengyu, Liu Yanming, et al. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,228:117735. doi: 10.1016/j.saa.2019.117735
    [34]
    Sang Fuming, Zhang Xue, Liu Jia, et al. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,217:122−127. doi: 10.1016/j.saa.2019.03.081
    [35]
    Lan Lingyi, Yao Yao, Ping Jianfeng, et al. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J]. ACS Applied Materials and Interfaces,2017,9(28):23287−23301.
    [36]
    Yao Shuo, Li Juan, Pang Bo, et al. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles[J]. Microchimica Acta,2020,187:504. doi: 10.1007/s00604-020-04473-7
    [37]
    Pla L, Santiago-Felipe S, Tormo-Mas M Á, et al. Aptamer-capped nanoporous anodic alumina for Staphylococcus aureus detection[J]. Sensors and Actuators B: Chemical,2020,320:128281. doi: 10.1016/j.snb.2020.128281
    [38]
    Cai Rongfeng, Yin Fan, Chen Haohan, et al. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure[J]. Microchimica Acta,2020,187:304. doi: 10.1007/s00604-020-04293-9
    [39]
    Arvand M, Mirroshandel A A. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: application in a photoluminescence aptasensing probe for the sensitive detection of diazinon[J]. Food Chemistry,2019,280:115−122. doi: 10.1016/j.foodchem.2018.12.069
    [40]
    Tao Xiaoqi, Liao Ziyi, Zhang Yaqing, et al. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus[J]. Chinese Chemical Letters,2021,32(2):791−795. doi: 10.1016/j.cclet.2020.07.020
    [41]
    Pebdeni A B, Hosseini M, Ganjali M R. Fluorescent turn-on aptasensor of Staphylococcus aureus based on th e FRET between green carbon quantum dot and gold nanoparticle[J]. Food Analytical Methods,2020,13(11):2070−2079. doi: 10.1007/s12161-020-01821-4
    [42]
    Zhang Xueyan, Khan I M, Ji Hua, et al. A label-free fluorescent aptasensor for detection of staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters[J]. Polymers,2020,12:152. doi: 10.3390/polym12010152
    [43]
    Han Daobin, Yan Yurong, Wang Jianmin, et al. An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS2-PtNPs-vancomycin to S2O82−/O2 system[J]. Sensors and Actuators B: Chemical,2019,288:586−593. doi: 10.1016/j.snb.2019.03.050
    [44]
    Cai Rongfeng, Zhang Zhongwen, Chen Haohan, et al. A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch[J]. Sensors and Actuators B: Chemical,2021,326:128842. doi: 10.1016/j.snb.2020.128842
    [45]
    Kumar A, Malinee M, Dhiman A, et al. Aptamer technology for the detection of foodborne pathogens and toxins[M]. Advanced Biosensors for Health Care Applications, 2019: 45-69.
    [46]
    Zhu Afang, Ali S, Xu Yi, et al. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus[J]. Biosensors and Bioelectronics,2020,172:112806.
    [47]
    Pang Yuanfeng, Wan Nan, Shi Luoluo, et al. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@ Au[J]. Analytica Chimica Acta,2019,1077:288−296. doi: 10.1016/j.aca.2019.05.059
    [48]
    Lei Milan, Xu Chunxiang, Shan Yaqi, et al. Plasmon-coupled microcavity aptasensors for visual and ultra-sensitive simultaneous detection of Staphylococcus aureus and Escherichia coli[J]. Analytical and Bioanalytical Chemistry,2020,412(29):8117−8126. doi: 10.1007/s00216-020-02942-9
    [49]
    Khateb H, Klös G, Meyer R L, et al. Development of a label-free LSPR-apta sensor for Staphylococcus aureus detection[J]. ACS Applied Bio Materials,2020,3(5):3066−3077. doi: 10.1021/acsabm.0c00110
    [50]
    Lu Chunxia, Gao Xiaoxu, Chen Ya, et al. Aptamer-based lateral flow test strip for the simultaneous detection of Salmonella typhimurium, Escherichia coli O157: H7 and Staphylococcus aureus[J]. Analytical Letters,2020,53(4):646−659. doi: 10.1080/00032719.2019.1663528
    [51]
    Lu Yunhao, Yuan Zilan, Bai Jinrong, et al. Directly profiling intact Staphylococcus aureus in water and foods via enzymatic cleavage aptasensor[J]. Analytica Chimica Acta,2020,1132:28−35. doi: 10.1016/j.aca.2020.07.058
    [52]
    Yang Yuemeng, Wu Tingting, Xu Liping, et al. Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy[J]. Talanta,2021,226:122132. doi: 10.1016/j.talanta.2021.122132
  • Cited by

    Periodical cited type(7)

    1. 李欣宜,李红波,莫海珍,刘振彬,胡梁斌,徐丹,张珈祎,姚丽姗. 预处理工艺对香菇品质的影响规律研究. 中国调味品. 2025(02): 133-140 .
    2. 刘俊红,徐佳丽,马亚娜,叶延欣. 香菇中呈味核苷酸提取工艺优化. 河南城建学院学报. 2024(02): 116-121 .
    3. 陈静,唐浩国,王嘉康,司启贺,申茹晓. 酶解法制备菌菇酱工艺优化. 食品与机械. 2024(04): 203-209 .
    4. 汪姣玲,樊振南,唐雄,徐欢欢,岳元媛. 香菇鲜味低钠盐的配方研究及其智能感官分析. 食品安全质量检测学报. 2022(04): 1264-1270 .
    5. 张婷婷,赖丽婷,王茵,魏雪琴. 低值水产品制备天然复合海鲜调味料的工艺研究. 包装与食品机械. 2022(02): 13-19 .
    6. 李旋,李强忠. 香菇深加工的工业化研究进展. 现代食品. 2022(21): 7-9 .
    7. 王福清,易静薇. 复合调味料的生产及研究进展. 中国调味品. 2021(10): 193-197 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (509) PDF downloads (80) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return