Citation: | SHENG Yueqi, WU Wenbiao. Progress of Research on Melanin in Foods and Their Materials[J]. Science and Technology of Food Industry, 2022, 43(10): 405−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050165. |
[1] |
BEKEDAM E K, ROOS E, SCHOLS H A, et al. Low molecular weight melanoidins in coffee brew[J]. Journal of Agricultural and Food Chemistry,2008,56:4060−4067. doi: 10.1021/jf8001894
|
[2] |
LANGNER E, RZESKI W. Biological properties of melanoidins: A review[J]. International Journal of Food Properties,2014,17(2):344−353. doi: 10.1080/10942912.2011.631253
|
[3] |
FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food and Function,2001,2:117−123.
|
[4] |
DEVI M S, KAVITHA K. A study on consumer satisfaction towards Cadbury Oreo biscuit with special reference to Coimbatore city[J]. Paripex - Indian Journal of Research,2014,3(10):17−19.
|
[5] |
REESINK N K, HUDDERS L, DE MAREZ L. Revisiting co-creation: Necessary success factors for crowdsourcing ideas in a consumer business setting[J]. Journal of Marketing and Communication,2020,3(1):95−116.
|
[6] |
CHANG K. World tea production and trade: Current and future development [EB/OL]. Food and Agriculture Organization of the United Nations, Rome, 2015.
|
[7] |
CHANDER K P. The global coffee commodity chain: Coffee farmers in Costa Rica and its “ups and downs”[J]. Journal of Globalization Studies,2017,8(2):92−107.
|
[8] |
Market Watch. 2019. Global Chocolate Market is projected to reach US$ 189.08 billion by 2026[EB/OL].https://www.marketwatch.com/press-release/global-chocolate-market-is-projected-to-reach-us-18908-billion-by-2026-2019-01-23.
|
[9] |
Coca-Cola’s revenue scale and growth rate, 199IT data[EB/OL]. http://www.199it.com/archives/1089273.html, 07/23/2020.
|
[10] |
DONG H, SONG W, WANG C, et al. Effects of melanin from Sepiella maindroni ink (MSMI) on the intestinal microbiome of mice[J]. BMC Microbiology,2017,17:147. doi: 10.1186/s12866-017-1058-7
|
[11] |
GUO X, CHEN S, HU Y, et al. Preparation of water soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity[J]. International Journal of Food Science and Technology,2014,51(12):3680−3690. doi: 10.1007/s13197-013-0937-7
|
[12] |
KIM Y C, CHOI S Y, PARK E Y. Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes[J]. Journal of Veterinary Science, 2015, 16(2): 135−143.
|
[13] |
SUWANNARACH N, KUMLA J, WATANABE B, et al. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319[J]. PLoS One,2019,14(9):e0222187. doi: 10.1371/journal.pone.0222187
|
[14] |
ELOBEID A S, KAMAL-ELDIN A, ABDELHALIM K, et al. Pharmacological properties of melanin and its function in health[J]. Basic & Clinical Pharmacology & Toxicology,2017,120(6):515−522.
|
[15] |
DAVY A D, BIRCH D J S. Evidence for pheomelanin sheet structure[J]. Applied Physics Letters,2018,113:263701. doi: 10.1063/1.5066081
|
[16] |
NASTI T H, TIMARES L. MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer[J]. Photochemistry and Photobiology,2015,91(1):188−200. doi: 10.1111/php.12335
|
[17] |
PREMI S. Role of melanin chemiexcitation in melanoma progression and drug resistance[J]. Frontiers in Oncology, 2020, 10: 1305.
|
[18] |
FEDOROW H, TRIBL F, HALLIDAY G, et al. Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to parkinson's disease[J]. Progress in Neurobiology,2005,75(2):109−124. doi: 10.1016/j.pneurobio.2005.02.001
|
[19] |
DE CARVALHO N M, MADUREIRA A R, PINTADO M E. The potential of insects as food sources–a review[J]. Critical Reviews in Food Science and Nutrition,2020,60:21,3642−3652.
|
[20] |
CHAMILOS G, CARVALHO A. Aspergillus fumigatus DHN-Melanin [M]. The Fungal Cell Wall, 2020.
|
[21] |
MEDINA R, LUCENTINI C G, FRANCO M E E, et al. Identification of an intermediate for 1, 8-dihydroxynaphthalene-melanin synthesis in a race-2 isolate of Fulvia fulva (syn. Cladosporium fulvum)[J]. Heliyon,2018,4(12):e01036. doi: 10.1016/j.heliyon.2018.e01036
|
[22] |
GONçALVES R C R, LISBOA H C F, POMBEIRO-SPONCHIADO S R. Characterization of melanin pigment produced by Aspergillus nidulans[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1467−1474. doi: 10.1007/s11274-011-0948-3
|
[23] |
PEREZ-CUESTA U, APARICIO-FERNANDEZ L, GURUCEAGA X, et al. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction[J]. International Microbiology, 2020, 23: 55−63.
|
[24] |
HAMAD M N F, MARREZ D A, EL-SHERBIENY S M R. Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa[J]. Biointerface Research in Applied Chemistry,2020,10(6):6974−6990. doi: 10.33263/BRIAC106.69746990
|
[25] |
SOLANO F. Melanins: Skin pigments and much more—types, structural dodels, biological functions, and formation routes[J]. New Journal of Science,2014,2014:1−28.
|
[26] |
THUREAU P, ZIARELLI F, THÉVAND A, et al. Probing the motional behavior of eumelanin and pheomelanin with solid-state NMR spectroscopy: New insights into the pigment properties[J]. Chemistry,2012,18(34):10689−10700. doi: 10.1002/chem.201200277
|
[27] |
GHIANI S, BARONI S, BURGIO D, et al. Characterization of human hair melanin and its degradation products by means of magnetic resonance techniques[J]. Magnetic Resonance in Chemistry,2008,46(5):471−479. doi: 10.1002/mrc.2202
|
[28] |
ADHYARU B B, AKHMEDOV N G, KATRITZKY A R, et al. Solid-state cross-polarization magic angle spinning 13C and 15N NMR characterization of sepia melanin, Sepia melanin free acid and human hairmelanin in comparison with several model compounds[J]. Magnetic Resonance in Chemistry,2003,41(6):466−474. doi: 10.1002/mrc.1193
|
[29] |
ITO S, WAKAMATSU K, GLASS K, et al. Highperformance liquid chromatography estimation of crosslinking of dihydroxyindole moiety in eumelanin[J]. Analytical Biochemistry,2013,434:221−225. doi: 10.1016/j.ab.2012.12.005
|
[30] |
ITO S. Reexamination of the structure of eumelanin[J]. Biochimica et Biophysica Acta,1986,883(1):155−161. doi: 10.1016/0304-4165(86)90146-7
|
[31] |
SIMON J D, PELES D, WAKAMATSU K, et al. Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function[J]. Pigment Cell and Melanoma Research,2009,22(5):563−579. doi: 10.1111/j.1755-148X.2009.00610.x
|
[32] |
ITO S, WAKAMATSU K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review[J]. Pigment Cell Research,2003,16(5):523−531. doi: 10.1034/j.1600-0749.2003.00072.x
|
[33] |
ITO S, UJTTA K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography[J]. Analytical Biochemistry,1985,144(2):527−536. doi: 10.1016/0003-2697(85)90150-2
|
[34] |
AROCA P, SOLANO F, SALINAS C, et al. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5, 6-dihydroxyindole-2-carboxylic acid and 5, 6- dihydroxyindole[J]. European Journal of Biochemistry,1992,208(1):155−163. doi: 10.1111/j.1432-1033.1992.tb17169.x
|
[35] |
PALUMBO A, SOLANO F, MISURACA G, et al. Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome[J]. Biochimica et Biophysica Acta–General Subjects,1991,1115(1):1−5. doi: 10.1016/0304-4165(91)90003-Y
|
[36] |
PROTA G. Progress in the chemistry of melanins and related metabolites[J]. Medicinal Research Reviews,1988,8(4):525−556. doi: 10.1002/med.2610080405
|
[37] |
PROTA G. Recent advances in the chemistry of melanogenesis in mammals[J]. Journal of Investigative Dermatology, 1980, 75(1): 122−127.
|
[38] |
MBONYIRYIVUZE A, MWAKIKUNGA B, DHLAMINI S M, et al. Fourier transform infrared spectroscopy for sepia melanin[J]. Physics and Materials Chemistry,2015,3(2):25−29.
|
[39] |
MUROYA S, TANABE R I, NAKAJIMA I, et al. Molecular characteristics and site specific distribution of the pigment of the silky fowl[J]. Journal of Veterinary Medical Science,2000,62(4):391−395. doi: 10.1292/jvms.62.391
|
[40] |
DENG W, YANG S L, HUO Y Q, et al. Physiological and genetic characteristics of black boned sheep (Ovis aries)[J]. Animal Genetics,2006,37:586−588. doi: 10.1111/j.1365-2052.2006.01530.x
|
[41] |
DARWISH H Y A, ZHANG Y, CUI K, et al. Molecular cloning and characterization of the endothelin 3 gene in black bone sheep[J]. Journal of Animal Science and Biotechnology,2018,9:57. doi: 10.1186/s40104-018-0272-y
|
[42] |
KRIANGWANICH W, PIBOON P, SAKORN W, et al. Consistency of dark skeletal muscles in Thai native black-bone chickens (Gallus gallus domesticus)
|
[43] |
DERBY C D. Cephalopod ink: Production, chemistry, functions and applications[J]. Marine Drugs, 2014, 12(5): 2700-2730.
|
[44] |
TU Y, SUN Y, TIAN Y, et al. Physicochemical characterization and antioxidant activity of melanin from the muscles of Taihe black-bone silky fowl (Gallus gallus domesticus Brisson)[J]. Food Chemistry,2009,114(4):1345−1350. doi: 10.1016/j.foodchem.2008.11.015
|
[45] |
LIN LC, CHEN W T. The study of antioxidant effects in melanins extracted from various tissues of animals[J]. Asian-Australas Journal of Animal Science,2005,18:277−81. doi: 10.5713/ajas.2005.277
|
[46] |
ELOBEID A S, KAMAL-ELDIN A, ABDELHALIM M A K, et al. Pharmacological properties of melanin and its function in health[J]. Basic & Clinical Pharmacology & Toxicology,2017,120:515−522.
|
[47] |
EL-OBEID A, ELETAHIR KH, ELHAG H, et al. Anti-ulcerogenic effects of Nigella sativa L. Melanin[J]. World Journal of Pharmaceutical Research,2016,5:1579−1593.
|
[48] |
KHOO H E, AZLAN A, TANG S T, et al. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food and Nutrition Research,2017,61(1):1361779. doi: 10.1080/16546628.2017.1361779
|
[49] |
WU X, BEECHER G R, HOLDEN J M, et al. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption[J]. Journal of Agricultural and Food Chemistry,2006,54:4069−4075. doi: 10.1021/jf060300l
|
[50] |
SHOEVA O Y, MURSALIMOV S R, GRACHEVA N V, et al. Melanin formation in barley grain occurs within plastids of pericarp and husk cells[J]. Scientific Report,2020,10:179. doi: 10.1038/s41598-019-56982-y
|
[51] |
PRALEA I E, MOLDOVAN R C, PETRACHE A M, et al. From extraction to advanced analytical methods: The challenges of melanin analysis[J]. International Journal of Molecular Science,2019,20:3943. doi: 10.3390/ijms20163943
|
[52] |
ENOCHS W S, NILGES M J, SWANZ H V. A standardized test for the identification and characterization of melanin using electron paramagnetic (EPR) spectroscopy[J]. Pigment Cell Research,1993,6:91−99. doi: 10.1111/j.1600-0749.1993.tb00587.x
|
[53] |
GRACHEVA N V, ZHELTOBRYUKHOV V F. A method for obtaining melanins from sunflower husk and studying its antioxidant activity[J]. News Kazan Technological University,2016,19:154−157.
|
[54] |
ZHURAVEL O I. The study of melanin from buckwheat (Fagopyron saggitatum) pericarps[J]. Farmatsevtychnyi Zhurnal,2010,6:93−96.
|
[55] |
PANZELLA L, EIDENBERGER T, NAPOLITANO A, et al. Black sesame pigment: DPPH assay-guided purification, antioxidant/antinitrosating properties, and identification of a degradative structural marker[J]. Journal of Agricultural and Food Chemistry,2012,60:8895−8901. doi: 10.1021/jf2053096
|
[56] |
PARK K I. A bHLH protein partially controls proanthocyanidin and phytomelanin pigmentation in the seed coats of morning glory Ipomoea tricolor[J]. Horticulture Environment and Biotechnology,2012,53:304−309. doi: 10.1007/s13580-012-0006-6
|
[57] |
YU C Y. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species[J]. Journal of Applied Genetics,2013,54:135−145. doi: 10.1007/s13353-012-0132-y
|
[58] |
YAO Z, QI J, WANG L. Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells[J]. Journal of Food Science,2012,77:671−676. doi: 10.1111/j.1750-3841.2012.02714.x
|
[59] |
WANG L F, RHIM J W. Isolation and characterization of melanin from black garlic and sepia ink[J]. LWT-Food Science and Technology,2019,99:17−23. doi: 10.1016/j.lwt.2018.09.033
|
[60] |
VARGA M, BERKESI O, DARULA Z, et al. Structural characterization of allomelanin from black oat[J]. Phytochemistry,2016,130:313−320. doi: 10.1016/j.phytochem.2016.07.002
|
[61] |
HSIEHL P H, LIEN T F. Study of the physico-chemical properties and antioxidant activity of extracted melanins[J]. Journal of Agricultural Science,2012,4(9):217−229.
|
[62] |
NONIER M F, VIVAS N, VIVAS DE GAULEJAC N, et al. Purification and partial characterization of melanoidins fractions from toasted oak heartwood, comparison with melanoidins from roasted coffee [J]. Journal of Food Research, 2018, 7(6): 38-58.
|
[63] |
SAVA V M, GALKIN B N, HONG M Y, et al. A melanin-like pigment derived from black tea leaves with immune-stimulating activity[J]. Food Research International,2001,34(4):337−343. doi: 10.1016/S0963-9969(00)00173-3
|
[64] |
CHEN Y S, HUNG Y C, HONG M Y, et al. Control of in vivo transport and toxicity of nanoparticles by tea melanin[J]. Journal of Nanomaterials,2012:9.
|
[65] |
ALVES G, XAVIER P, LIMOEIRO R, et al. Contribution of melanoidins from heat-processed foods to the phenolic compound intake and antioxidant capacity of the Brazilian diet[J]. Journal of Food Science and Technology,2020,57:3119−3131. doi: 10.1007/s13197-020-04346-0
|
[66] |
COSSU A, POSADINO A M, GIORDO R, et al. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization[J]. PLoS One,2012,7(11):e48817. doi: 10.1371/journal.pone.0048817
|
[67] |
HUNG Y C, HUANG G S, SAVA V M, et al. Protective effects of tea melanin against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced toxicity: Antioxidant activity and aryl hydrocarbon receptor suppressive effect[J]. Biological & Pharmaceutical Bulletin,2006,29:2284−2291.
|
[68] |
AVRAMIDIS A, KOUROUNAKIS A, HADJIPETROU L, et al. Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease[J]. Arzneimittelforschung,1998,48:764−71.
|
[69] |
EL-OBEID A, KAMAL EL DIN E, ABDELHALIM M A K, et al. Protective action of herbal melanin against carbon tetrachloride induced hepatotoxicity[C]. Proceeding of the Third International Conference on Advances in Applied Science and Environmental Engineering, 2015, 1: 6.
|
[70] |
KAMEI H, KOIDE T, KOJIMA T, et al. Suppression of growth of cultured malignant cells by allomelanins, plant-produced melanins[J]. Cancer Biotherapy and Radiopharmaceuticals,1997,12:47−49. doi: 10.1089/cbr.1997.12.47
|
[71] |
EL-OBEID A, ELTAHIRB K H, HASEEB A M. Anti-inflammatory effects of Nigella sativa L. melanin[J]. World Journal of Pharmaceutical Research,2016,5:155−161.
|
[72] |
MOON K M, KWON E B, LEE B, et al. Recent trends in controlling the enzymatic browning of fruit and vegetable products[J]. Molecules,2020,25:2754. doi: 10.3390/molecules25122754
|
[73] |
WEERAWARDANA M B S, THIRIPURANATHAR G, PARANAGAMA P A. Natural antibrowning agents against polyphenol oxidase activity in Annona muricata and Musa acuminate [J]. Journal of Chemistry, 2020, 2020(1): 1-6.
|
[74] |
LIM W Y, WONG C W. Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale Roscoe
|
[75] |
REVSKAYA E, CHU P, HOWELL R C, et al. Compton scattering by internal shields based on melanin-containing mushrooms provides protection of gastrointestinal tract from ionizing radiation[J]. Cancer Biotherapy and Radiopharmaceuticals,2012,27:570−576. doi: 10.1089/cbr.2012.1318
|
[76] |
DE SOUZA R A, KAMAT N M, NADKARNI V S. Purification and characterization of a sulphur rich melanin from edible mushroom Termitomyces albuminosus Heim[J]. Mycology,2018,9:4,296−306.
|
[77] |
PRADOS-ROSALES R, TORIOLA S, NAKOUZI A, et al. Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricular[J]. Journal of Agricultural and Food Chemistry,2015,63(33):7326−7332. doi: 10.1021/acs.jafc.5b02713
|
[78] |
FUJII I, YASUOKA Y, TSAI H F, et al. Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis[J]. The Journal of Biological Chemistry,2004,279(43):4613−44620.
|
[79] |
EL-NAGGAR N E, EL-EWASY S M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H[J]. Scientific Reports,2017,7:42129. doi: 10.1038/srep42129
|
[80] |
SUGUMARAN M, BAREK H. Critical analysis of the melanogenic pathway in insects and higher animals[J]. International Journal of Molecular Science,2016,17:1753. doi: 10.3390/ijms17101753
|
[81] |
AZZOLLINI D, VAN IWAARDEN A, LAKEMOND C M M, et al. Mechanical and enzyme assisted fractionation process for a sustainable production of black soldier fly (Hermetia illucens) ingredients[J]. Frontiers in Sustainable Food Systems,2020,4:80. doi: 10.3389/fsufs.2020.00080
|
[82] |
USHAKOVA N, DONTSOV A, SAKINA N, et al. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens[J]. Biomolecules,2019,9:408. doi: 10.3390/biom9090408
|
[83] |
USHAKOVA N A, DONTSOV A E, SАKINA N L, et al. Melanin properties at the different stages towards life cycle of the fly Hermetia illucens[J]. Ukrainian Journal of Ecology,2017,7(4):424−431. doi: 10.15421/2017_137
|
[84] |
KHAYROVA A, LOPATIN S, VARLAMOV V. Obtaining and study of physicochemical properties of chitin/chitosan-melanin complexes from Hermetia illucens[J]. Journal of Physics: Conference Series,2021,1942:012003. doi: 10.1088/1742-6596/1942/1/012003
|
[85] |
ECHAVARRÍA AP, PAGÁN J, IBARZ A. Melanoidins formed by Maillard reaction in food and their biological activity[J]. Food Engineering Reviews,2012,4(4):203−223. doi: 10.1007/s12393-012-9057-9
|
[86] |
BEKEDAM E K, LOOTS M J, SCHOLS H A, et al. Roasting effects on formation mechanisms of coffee brew melanoidins[J]. Journal of Agricultural and Food Chemistry,2008,56:7138−7145. doi: 10.1021/jf800999a
|
[87] |
AJOUZ E H, TCHIAKPE L S, DALLE O F, et al. Effects of pH on caramelization and Maillard reaction kinetics in fructose‐lysine model systems[J]. Journal of Food Science,2010,66:926−931.
|
[88] |
NUNES F M, COIMBRA M A. Melanoidins from coffee infusions: Fractionation, chemical characterization, and effect of the degree of roast[J]. Journal of Agricultural and Food Chemistry,2007,55:3967−3977. doi: 10.1021/jf063735h
|
[89] |
MORALES F J, SOMOZA V, FOGLIANO V. Physiological relevance of dietary melanoidins[J]. Amino Acids,2010,42(4):1097−1109.
|
[90] |
IRIONDO-DEHOND A, ELIZONDO A S, IRIONDO-DEHOND M, et al. Assessment of healthy and harmful Maillard reaction products in a novel coffee Cascara beverage: Melanoidins and acrylamide[J]. Foods,2020,9:620. doi: 10.3390/foods9050620
|
[91] |
FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food & Function,2011,2:117−123.
|
[92] |
LINDENMEIER M, FAIST V, HOFMANN T. Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity[J]. Journal of Agricultural and Food Chemistry,2002,50:6997−7006. doi: 10.1021/jf020618n
|
[93] |
BORRELLI R C, MENNELLA C, BARBA F, et al. Characterization of coloured compounds obtained by enzymatic extraction of bakery products[J]. Food and Chemical Toxicology,2003,41:1367−1374. doi: 10.1016/S0278-6915(03)00140-6
|
[94] |
SOMOZA V, WENZEL E, LINDENMEIMER M, et al. Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidantive defense parameters in vivo[J]. Journal of Agricultural and Food Chemistry,2005,53:8176−8182. doi: 10.1021/jf0512611
|
[95] |
DE MARCO L M, FISCHER S, HENLE T. High molecular weight coffee melanoidins are inhibitors for matrix metalloproteases[J]. Journal Agricultural and Food Chemistry,2011,59:11417−11423. doi: 10.1021/jf202778w
|
[96] |
TAGLIAZUCCHI D, VERZELLONI E. Relationship between the chemical composition and the biological activities of food melanoidins[J]. Food Science and Biotechnology,2014,23:561−568. doi: 10.1007/s10068-014-0077-5
|
[97] |
LANGNER E, RZESKI W. Biological properties of melanoidins: A review[J]. International Journal of Food Properties,2014,17:2,344−353. doi: 10.1080/10942912.2013.803119
|
[98] |
PÉREZ-BURILLO S, RAJAKARUNA S, PASTORIZA S, et al. Bioactivity of food melanoidins is mediated by gut microbiota[J]. Food Chemistry,2020,316:126309. doi: 10.1016/j.foodchem.2020.126309
|
[99] |
RUFIAN-HENARES J A, MORALES F J. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins[J]. Journal of Agricultural and Food Chemistry,2007,55:1480−1485. doi: 10.1021/jf062604d
|
[100] |
RUFFIAN-HENARES J A, MORALES F J. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities[J]. Food Research International,2007,40:995−1002. doi: 10.1016/j.foodres.2007.05.002
|
[101] |
DIAZ-MORALES N, CAVIA-SAIZ M, SALAZAR G, et al. Cytotoxicity study of bakery product melanoidins on intestinal and endothelial cell lines[J]. Food Chemistry,2020,343(8):128405. doi: 10.1016/j.foodchem.2020.128405
|
[102] |
NOOSHKAM M, VARIDI M, VERMA D K. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review[J]. Food Research International,2020,131:e109003. doi: 10.1016/j.foodres.2020.109003
|
[103] |
MESÍAS M, DELGADO-ANDRADE C. Melanoidins as a potential functional food ingredient[J]. Current Opinion in Food Science,2017,14:37−42. doi: 10.1016/j.cofs.2017.01.007
|
[104] |
WALKER J M, MENNELLA I, FERRACANE R, et al. Melanoidins from coffee and bread differently influence energy intake: A randomized controlled trial of food intake and gut-brain axis response[J]. Journal of Functional Foods,2020,72:104063. doi: 10.1016/j.jff.2020.104063
|
[105] |
SUZUKI E, OTAKE S, HAMADATE N, et al. Kurozu melanoidin, a novel oligoglucan-melanoidin complex from Japanese black vinegar, suppresses adipogenesis in vitro[J]. Journal of Functional Foods,2020,72:104046. doi: 10.1016/j.jff.2020.104046
|
[106] |
GOYA L, RAMOS S, MARTÍN M A, et al. Chapter 102 - Cytoprotective effect of coffee melanoidins[M]. Editor(s): Victor R. Preedy, Coffee in Health and Disease Prevention, Academic Press, 2015: 921-929.
|
[107] |
KAUSAR K, HANIF H, SADDIQA A, et al. Estimation of antioxidant potential of caramelized products by DPPH assay[J]. The International Journal of Global Sciences,2019,2(3):115−119.
|
[108] |
FLORES-CALDERÓN A M D, LUNA H, ESCALONA-BUENDÍA H B. Chemical characterization and antioxidant capacity in blue corn (Zea mays L.) malt beers[J]. Journal of Institute of Brewing, 2017, 123: 506–518.
|
[109] |
CÉDRIC M, GOUTTEFANGEAS C, DUBOIS C, et al. Investigation of the antioxidant capacity of caramels: Combination of laboratory assays and C. elegans model[J]. Journal of Functional Foods,2021,78:104308. doi: 10.1016/j.jff.2020.104308
|
[110] |
NAGAI T, KAI N, TANOUE Y, et al. Chemical properties of commercially available honey species and the functional properties of caramelization and Maillard reaction products derived from these honey species[J]. Journal of Food Science and Technology,2018,55:586−597. doi: 10.1007/s13197-017-2968-y
|
[111] |
VOLLMUTH T A. Caramel color safety–an update[J]. Food and Chemical Toxicology,2018,111:578−596. doi: 10.1016/j.fct.2017.12.004
|