HUANG Jimin, WU Zhaolong, LI Hao, et al. Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices[J]. Science and Technology of Food Industry, 2022, 43(5): 61−70. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050255.
Citation: HUANG Jimin, WU Zhaolong, LI Hao, et al. Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices[J]. Science and Technology of Food Industry, 2022, 43(5): 61−70. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050255.

Intermittent Microwave Drying Characteristics and Quality Changes of Xilin Fire Ginger Slices

More Information
  • Received Date: May 27, 2021
  • Available Online: January 03, 2022
  • In order to improve the drying efficiency, microwave intermittent drying characteristics of Xilin fire ginger slices were studied and drying kinetics model was established. Using microwave power density, intermittent time, laying density and slice thickness as the factors, the moisture changes in the microwave intermittent drying process of Xilin fire ginger slices under various conditions were measured in real time. By fitting four common drying models, the suitable model for microwave intermittent drying of Xilin fire ginger slices was optimized and its parameters were solved. A model for real time microwave intermittent drying of Xilin fire ginger slices was obtained. The results showed that there were three stages in the microwave intermittent drying process: Acceleration, constant speed and deceleration. The higher the microwave power density, the shorter the batch time, the smaller the laying density and the smaller the thickness, the faster the drying rate, the shorter the drying time required. The optimum microwave power density was 0.9 W/g, the intermittent drying time was 1.0 min, the laying density was 0.6 g/cm2, and the thickness of slices was 6 mm. The Page model was the most suitable for microwave intermittent drying (R2=0.977), and the effective water diffusion coefficient was (0.9727~7.7815)×10-9 m2/s. The drying kinetics model established can objectively and effectively reflect the microwave intermittent drying process of Xilin fire ginger slices, and can provide theoretical reference for microwave drying process of Xilin fire ginger slices.
  • [1]
    张璐璐, 吴建文, 刘慧勤, 等. 西林火姜姜油树脂的成分分析[J]. 食品工业科技,2021,42(6):226−232. [ZHANG L L, WU J W, LIU H Q, et al. Composition analysis of Xilin fire ginger oleoresins[J]. Science and Technology of Food Industry,2021,42(6):226−232.
    [2]
    黄皓, 周生茂, 尚小红, 等. 西林火姜健康组培苗快繁体系的建立[J]. 长江蔬菜,2016(20):25−29. [HUANG H, ZHOU S M, SHANG X H, et al. Establishment of rapid propagation system of healthy tissue culture seedlings of Xilin fire ginger[J]. Journal of Changjiang Vegetables,2016(20):25−29. doi: 10.3865/j.issn.1001-3547.2016.20.012
    [3]
    芦宇, 焦天慧, 李萌萌, 等. 生姜山药复合粉工艺优化及其体外模拟消化研究[J]. 中国食品学报,2018,18(11):81−89. [ LU Y, JIAO T H, LI M M, et al. Process optimizition of ginger-yam compound powder and its simulating digestion in virtro[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(11):81−89.
    [4]
    国家知识产权局. 西林姜晶[OL]. http://www.cgi.gov.cn/Products/Detail/1884/.

    State Intellectual Property Office, Xilin Jiang jing[OL]. http://www.cgi.gov.cn/Products/Detail/1884/
    [5]
    沈伟, 岑湘涛, 韦海婷, 等. 西林火姜枸杞复合型饮料的研制[J]. 农产品加工,2019(24):1−3. [SHEN W, CEN X T, WEI H T, et al. Development of xilin turmeric and Lycium barbarum compound beverage[J]. Farm Products Processing,2019(24):1−3.
    [6]
    LI Z, RAGHAVAN G S V, ORSAT V. Optimal power control strategies in microwave drying[J]. Journal of Food Engineering,2010,99(3):263−268. doi: 10.1016/j.jfoodeng.2010.02.024
    [7]
    刘盼盼, 任广跃, 段续, 等. 微波处理技术在食品干燥领域中的应用[J]. 食品与机械,2020,36(12):194−202. [ LIU P P, REN G Y, DUAN X, et al. Application of microwave treatment technology in the field of food drying[J]. Food & Machinery,2020,36(12):194−202.
    [8]
    XU W X, ISLAM M N, CAO X H, et al. Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices[J]. LWT,2020,137:110413.
    [9]
    SU D, LV W, WANG Y, et al. Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii[J]. Drying Technology,2020,38(11):1493−1504. doi: 10.1080/07373937.2019.1648291
    [10]
    CHEN C, YANG S, BU X. Microwave drying effect on pyrolysis characteristics and kinetics of microalgae[J]. BioEnergy Research,2019,12(2):400−408. doi: 10.1007/s12155-019-09970-z
    [11]
    唐小闲, 汤泉, 张巧, 等. 马蹄淀粉微波间歇干燥工艺研究[J]. 食品与机械,2018,34(4):211−215,220. [TANG X X, TANG Q, ZHANG Q, et al. Research on intermittent microwave drying of water chestnut starch[J]. Food & Machinery,2018,34(4):211−215,220.
    [12]
    韩姝葶, 王婉馨, 袁国强, 等. 干燥方式对铁皮石斛品质的影响[J]. 食品科学,2019,40(3):142−148. [ HAN S T, WANG W X, YUAN G Q, et al. Effect of different drying methods on quality of Dendrobium officinale stems[J]. Food Science,2019,40(3):142−148. doi: 10.7506/spkx1002-6630-20180712-167
    [13]
    李进一, 袁建, 王明洁, 等. 发酵菜籽饼微波间歇干燥工艺研究[J]. 食品安全质量检测学报,2017,8(10):3997−4003. [LI J Y, YUAN J, WANG M J, et al. Optimization of microwave intermittent drying process of fermented rapeseed cake[J]. Journal of Food Safety & Quality,2017,8(10):3997−4003. doi: 10.3969/j.issn.2095-0381.2017.10.056
    [14]
    张凡. 姜片的微波与热风联合干燥工艺及动力学研究[D]. 长春: 吉林大学, 2015.

    ZHANG F. Research on combination drying process and kinetics of ginger slices using microwave-hot air dehydration[D]. Changchun: Jilin University, 2015.
    [15]
    HUANG X, LI W, WANG Y, et al. Drying characteristics and quality of Stevia rebaudiana leaves by far-infrared radiation[J]. LWT- Food Science and Technology,2021,140:110638. doi: 10.1016/j.lwt.2020.110638
    [16]
    吴钊龙, 林芳, 陈振林, 等. 不同干燥方式对蚕蛹干制品品质的影响[J]. 保鲜与加工,2021,21(5):117−121. [WU Z L, LIN F, CHEN Z L, et al. Effect of different drying methods on the quality of silkworm pupa crisp[J]. Storage and Process,2021,21(5):117−121.
    [17]
    SUN X F, JIN X, FU N, et al. Effects of different pretreatment methods on the drying characteristics and quality of potatoes[J]. Food Science & Nutrition,2020,8(11):5767−5775.
    [18]
    林鸿. 铁皮石斛微波真空干燥特性及工艺优化研究[D]. 福州: 福建农林大学, 2020.

    LIN H. Study on microwave vacuum drying characteristics and process optimization of Dendrobium officinale[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
    [19]
    孙宇, 霍瑞文, 李莹莹, 等. 蓝莓微波真空干燥特性及工艺研究[J]. 保鲜与加工,2021,21(6):57−65. [SUN Y, HUO R W, LI Y Y, et al. Study on microwave vacuum drying characteristics and technology of blueberry[J]. Storage and Process,2021,21(6):57−65. doi: 10.3969/j.issn.1009-6221.2021.06.010
    [20]
    李国鹏, 谢焕雄, 王嘉麟, 等. 鸡腿菇热风干燥工艺参数优化[J]. 农机化研究,2019,41(7):233−241. [LI G P, XIE H X, WANG J L, et al. Optimization of hot-air drying technology for Coprinus comatus[J]. Journal of Agricultural Mechanization Research,2019,41(7):233−241. doi: 10.3969/j.issn.1003-188X.2019.07.045
    [21]
    吴钊龙, 林芳, 陈振林, 等. 蚕蛹变温压差膨化干燥特性及其动力学模型研究[J]. 食品科技,2020,45(10):88−95. [WU Z L, LIN F, CHEN Z L, et al. Drying characteristics and kinetic modeling of silkworm pupa by explosion puffing drying at variable temperatures and pressure difference[J]. Food Science and Technology,2020,45(10):88−95.
    [22]
    薛广, 李敏, 关志强. 基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟[J]. 食品与发酵工业,2020,46(1):157−165. [XUE G, LI M, GUAN Z Q. Simulation of vacuum microwave drying of Tilapia fillets by ultrasonic penetration based on Weibull function[J]. Food and Fermentation Industries,2020,46(1):157−165.
    [23]
    SHU B, WU G X, WANG Z N, et al. The effect of microwave vacuum drying process on citrus: Drying kinetics, physicochemical composition and antioxidant activity of dried citrus (Citrus reticulata Blanco) peel[J]. Journal of Food Measurement and Characterization,2020,32(11):1−10.
    [24]
    HUANG D, MEN K Y, TANG X H, et al. Microwave intermittent drying characteristics of Camellia oleifera seeds[J]. Journal of Food Process Engineering,2020,44(1):13608.
    [25]
    代建武, 杨升霖, 王杰, 等. 微波真空干燥对香蕉片干燥特性及品质的影响[J]. 农业机械学报,2020,51(S1):493−500. [DAI J W, YANG S L, WANG J, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture structure of banana chips[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):493−500. doi: 10.6041/j.issn.1000-1298.2020.S1.058
    [26]
    DAI J W, XIAO H W, ZHANG L H, et al. Drying characteristics and modeling of apple slices during microwave intermittent drying[J]. Journal of Food Process Engineering,2019,42(6):13212.
    [27]
    盘喻颜, 段振华, 刘艳, 等. 火龙果片微波间歇干燥特性及其动力学研究[J]. 食品与机械,2019,35(3):195−201. [PAN Y Y, DUAN Z H, LIU Y, et al. Research on properties and kinetic model of intermittent microwave drying to pitaya slices[J]. Food & Machinery,2019,35(3):195−201.
    [28]
    吴钊龙, 林芳, 陈振林, 等. 蚕蛹热泵干燥特性及其动力学模型研究[J]. 食品研究与开发,2020,41(18):1−6. [WU Z L, LIN F, CHEN Z L, et al. Heat pump drying characteristics and kinetic modeling of silkworm pupa[J]. Food Research and Development,2020,41(18):1−6.
    [29]
    LEE D Y, SO J D, JUNG H M, et al. Microwave drying characteristics of squash slices[J]. Korean Journal of Agricultural Science,2018,45(4):847−857.
    [30]
    JIE W, JIAN W D, SHENG L Y, et al. Influence of pulsed vacuum drying on drying kinetics and nutritional value of corn kernels[J]. Journal of Food Process Engineering,2020,43(12):13550.
    [31]
    李叶贝, 任广跃, 屈展平, 等. 马铃薯小麦复合面条热泵干燥特性及数学模型的研究[J]. 中国粮油学报,2019,34(10):7−15. [ LI Y B, REN G Y, QU Z P, et al. Heat pump drying characteristics and mathematical model of potato wheat compound noodle[J]. Journal of the Chinese Cereals and Oils Association,2019,34(10):7−15. doi: 10.3969/j.issn.1003-0174.2019.10.003
  • Cited by

    Periodical cited type(18)

    1. 周水清,周政. 在饲粮中添加艾草粉对散养鸡的生产性能和抗病能力的影响. 青海畜牧兽医杂志. 2025(01): 13-15+35 .
    2. 雷娇,邵起菊,肖欣,李志荣,洪金伶,王森,陈荣祥. 基于HPLC-ECD测定鱼腥草叶多酚含量及抗氧化活性. 食品工业科技. 2024(04): 221-228 . 本站查看
    3. 孙立秋,王丹,赵英楠,时志春,李军,王金兰,赵明,张树军. 一测多评法测定艾叶中7个黄酮类成分的含量. 药物分析杂志. 2024(05): 806-815 .
    4. 郑文涛,刘元会,魏光强,赵兴文,黄艾祥. 蜂蜜桑茶复合饮料的工艺优化及其抗氧化活性研究. 食品科技. 2024(04): 100-107 .
    5. 崔英才,蒋梦宇,刘梦茹,来金良,姚型文,王正国,燕磊,刘永学. 艾草粉对蛋鸡生产性能、蛋品质、抗氧化功能及粪便评分的影响. 饲料研究. 2024(12): 39-43 .
    6. 纪德佳,苏慧,刘少雄,廖小兰,侯春久. 黎川县艾叶不同采收期总黄酮及山奈酚、异泽兰黄素的测定. 山东化工. 2024(24): 118-120+124 .
    7. 王文哲,梁芳,类成通,孔祥青,王裕玉. 艾蒿及其提取物在动物生产中的应用研究进展. 饲料研究. 2024(24): 158-162 .
    8. 廖富友,姚炳浓,杨娇一,王姣,祝保国,杨胜林. 饲粮添加艾叶粉对青年期蛋鸭生长性能、抗氧化功能及免疫性能的影响. 中国家禽. 2023(01): 76-81 .
    9. 李胜有,荣冬芸,潘卫东,郑志昌. 艾叶的活性成分、功效及其在动物饲养中的应用研究进展. 饲料研究. 2023(01): 137-141 .
    10. 程银水,张勇,秦志旺,董阳,李志浩,郝新才. 超高效液相色谱指纹图谱结合化学模式识别分析艾叶质量. 理化检验-化学分册. 2023(07): 837-843 .
    11. 孙君燕,孙敏,宋诗清,王化田,冯涛,姚凌云,俞文华. 香榧纯露的挥发性成分及抗氧化活性研究. 食品工业科技. 2022(03): 40-47 . 本站查看
    12. 周永强,赵春丽,殷鑫,周涛,韩伟,张永萍. 小花清风藤醇提物的化学成分及体外抗氧化活性研究. 中国药房. 2022(05): 530-534 .
    13. 陈誉华,马钱波,魏元浩,黄倩倩. 艾叶不同极性溶剂提取物的抗氧化能力的研究. 饲料研究. 2022(14): 64-68 .
    14. 赵永恒,张勇,秦志旺,董阳,汤哲伟,陈富超,罗雪,郝新才. 气相色谱-质谱指纹图谱结合化学计量学方法分析不同产地艾叶挥发油的差异. 理化检验-化学分册. 2022(11): 1277-1282 .
    15. 朱平平,覃智恒,彭慧倩,刘育文,刘静,陈锦涛,彭颖. 艾叶中多糖和黄酮联合提取工艺及抗氧化性研究. 广州化工. 2022(23): 66-69+98 .
    16. 王美英,李化强,吴菲菲. 超声波辅助提取竹叶鸡爪茶总黄酮的工艺优化及抗氧化、抑菌活性研究. 粮食与油脂. 2021(06): 105-111 .
    17. 王举翠,李明芝. 鲜芦根荷叶复合饮料研制及对运动耐力的影响研究. 食品安全质量检测学报. 2021(17): 7021-7029 .
    18. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (198) PDF downloads (14) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return