HUANG Jimin, WU Zhaolong, LI Hao, et al. Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices[J]. Science and Technology of Food Industry, 2022, 43(5): 61−70. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050255.
Citation: HUANG Jimin, WU Zhaolong, LI Hao, et al. Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices[J]. Science and Technology of Food Industry, 2022, 43(5): 61−70. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050255.

Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices

More Information
  • Received Date: May 27, 2021
  • Available Online: January 03, 2022
  • In order to improve the drying efficiency, microwave intermittent drying characteristics of Xilin fire ginger slices were studied and drying kinetics model was established. Using microwave power density, intermittent time, laying density and slice thickness as the factors, the moisture changes in the microwave intermittent drying process of Xilin fire ginger slices under various conditions were measured in real time. By fitting four common drying models, the suitable model for microwave intermittent drying of Xilin fire ginger slices was optimized and its parameters were solved. A model for real time microwave intermittent drying of Xilin fire ginger slices was obtained. The results showed that there were three stages in the microwave intermittent drying process: Acceleration, constant speed and deceleration. The higher the microwave power density, the shorter the batch time, the smaller the laying density and the smaller the thickness, the faster the drying rate, the shorter the drying time required. The optimum microwave power density was 0.9 W/g, the intermittent drying time was 1.0 min, the laying density was 0.6 g/cm2, and the thickness of slices was 6 mm. The Page model was the most suitable for microwave intermittent drying (R2=0.977), and the effective water diffusion coefficient was (0.9727~7.7815)×10-9 m2/s. The drying kinetics model established can objectively and effectively reflect the microwave intermittent drying process of Xilin fire ginger slices, and can provide theoretical reference for microwave drying process of Xilin fire ginger slices.
  • [1]
    张璐璐, 吴建文, 刘慧勤, 等. 西林火姜姜油树脂的成分分析[J]. 食品工业科技,2021,42(6):226−232. [ZHANG L L, WU J W, LIU H Q, et al. Composition analysis of Xilin fire ginger oleoresins[J]. Science and Technology of Food Industry,2021,42(6):226−232.
    [2]
    黄皓, 周生茂, 尚小红, 等. 西林火姜健康组培苗快繁体系的建立[J]. 长江蔬菜,2016(20):25−29. [HUANG H, ZHOU S M, SHANG X H, et al. Establishment of rapid propagation system of healthy tissue culture seedlings of Xilin fire ginger[J]. Journal of Changjiang Vegetables,2016(20):25−29. doi: 10.3865/j.issn.1001-3547.2016.20.012
    [3]
    芦宇, 焦天慧, 李萌萌, 等. 生姜山药复合粉工艺优化及其体外模拟消化研究[J]. 中国食品学报,2018,18(11):81−89. [ LU Y, JIAO T H, LI M M, et al. Process optimizition of ginger-yam compound powder and its simulating digestion in virtro[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(11):81−89.
    [4]
    国家知识产权局. 西林姜晶[OL]. http://www.cgi.gov.cn/Products/Detail/1884/.

    State Intellectual Property Office, Xilin Jiang jing[OL]. http://www.cgi.gov.cn/Products/Detail/1884/
    [5]
    沈伟, 岑湘涛, 韦海婷, 等. 西林火姜枸杞复合型饮料的研制[J]. 农产品加工,2019(24):1−3. [SHEN W, CEN X T, WEI H T, et al. Development of xilin turmeric and Lycium barbarum compound beverage[J]. Farm Products Processing,2019(24):1−3.
    [6]
    LI Z, RAGHAVAN G S V, ORSAT V. Optimal power control strategies in microwave drying[J]. Journal of Food Engineering,2010,99(3):263−268. doi: 10.1016/j.jfoodeng.2010.02.024
    [7]
    刘盼盼, 任广跃, 段续, 等. 微波处理技术在食品干燥领域中的应用[J]. 食品与机械,2020,36(12):194−202. [ LIU P P, REN G Y, DUAN X, et al. Application of microwave treatment technology in the field of food drying[J]. Food & Machinery,2020,36(12):194−202.
    [8]
    XU W X, ISLAM M N, CAO X H, et al. Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices[J]. LWT,2020,137:110413.
    [9]
    SU D, LV W, WANG Y, et al. Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii[J]. Drying Technology,2020,38(11):1493−1504. doi: 10.1080/07373937.2019.1648291
    [10]
    CHEN C, YANG S, BU X. Microwave drying effect on pyrolysis characteristics and kinetics of microalgae[J]. BioEnergy Research,2019,12(2):400−408. doi: 10.1007/s12155-019-09970-z
    [11]
    唐小闲, 汤泉, 张巧, 等. 马蹄淀粉微波间歇干燥工艺研究[J]. 食品与机械,2018,34(4):211−215,220. [TANG X X, TANG Q, ZHANG Q, et al. Research on intermittent microwave drying of water chestnut starch[J]. Food & Machinery,2018,34(4):211−215,220.
    [12]
    韩姝葶, 王婉馨, 袁国强, 等. 干燥方式对铁皮石斛品质的影响[J]. 食品科学,2019,40(3):142−148. [ HAN S T, WANG W X, YUAN G Q, et al. Effect of different drying methods on quality of Dendrobium officinale stems[J]. Food Science,2019,40(3):142−148. doi: 10.7506/spkx1002-6630-20180712-167
    [13]
    李进一, 袁建, 王明洁, 等. 发酵菜籽饼微波间歇干燥工艺研究[J]. 食品安全质量检测学报,2017,8(10):3997−4003. [LI J Y, YUAN J, WANG M J, et al. Optimization of microwave intermittent drying process of fermented rapeseed cake[J]. Journal of Food Safety & Quality,2017,8(10):3997−4003. doi: 10.3969/j.issn.2095-0381.2017.10.056
    [14]
    张凡. 姜片的微波与热风联合干燥工艺及动力学研究[D]. 长春: 吉林大学, 2015.

    ZHANG F. Research on combination drying process and kinetics of ginger slices using microwave-hot air dehydration[D]. Changchun: Jilin University, 2015.
    [15]
    HUANG X, LI W, WANG Y, et al. Drying characteristics and quality of Stevia rebaudiana leaves by far-infrared radiation[J]. LWT- Food Science and Technology,2021,140:110638. doi: 10.1016/j.lwt.2020.110638
    [16]
    吴钊龙, 林芳, 陈振林, 等. 不同干燥方式对蚕蛹干制品品质的影响[J]. 保鲜与加工,2021,21(5):117−121. [WU Z L, LIN F, CHEN Z L, et al. Effect of different drying methods on the quality of silkworm pupa crisp[J]. Storage and Process,2021,21(5):117−121.
    [17]
    SUN X F, JIN X, FU N, et al. Effects of different pretreatment methods on the drying characteristics and quality of potatoes[J]. Food Science & Nutrition,2020,8(11):5767−5775.
    [18]
    林鸿. 铁皮石斛微波真空干燥特性及工艺优化研究[D]. 福州: 福建农林大学, 2020.

    LIN H. Study on microwave vacuum drying characteristics and process optimization of Dendrobium officinale[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
    [19]
    孙宇, 霍瑞文, 李莹莹, 等. 蓝莓微波真空干燥特性及工艺研究[J]. 保鲜与加工,2021,21(6):57−65. [SUN Y, HUO R W, LI Y Y, et al. Study on microwave vacuum drying characteristics and technology of blueberry[J]. Storage and Process,2021,21(6):57−65. doi: 10.3969/j.issn.1009-6221.2021.06.010
    [20]
    李国鹏, 谢焕雄, 王嘉麟, 等. 鸡腿菇热风干燥工艺参数优化[J]. 农机化研究,2019,41(7):233−241. [LI G P, XIE H X, WANG J L, et al. Optimization of hot-air drying technology for Coprinus comatus[J]. Journal of Agricultural Mechanization Research,2019,41(7):233−241. doi: 10.3969/j.issn.1003-188X.2019.07.045
    [21]
    吴钊龙, 林芳, 陈振林, 等. 蚕蛹变温压差膨化干燥特性及其动力学模型研究[J]. 食品科技,2020,45(10):88−95. [WU Z L, LIN F, CHEN Z L, et al. Drying characteristics and kinetic modeling of silkworm pupa by explosion puffing drying at variable temperatures and pressure difference[J]. Food Science and Technology,2020,45(10):88−95.
    [22]
    薛广, 李敏, 关志强. 基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟[J]. 食品与发酵工业,2020,46(1):157−165. [XUE G, LI M, GUAN Z Q. Simulation of vacuum microwave drying of Tilapia fillets by ultrasonic penetration based on Weibull function[J]. Food and Fermentation Industries,2020,46(1):157−165.
    [23]
    SHU B, WU G X, WANG Z N, et al. The effect of microwave vacuum drying process on citrus: Drying kinetics, physicochemical composition and antioxidant activity of dried citrus (Citrus reticulata Blanco) peel[J]. Journal of Food Measurement and Characterization,2020,32(11):1−10.
    [24]
    HUANG D, MEN K Y, TANG X H, et al. Microwave intermittent drying characteristics of Camellia oleifera seeds[J]. Journal of Food Process Engineering,2020,44(1):13608.
    [25]
    代建武, 杨升霖, 王杰, 等. 微波真空干燥对香蕉片干燥特性及品质的影响[J]. 农业机械学报,2020,51(S1):493−500. [DAI J W, YANG S L, WANG J, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture structure of banana chips[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):493−500. doi: 10.6041/j.issn.1000-1298.2020.S1.058
    [26]
    DAI J W, XIAO H W, ZHANG L H, et al. Drying characteristics and modeling of apple slices during microwave intermittent drying[J]. Journal of Food Process Engineering,2019,42(6):13212.
    [27]
    盘喻颜, 段振华, 刘艳, 等. 火龙果片微波间歇干燥特性及其动力学研究[J]. 食品与机械,2019,35(3):195−201. [PAN Y Y, DUAN Z H, LIU Y, et al. Research on properties and kinetic model of intermittent microwave drying to pitaya slices[J]. Food & Machinery,2019,35(3):195−201.
    [28]
    吴钊龙, 林芳, 陈振林, 等. 蚕蛹热泵干燥特性及其动力学模型研究[J]. 食品研究与开发,2020,41(18):1−6. [WU Z L, LIN F, CHEN Z L, et al. Heat pump drying characteristics and kinetic modeling of silkworm pupa[J]. Food Research and Development,2020,41(18):1−6.
    [29]
    LEE D Y, SO J D, JUNG H M, et al. Microwave drying characteristics of squash slices[J]. Korean Journal of Agricultural Science,2018,45(4):847−857.
    [30]
    JIE W, JIAN W D, SHENG L Y, et al. Influence of pulsed vacuum drying on drying kinetics and nutritional value of corn kernels[J]. Journal of Food Process Engineering,2020,43(12):13550.
    [31]
    李叶贝, 任广跃, 屈展平, 等. 马铃薯小麦复合面条热泵干燥特性及数学模型的研究[J]. 中国粮油学报,2019,34(10):7−15. [ LI Y B, REN G Y, QU Z P, et al. Heat pump drying characteristics and mathematical model of potato wheat compound noodle[J]. Journal of the Chinese Cereals and Oils Association,2019,34(10):7−15. doi: 10.3969/j.issn.1003-0174.2019.10.003
  • Related Articles

    [1]MA Xiangjie, ZHAO Jiansheng, HUANG Qirui, WANG Qifan, CHEN Jie, ZENG Maomao. Effects of Thermal Reaction Conditions on Dicarbonyl Compounds and Flavor Substances in Glucose-Alanine Sweet-flavored Maillard Reaction Model System[J]. Science and Technology of Food Industry, 2024, 45(16): 114-120. DOI: 10.13386/j.issn1002-0306.2023100219
    [2]SUN Bingyu, ZHENG Xinru, LIU Linlin, LÜ Mingshou, HUANG Yuyang, ZHU Ying, QU Min, ZHU Xiuqing, SHI Yanguo. Research Progress on the Influence of Coagulants and Processing Conditions on the Formation and Quality of Tofu Gel[J]. Science and Technology of Food Industry, 2024, 45(3): 388-396. DOI: 10.13386/j.issn1002-0306.2023030178
    [3]CHEN Yang, LIAO Ziwei, TAO Juanjuan, JIANG Dan, SUN Daihua, CHEN Zhiyuan. Optimization of Ultrasonic Combined with Enzymatic Extraction Process of Total Alkaloids from Artemisia argyi Leaves and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 197-205. DOI: 10.13386/j.issn1002-0306.2021090016
    [4]GONG Pin, HAN Yewen, ZHAI Pengtao, CHEN Xuefeng, ZHAI Wenjun, ZHENG Benzhong, CHEN Fuxin. Active Components, Pharmacological Action and Application in Food Processing of Eucommia ulmoides Leaves[J]. Science and Technology of Food Industry, 2022, 43(10): 395-404. DOI: 10.13386/j.issn1002-0306.2021050082
    [5]SUN Xiyun, WANG Jingwen, TIAN Sihui, XU Zihan, LI Bin. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407. DOI: 10.13386/j.issn1002-0306.2020080268
    [6]HUANG Zhiyu, SHEN Xueyu, CHEN Xunlin, GUO Zhuozhao, HUANG Wei. Isolation and Identification of Spoilage Fungi in the Fermentation Broth of Sanhua Plum, Evaluation of the Potency of Related Antibacterial Agents and Optimization of Fermentation Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 113-120. DOI: 10.13386/j.issn1002-0306.2020110278
    [7]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [8]LIU Ye, SU Hang, SONG Huan- lu, SU Ke- ran. Optimization of natto processing conditions based on nattokinase activity[J]. Science and Technology of Food Industry, 2016, (07): 170-175. DOI: 10.13386/j.issn1002-0306.2016.07.025
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]CHEN Xue-hong, QIN Wei-dong, MA Li-hua, DAI Xiao-juan. Effect of processing conditions on quality of fruit and vegetable juices[J]. Science and Technology of Food Industry, 2014, (01): 355-362. DOI: 10.13386/j.issn1002-0306.2014.01.046
  • Cited by

    Periodical cited type(18)

    1. 张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
    2. 王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
    3. 赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
    4. 肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
    5. 陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
    6. 林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
    7. 张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
    8. 申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
    9. 董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
    10. 宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
    11. 刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
    12. 张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
    13. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
    14. 田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 . 本站查看
    15. 赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
    16. 郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
    17. 吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 . 本站查看
    18. 张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (198) PDF downloads (14) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return