Citation: | CUI Yan, BAI Yalong, SHI Xianming. Progress on the Application of Aptamers in the Detection of Staphylococcus aureus [J]. Science and Technology of Food Industry, 2021, 42(21): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060130. |
[1] |
Vaiyapuri M, Joseph T C, Rao B M, et al. Methicillin-resistant Staphylococcus aureus in seafood: Prevalence, laboratory detection, clonal nature, and control in seafood chain[J]. Journal of Food Science,2019,84:3341−3351. doi: 10.1111/1750-3841.14915
|
[2] |
司晓雪. 金黄色葡萄球菌可视化检测方法的建立与评价[D]. 长春: 吉林大学, 2020.
Si Xiaoxue. Establishment and evaluation of visual detection method for Staphylococcus aureus[D]. Changchun: Jilin University, 2020.
|
[3] |
Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning[J]. Genetics and Molecular Research,2003,2(1):63−76.
|
[4] |
Brandão D, Liébana S, Pividori M I. Multiplexed detection of foodborne pathogens based on magnetic particles[J]. New Biotechnology,2015,32(5):511−520. doi: 10.1016/j.nbt.2015.03.011
|
[5] |
Lantz P G, Knutsson R, Blixt Y, et al. Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR: A study of sample preparation and PCR-inhibitory components[J]. International Journal of Food Microbiology,1998,45(2):93−105. doi: 10.1016/S0168-1605(98)00152-4
|
[6] |
Kim J S, Taitt C R, Ligler F S, et al. Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods[J]. Sensing and Instrumentation for Food Quality and Safety,2010,4(2):73−81.
|
[7] |
Shan Yaqi, Xu Chunxiang, Wang Mingliang, et al. Bilinear Staphylococcus aureus detection based on suspension immunoassay[J]. Talanta,2019,192:154−159. doi: 10.1016/j.talanta.2018.09.027
|
[8] |
Li Huiyan, Jia Wannan, Li Xinyi, et al. Advances in detection of infectious agents by aptamer-based technologies[J]. Emerging Microbes and Infections,2020,9(1):1671−1681. doi: 10.1080/22221751.2020.1792352
|
[9] |
Zon G. Mini-Review: Recent advances in aptamer applications[J]. Journal of Cancer Treatment and Diagnosis,2020,4(3):1−5.
|
[10] |
Devsing S M, Sarode R, Khandelwal S, et al. Aptamer as a targeted drug delivery[J]. Asian Journal of Pharmaceutical Research and Development,2020,8(4):150−159.
|
[11] |
Li Fengqin, Yu Zhigang, Han Xianda, et al. Electrochemical aptamer-based sensors for food and water analysis: A review[J]. Analytica Chimica Acta,2019,1051:1−23. doi: 10.1016/j.aca.2018.10.058
|
[12] |
Suman P, Chandra P. Immunodiagnostic technologies from laboratory to point-of-care testing[M]. Springer Singapore Pte. Limited, 2020.
|
[13] |
Wang Bin. A new design for the fixed primer regions in an oligonucleotide library for SELEX aptamer screening[J]. Frontiers in Chemistry,2020,8:475. doi: 10.3389/fchem.2020.00475
|
[14] |
Wang Lijun, Wang Ronghui, Wei Hua, et al. Selection of aptamers against pathogenic bacteria and their diagnostics application[J]. World Journal of Microbiology and Biotechnology,2018,34(10):1−11.
|
[15] |
Torres-Chavolla E, Alocilja E C. Aptasensors for detection of microbial and viral pathogens[J]. Biosensors and Bioelectronics,2018,24(11):3175−3182.
|
[16] |
秦川. SELEX技术筛选青霉素类抗生素适体及其运用方法的初步探索[D]. 重庆: 西南大学, 2008.
Qin Chuan. Screening of affinity DNA aptamer binding to the penicillin-antibiotic by SELEX and preliminary exploration of utilization methods[D]. Chongqing: Southwest University, 2008.
|
[17] |
徐龙峰, 王丽. 核酸适体筛选方法的研究进展[J]. 中国生物制品学杂志,2015,28(4):429−433. [Xu Longfeng, Wang Li. Advance in research on method for screening of aptamers[J]. Chinese Journal of Biologicals,2015,28(4):429−433.
|
[18] |
Yan Jianhua, Xiong Hongjie, Cai Shundong, et al. Advances in aptamer screening technologies[J]. Talanta,2019,200:124−144. doi: 10.1016/j.talanta.2019.03.015
|
[19] |
Ye Mao, Hu Jun, Peng Minyuan, et al. Generating aptamers by cell-SELEX for applications in molecular medicine[J]. International Journal of Molecular Sciences,2012,13(3):3341−3353. doi: 10.3390/ijms13033341
|
[20] |
Moon J, Kim G, Park S B, et al. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers[J]. Sensors,2015,15(4):8884−8897. doi: 10.3390/s150408884
|
[21] |
Ramlal S, Mondal B, Lavu P S, et al. Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components[J]. International Journal of Food Microbiology,2018,265:74−83. doi: 10.1016/j.ijfoodmicro.2017.11.002
|
[22] |
Yazdi Yahyaabadi M, Dorraj G S, Heiat M, et al. Utilizing cell-SELEX, as a promising strategy to isolate ssDNA aptamer probes for detection of Staphylococcus aureus[J]. Journal of Applied Biotechnology Reports,2017,4(3):633−638.
|
[23] |
Stoltenburg R, Strehlitz B. Refining the results of a classical SELEX experiment by expanding the sequence data set of an aptamer pool selected for protein a[J]. International Journal of Molecular Sciences,2018,19(2):642.
|
[24] |
Han S R, Lee S W. In vitro selection of RNA aptamer specific to Staphylococcus aureus[J]. Annals of Microbiology,2014,64(2):883−885. doi: 10.1007/s13213-013-0720-z
|
[25] |
Zhang Xuzhi, Wang Xiaochun, Yang Qianqian, et al. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer[J]. Microchimica Acta,2020,187:43.
|
[26] |
Xu Yueshuang, Wang Huan, Luan Chengxin, et al. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria[J]. Biosensors and Bioelectronics,2018,100:404−410. doi: 10.1016/j.bios.2017.09.032
|
[27] |
Liu Juewen, Cao Zehui, Lu Yi. Functional nucleic acid sensors[J]. Chemical Reviews,2009,109(5):1948−1998. doi: 10.1021/cr030183i
|
[28] |
Wu Shijia, Wang Yinqiu, Duan Nuo, et al. Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus[J]. Journal of Agricultural and Food Chemistry,2015,63(35):7849−7854. doi: 10.1021/acs.jafc.5b03224
|
[29] |
Hu Jingting, Ni Pengjuan, Dai Haichao, et al. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles[J]. Analyst,2015,140(10):3581−3586. doi: 10.1039/C5AN00107B
|
[30] |
Yousefi S, Saraji M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,213:1−5.
|
[31] |
Yu Tianxiao, Xu Hong, Zhao Yan, et al. Aptamer based high throughput colorimetric biosensor for detection of Staphylococcus aureus[J]. Scientific Reports,2020,10(1):9190.
|
[32] |
Raji M A, Suaifan G, Shibl A, et al. Aptasensor for the detection of methicillin resistant Staphylococcus aureus on contaminated surfaces[J]. Biosensors and Bioelectronics,2020,176:112910.
|
[33] |
Fan Yaofang, Cui Mengyu, Liu Yanming, et al. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,228:117735. doi: 10.1016/j.saa.2019.117735
|
[34] |
Sang Fuming, Zhang Xue, Liu Jia, et al. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,217:122−127. doi: 10.1016/j.saa.2019.03.081
|
[35] |
Lan Lingyi, Yao Yao, Ping Jianfeng, et al. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J]. ACS Applied Materials and Interfaces,2017,9(28):23287−23301.
|
[36] |
Yao Shuo, Li Juan, Pang Bo, et al. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles[J]. Microchimica Acta,2020,187:504. doi: 10.1007/s00604-020-04473-7
|
[37] |
Pla L, Santiago-Felipe S, Tormo-Mas M Á, et al. Aptamer-capped nanoporous anodic alumina for Staphylococcus aureus detection[J]. Sensors and Actuators B: Chemical,2020,320:128281. doi: 10.1016/j.snb.2020.128281
|
[38] |
Cai Rongfeng, Yin Fan, Chen Haohan, et al. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure[J]. Microchimica Acta,2020,187:304. doi: 10.1007/s00604-020-04293-9
|
[39] |
Arvand M, Mirroshandel A A. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: application in a photoluminescence aptasensing probe for the sensitive detection of diazinon[J]. Food Chemistry,2019,280:115−122. doi: 10.1016/j.foodchem.2018.12.069
|
[40] |
Tao Xiaoqi, Liao Ziyi, Zhang Yaqing, et al. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus[J]. Chinese Chemical Letters,2021,32(2):791−795. doi: 10.1016/j.cclet.2020.07.020
|
[41] |
Pebdeni A B, Hosseini M, Ganjali M R. Fluorescent turn-on aptasensor of Staphylococcus aureus based on th e FRET between green carbon quantum dot and gold nanoparticle[J]. Food Analytical Methods,2020,13(11):2070−2079. doi: 10.1007/s12161-020-01821-4
|
[42] |
Zhang Xueyan, Khan I M, Ji Hua, et al. A label-free fluorescent aptasensor for detection of staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters[J]. Polymers,2020,12:152. doi: 10.3390/polym12010152
|
[43] |
Han Daobin, Yan Yurong, Wang Jianmin, et al. An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS2-PtNPs-vancomycin to S2O82−/O2 system[J]. Sensors and Actuators B: Chemical,2019,288:586−593. doi: 10.1016/j.snb.2019.03.050
|
[44] |
Cai Rongfeng, Zhang Zhongwen, Chen Haohan, et al. A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch[J]. Sensors and Actuators B: Chemical,2021,326:128842. doi: 10.1016/j.snb.2020.128842
|
[45] |
Kumar A, Malinee M, Dhiman A, et al. Aptamer technology for the detection of foodborne pathogens and toxins[M]. Advanced Biosensors for Health Care Applications, 2019: 45-69.
|
[46] |
Zhu Afang, Ali S, Xu Yi, et al. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus[J]. Biosensors and Bioelectronics,2020,172:112806.
|
[47] |
Pang Yuanfeng, Wan Nan, Shi Luoluo, et al. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@ Au[J]. Analytica Chimica Acta,2019,1077:288−296. doi: 10.1016/j.aca.2019.05.059
|
[48] |
Lei Milan, Xu Chunxiang, Shan Yaqi, et al. Plasmon-coupled microcavity aptasensors for visual and ultra-sensitive simultaneous detection of Staphylococcus aureus and Escherichia coli[J]. Analytical and Bioanalytical Chemistry,2020,412(29):8117−8126. doi: 10.1007/s00216-020-02942-9
|
[49] |
Khateb H, Klös G, Meyer R L, et al. Development of a label-free LSPR-apta sensor for Staphylococcus aureus detection[J]. ACS Applied Bio Materials,2020,3(5):3066−3077. doi: 10.1021/acsabm.0c00110
|
[50] |
Lu Chunxia, Gao Xiaoxu, Chen Ya, et al. Aptamer-based lateral flow test strip for the simultaneous detection of Salmonella typhimurium, Escherichia coli O157: H7 and Staphylococcus aureus[J]. Analytical Letters,2020,53(4):646−659. doi: 10.1080/00032719.2019.1663528
|
[51] |
Lu Yunhao, Yuan Zilan, Bai Jinrong, et al. Directly profiling intact Staphylococcus aureus in water and foods via enzymatic cleavage aptasensor[J]. Analytica Chimica Acta,2020,1132:28−35. doi: 10.1016/j.aca.2020.07.058
|
[52] |
Yang Yuemeng, Wu Tingting, Xu Liping, et al. Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy[J]. Talanta,2021,226:122132. doi: 10.1016/j.talanta.2021.122132
|