SHENG Yueqi, WU Wenbiao. Progress of Research on Melanin in Foods and Their Materials[J]. Science and Technology of Food Industry, 2022, 43(10): 405−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050165.
Citation: SHENG Yueqi, WU Wenbiao. Progress of Research on Melanin in Foods and Their Materials[J]. Science and Technology of Food Industry, 2022, 43(10): 405−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050165.

Progress of Research on Melanin in Foods and Their Materials

More Information
  • Received Date: May 19, 2021
  • Available Online: March 18, 2022
  • Melanin in food and its raw materials has been widely studied in recent years. Each kind of melanin has many types, various formation mechanisms and complicated structures. Black animal, fungus, plant food or raw materials generally contain a certain amount of melanin. Artificial melanin caramel pigment is widely used in variously processed beverages and foods. Research results indicates that, edible melanin has antioxidant activity, anticancer ability, antimicrobial capacity, anti-inflammation, hypotensive or hypolipemia function, metal ion chelation and beneficial effect on intestines and stomach system. The melanin derived from the oxidation of polyphenols has the property of liver protection and immune function adjustment. With the human diet, a certain amount of melanin is taken into the body every day, but there is no research evidence of toxicity of melanin or artificial caramel pigment in various foods or beverages and their raw materials. Therefore, this paper systematically discusses the formation, structural composition and characteristics, content, various important functional characteristics and edible safety of three kinds of melanin (including natural biosynthesis, Maillard reaction and synthetic caramel) commonly used in some foods and their raw materials to provide reference for the development and utilization of various melanins or artificial melanins in foods and their raw materials.
  • [1]
    BEKEDAM E K, ROOS E, SCHOLS H A, et al. Low molecular weight melanoidins in coffee brew[J]. Journal of Agricultural and Food Chemistry,2008,56:4060−4067. doi: 10.1021/jf8001894
    [2]
    LANGNER E, RZESKI W. Biological properties of melanoidins: A review[J]. International Journal of Food Properties,2014,17(2):344−353. doi: 10.1080/10942912.2011.631253
    [3]
    FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food and Function,2001,2:117−123.
    [4]
    DEVI M S, KAVITHA K. A study on consumer satisfaction towards Cadbury Oreo biscuit with special reference to Coimbatore city[J]. Paripex - Indian Journal of Research,2014,3(10):17−19.
    [5]
    REESINK N K, HUDDERS L, DE MAREZ L. Revisiting co-creation: Necessary success factors for crowdsourcing ideas in a consumer business setting[J]. Journal of Marketing and Communication,2020,3(1):95−116.
    [6]
    CHANG K. World tea production and trade: Current and future development [EB/OL]. Food and Agriculture Organization of the United Nations, Rome, 2015.
    [7]
    CHANDER K P. The global coffee commodity chain: Coffee farmers in Costa Rica and its “ups and downs”[J]. Journal of Globalization Studies,2017,8(2):92−107.
    [8]
    Market Watch. 2019. Global Chocolate Market is projected to reach US$ 189.08 billion by 2026[EB/OL].https://www.marketwatch.com/press-release/global-chocolate-market-is-projected-to-reach-us-18908-billion-by-2026-2019-01-23.
    [9]
    Coca-Cola’s revenue scale and growth rate, 199IT data[EB/OL]. http://www.199it.com/archives/1089273.html, 07/23/2020.
    [10]
    DONG H, SONG W, WANG C, et al. Effects of melanin from Sepiella maindroni ink (MSMI) on the intestinal microbiome of mice[J]. BMC Microbiology,2017,17:147. doi: 10.1186/s12866-017-1058-7
    [11]
    GUO X, CHEN S, HU Y, et al. Preparation of water soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity[J]. International Journal of Food Science and Technology,2014,51(12):3680−3690. doi: 10.1007/s13197-013-0937-7
    [12]
    KIM Y C, CHOI S Y, PARK E Y. Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes[J]. Journal of Veterinary Science, 2015, 16(2): 135−143.
    [13]
    SUWANNARACH N, KUMLA J, WATANABE B, et al. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319[J]. PLoS One,2019,14(9):e0222187. doi: 10.1371/journal.pone.0222187
    [14]
    ELOBEID A S, KAMAL-ELDIN A, ABDELHALIM K, et al. Pharmacological properties of melanin and its function in health[J]. Basic & Clinical Pharmacology & Toxicology,2017,120(6):515−522.
    [15]
    DAVY A D, BIRCH D J S. Evidence for pheomelanin sheet structure[J]. Applied Physics Letters,2018,113:263701. doi: 10.1063/1.5066081
    [16]
    NASTI T H, TIMARES L. MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer[J]. Photochemistry and Photobiology,2015,91(1):188−200. doi: 10.1111/php.12335
    [17]
    PREMI S. Role of melanin chemiexcitation in melanoma progression and drug resistance[J]. Frontiers in Oncology, 2020, 10: 1305.
    [18]
    FEDOROW H, TRIBL F, HALLIDAY G, et al. Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to parkinson's disease[J]. Progress in Neurobiology,2005,75(2):109−124. doi: 10.1016/j.pneurobio.2005.02.001
    [19]
    DE CARVALHO N M, MADUREIRA A R, PINTADO M E. The potential of insects as food sources–a review[J]. Critical Reviews in Food Science and Nutrition,2020,60:21,3642−3652.
    [20]
    CHAMILOS G, CARVALHO A. Aspergillus fumigatus DHN-Melanin [M]. The Fungal Cell Wall, 2020.
    [21]
    MEDINA R, LUCENTINI C G, FRANCO M E E, et al. Identification of an intermediate for 1, 8-dihydroxynaphthalene-melanin synthesis in a race-2 isolate of Fulvia fulva (syn. Cladosporium fulvum)[J]. Heliyon,2018,4(12):e01036. doi: 10.1016/j.heliyon.2018.e01036
    [22]
    GONçALVES R C R, LISBOA H C F, POMBEIRO-SPONCHIADO S R. Characterization of melanin pigment produced by Aspergillus nidulans[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1467−1474. doi: 10.1007/s11274-011-0948-3
    [23]
    PEREZ-CUESTA U, APARICIO-FERNANDEZ L, GURUCEAGA X, et al. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction[J]. International Microbiology, 2020, 23: 55−63.
    [24]
    HAMAD M N F, MARREZ D A, EL-SHERBIENY S M R. Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa[J]. Biointerface Research in Applied Chemistry,2020,10(6):6974−6990. doi: 10.33263/BRIAC106.69746990
    [25]
    SOLANO F. Melanins: Skin pigments and much more—types, structural dodels, biological functions, and formation routes[J]. New Journal of Science,2014,2014:1−28.
    [26]
    THUREAU P, ZIARELLI F, THÉVAND A, et al. Probing the motional behavior of eumelanin and pheomelanin with solid-state NMR spectroscopy: New insights into the pigment properties[J]. Chemistry,2012,18(34):10689−10700. doi: 10.1002/chem.201200277
    [27]
    GHIANI S, BARONI S, BURGIO D, et al. Characterization of human hair melanin and its degradation products by means of magnetic resonance techniques[J]. Magnetic Resonance in Chemistry,2008,46(5):471−479. doi: 10.1002/mrc.2202
    [28]
    ADHYARU B B, AKHMEDOV N G, KATRITZKY A R, et al. Solid-state cross-polarization magic angle spinning 13C and 15N NMR characterization of sepia melanin, Sepia melanin free acid and human hairmelanin in comparison with several model compounds[J]. Magnetic Resonance in Chemistry,2003,41(6):466−474. doi: 10.1002/mrc.1193
    [29]
    ITO S, WAKAMATSU K, GLASS K, et al. Highperformance liquid chromatography estimation of crosslinking of dihydroxyindole moiety in eumelanin[J]. Analytical Biochemistry,2013,434:221−225. doi: 10.1016/j.ab.2012.12.005
    [30]
    ITO S. Reexamination of the structure of eumelanin[J]. Biochimica et Biophysica Acta,1986,883(1):155−161. doi: 10.1016/0304-4165(86)90146-7
    [31]
    SIMON J D, PELES D, WAKAMATSU K, et al. Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function[J]. Pigment Cell and Melanoma Research,2009,22(5):563−579. doi: 10.1111/j.1755-148X.2009.00610.x
    [32]
    ITO S, WAKAMATSU K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review[J]. Pigment Cell Research,2003,16(5):523−531. doi: 10.1034/j.1600-0749.2003.00072.x
    [33]
    ITO S, UJTTA K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography[J]. Analytical Biochemistry,1985,144(2):527−536. doi: 10.1016/0003-2697(85)90150-2
    [34]
    AROCA P, SOLANO F, SALINAS C, et al. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5, 6-dihydroxyindole-2-carboxylic acid and 5, 6- dihydroxyindole[J]. European Journal of Biochemistry,1992,208(1):155−163. doi: 10.1111/j.1432-1033.1992.tb17169.x
    [35]
    PALUMBO A, SOLANO F, MISURACA G, et al. Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome[J]. Biochimica et Biophysica Acta–General Subjects,1991,1115(1):1−5. doi: 10.1016/0304-4165(91)90003-Y
    [36]
    PROTA G. Progress in the chemistry of melanins and related metabolites[J]. Medicinal Research Reviews,1988,8(4):525−556. doi: 10.1002/med.2610080405
    [37]
    PROTA G. Recent advances in the chemistry of melanogenesis in mammals[J]. Journal of Investigative Dermatology, 1980, 75(1): 122−127.
    [38]
    MBONYIRYIVUZE A, MWAKIKUNGA B, DHLAMINI S M, et al. Fourier transform infrared spectroscopy for sepia melanin[J]. Physics and Materials Chemistry,2015,3(2):25−29.
    [39]
    MUROYA S, TANABE R I, NAKAJIMA I, et al. Molecular characteristics and site specific distribution of the pigment of the silky fowl[J]. Journal of Veterinary Medical Science,2000,62(4):391−395. doi: 10.1292/jvms.62.391
    [40]
    DENG W, YANG S L, HUO Y Q, et al. Physiological and genetic characteristics of black boned sheep (Ovis aries)[J]. Animal Genetics,2006,37:586−588. doi: 10.1111/j.1365-2052.2006.01530.x
    [41]
    DARWISH H Y A, ZHANG Y, CUI K, et al. Molecular cloning and characterization of the endothelin 3 gene in black bone sheep[J]. Journal of Animal Science and Biotechnology,2018,9:57. doi: 10.1186/s40104-018-0272-y
    [42]
    KRIANGWANICH W, PIBOON P, SAKORN W, et al. Consistency of dark skeletal muscles in Thai native black-bone chickens (Gallus gallus domesticus)[J]. Peer Journal,2021,9:e10728. doi: 10.7717/peerj.10728
    [43]
    DERBY C D. Cephalopod ink: Production, chemistry, functions and applications[J]. Marine Drugs, 2014, 12(5): 2700-2730.
    [44]
    TU Y, SUN Y, TIAN Y, et al. Physicochemical characterization and antioxidant activity of melanin from the muscles of Taihe black-bone silky fowl (Gallus gallus domesticus Brisson)[J]. Food Chemistry,2009,114(4):1345−1350. doi: 10.1016/j.foodchem.2008.11.015
    [45]
    LIN LC, CHEN W T. The study of antioxidant effects in melanins extracted from various tissues of animals[J]. Asian-Australas Journal of Animal Science,2005,18:277−81. doi: 10.5713/ajas.2005.277
    [46]
    ELOBEID A S, KAMAL-ELDIN A, ABDELHALIM M A K, et al. Pharmacological properties of melanin and its function in health[J]. Basic & Clinical Pharmacology & Toxicology,2017,120:515−522.
    [47]
    EL-OBEID A, ELETAHIR KH, ELHAG H, et al. Anti-ulcerogenic effects of Nigella sativa L. Melanin[J]. World Journal of Pharmaceutical Research,2016,5:1579−1593.
    [48]
    KHOO H E, AZLAN A, TANG S T, et al. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food and Nutrition Research,2017,61(1):1361779. doi: 10.1080/16546628.2017.1361779
    [49]
    WU X, BEECHER G R, HOLDEN J M, et al. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption[J]. Journal of Agricultural and Food Chemistry,2006,54:4069−4075. doi: 10.1021/jf060300l
    [50]
    SHOEVA O Y, MURSALIMOV S R, GRACHEVA N V, et al. Melanin formation in barley grain occurs within plastids of pericarp and husk cells[J]. Scientific Report,2020,10:179. doi: 10.1038/s41598-019-56982-y
    [51]
    PRALEA I E, MOLDOVAN R C, PETRACHE A M, et al. From extraction to advanced analytical methods: The challenges of melanin analysis[J]. International Journal of Molecular Science,2019,20:3943. doi: 10.3390/ijms20163943
    [52]
    ENOCHS W S, NILGES M J, SWANZ H V. A standardized test for the identification and characterization of melanin using electron paramagnetic (EPR) spectroscopy[J]. Pigment Cell Research,1993,6:91−99. doi: 10.1111/j.1600-0749.1993.tb00587.x
    [53]
    GRACHEVA N V, ZHELTOBRYUKHOV V F. A method for obtaining melanins from sunflower husk and studying its antioxidant activity[J]. News Kazan Technological University,2016,19:154−157.
    [54]
    ZHURAVEL O I. The study of melanin from buckwheat (Fagopyron saggitatum) pericarps[J]. Farmatsevtychnyi Zhurnal,2010,6:93−96.
    [55]
    PANZELLA L, EIDENBERGER T, NAPOLITANO A, et al. Black sesame pigment: DPPH assay-guided purification, antioxidant/antinitrosating properties, and identification of a degradative structural marker[J]. Journal of Agricultural and Food Chemistry,2012,60:8895−8901. doi: 10.1021/jf2053096
    [56]
    PARK K I. A bHLH protein partially controls proanthocyanidin and phytomelanin pigmentation in the seed coats of morning glory Ipomoea tricolor[J]. Horticulture Environment and Biotechnology,2012,53:304−309. doi: 10.1007/s13580-012-0006-6
    [57]
    YU C Y. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species[J]. Journal of Applied Genetics,2013,54:135−145. doi: 10.1007/s13353-012-0132-y
    [58]
    YAO Z, QI J, WANG L. Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells[J]. Journal of Food Science,2012,77:671−676. doi: 10.1111/j.1750-3841.2012.02714.x
    [59]
    WANG L F, RHIM J W. Isolation and characterization of melanin from black garlic and sepia ink[J]. LWT-Food Science and Technology,2019,99:17−23. doi: 10.1016/j.lwt.2018.09.033
    [60]
    VARGA M, BERKESI O, DARULA Z, et al. Structural characterization of allomelanin from black oat[J]. Phytochemistry,2016,130:313−320. doi: 10.1016/j.phytochem.2016.07.002
    [61]
    HSIEHL P H, LIEN T F. Study of the physico-chemical properties and antioxidant activity of extracted melanins[J]. Journal of Agricultural Science,2012,4(9):217−229.
    [62]
    NONIER M F, VIVAS N, VIVAS DE GAULEJAC N, et al. Purification and partial characterization of melanoidins fractions from toasted oak heartwood, comparison with melanoidins from roasted coffee [J]. Journal of Food Research, 2018, 7(6): 38-58.
    [63]
    SAVA V M, GALKIN B N, HONG M Y, et al. A melanin-like pigment derived from black tea leaves with immune-stimulating activity[J]. Food Research International,2001,34(4):337−343. doi: 10.1016/S0963-9969(00)00173-3
    [64]
    CHEN Y S, HUNG Y C, HONG M Y, et al. Control of in vivo transport and toxicity of nanoparticles by tea melanin[J]. Journal of Nanomaterials,2012:9.
    [65]
    ALVES G, XAVIER P, LIMOEIRO R, et al. Contribution of melanoidins from heat-processed foods to the phenolic compound intake and antioxidant capacity of the Brazilian diet[J]. Journal of Food Science and Technology,2020,57:3119−3131. doi: 10.1007/s13197-020-04346-0
    [66]
    COSSU A, POSADINO A M, GIORDO R, et al. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization[J]. PLoS One,2012,7(11):e48817. doi: 10.1371/journal.pone.0048817
    [67]
    HUNG Y C, HUANG G S, SAVA V M, et al. Protective effects of tea melanin against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced toxicity: Antioxidant activity and aryl hydrocarbon receptor suppressive effect[J]. Biological & Pharmaceutical Bulletin,2006,29:2284−2291.
    [68]
    AVRAMIDIS A, KOUROUNAKIS A, HADJIPETROU L, et al. Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease[J]. Arzneimittelforschung,1998,48:764−71.
    [69]
    EL-OBEID A, KAMAL EL DIN E, ABDELHALIM M A K, et al. Protective action of herbal melanin against carbon tetrachloride induced hepatotoxicity[C]. Proceeding of the Third International Conference on Advances in Applied Science and Environmental Engineering, 2015, 1: 6.
    [70]
    KAMEI H, KOIDE T, KOJIMA T, et al. Suppression of growth of cultured malignant cells by allomelanins, plant-produced melanins[J]. Cancer Biotherapy and Radiopharmaceuticals,1997,12:47−49. doi: 10.1089/cbr.1997.12.47
    [71]
    EL-OBEID A, ELTAHIRB K H, HASEEB A M. Anti-inflammatory effects of Nigella sativa L. melanin[J]. World Journal of Pharmaceutical Research,2016,5:155−161.
    [72]
    MOON K M, KWON E B, LEE B, et al. Recent trends in controlling the enzymatic browning of fruit and vegetable products[J]. Molecules,2020,25:2754. doi: 10.3390/molecules25122754
    [73]
    WEERAWARDANA M B S, THIRIPURANATHAR G, PARANAGAMA P A. Natural antibrowning agents against polyphenol oxidase activity in Annona muricata and Musa acuminate [J]. Journal of Chemistry, 2020, 2020(1): 1-6.
    [74]
    LIM W Y, WONG C W. Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale Roscoe)[J]. Journal of Food Science and Technology,2018,55(8):3001−3007. doi: 10.1007/s13197-018-3218-7
    [75]
    REVSKAYA E, CHU P, HOWELL R C, et al. Compton scattering by internal shields based on melanin-containing mushrooms provides protection of gastrointestinal tract from ionizing radiation[J]. Cancer Biotherapy and Radiopharmaceuticals,2012,27:570−576. doi: 10.1089/cbr.2012.1318
    [76]
    DE SOUZA R A, KAMAT N M, NADKARNI V S. Purification and characterization of a sulphur rich melanin from edible mushroom Termitomyces albuminosus Heim[J]. Mycology,2018,9:4,296−306.
    [77]
    PRADOS-ROSALES R, TORIOLA S, NAKOUZI A, et al. Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricular[J]. Journal of Agricultural and Food Chemistry,2015,63(33):7326−7332. doi: 10.1021/acs.jafc.5b02713
    [78]
    FUJII I, YASUOKA Y, TSAI H F, et al. Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis[J]. The Journal of Biological Chemistry,2004,279(43):4613−44620.
    [79]
    EL-NAGGAR N E, EL-EWASY S M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H[J]. Scientific Reports,2017,7:42129. doi: 10.1038/srep42129
    [80]
    SUGUMARAN M, BAREK H. Critical analysis of the melanogenic pathway in insects and higher animals[J]. International Journal of Molecular Science,2016,17:1753. doi: 10.3390/ijms17101753
    [81]
    AZZOLLINI D, VAN IWAARDEN A, LAKEMOND C M M, et al. Mechanical and enzyme assisted fractionation process for a sustainable production of black soldier fly (Hermetia illucens) ingredients[J]. Frontiers in Sustainable Food Systems,2020,4:80. doi: 10.3389/fsufs.2020.00080
    [82]
    USHAKOVA N, DONTSOV A, SAKINA N, et al. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens[J]. Biomolecules,2019,9:408. doi: 10.3390/biom9090408
    [83]
    USHAKOVA N A, DONTSOV A E, SАKINA N L, et al. Melanin properties at the different stages towards life cycle of the fly Hermetia illucens[J]. Ukrainian Journal of Ecology,2017,7(4):424−431. doi: 10.15421/2017_137
    [84]
    KHAYROVA A, LOPATIN S, VARLAMOV V. Obtaining and study of physicochemical properties of chitin/chitosan-melanin complexes from Hermetia illucens[J]. Journal of Physics: Conference Series,2021,1942:012003. doi: 10.1088/1742-6596/1942/1/012003
    [85]
    ECHAVARRÍA AP, PAGÁN J, IBARZ A. Melanoidins formed by Maillard reaction in food and their biological activity[J]. Food Engineering Reviews,2012,4(4):203−223. doi: 10.1007/s12393-012-9057-9
    [86]
    BEKEDAM E K, LOOTS M J, SCHOLS H A, et al. Roasting effects on formation mechanisms of coffee brew melanoidins[J]. Journal of Agricultural and Food Chemistry,2008,56:7138−7145. doi: 10.1021/jf800999a
    [87]
    AJOUZ E H, TCHIAKPE L S, DALLE O F, et al. Effects of pH on caramelization and Maillard reaction kinetics in fructose‐lysine model systems[J]. Journal of Food Science,2010,66:926−931.
    [88]
    NUNES F M, COIMBRA M A. Melanoidins from coffee infusions: Fractionation, chemical characterization, and effect of the degree of roast[J]. Journal of Agricultural and Food Chemistry,2007,55:3967−3977. doi: 10.1021/jf063735h
    [89]
    MORALES F J, SOMOZA V, FOGLIANO V. Physiological relevance of dietary melanoidins[J]. Amino Acids,2010,42(4):1097−1109.
    [90]
    IRIONDO-DEHOND A, ELIZONDO A S, IRIONDO-DEHOND M, et al. Assessment of healthy and harmful Maillard reaction products in a novel coffee Cascara beverage: Melanoidins and acrylamide[J]. Foods,2020,9:620. doi: 10.3390/foods9050620
    [91]
    FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food & Function,2011,2:117−123.
    [92]
    LINDENMEIER M, FAIST V, HOFMANN T. Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity[J]. Journal of Agricultural and Food Chemistry,2002,50:6997−7006. doi: 10.1021/jf020618n
    [93]
    BORRELLI R C, MENNELLA C, BARBA F, et al. Characterization of coloured compounds obtained by enzymatic extraction of bakery products[J]. Food and Chemical Toxicology,2003,41:1367−1374. doi: 10.1016/S0278-6915(03)00140-6
    [94]
    SOMOZA V, WENZEL E, LINDENMEIMER M, et al. Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidantive defense parameters in vivo[J]. Journal of Agricultural and Food Chemistry,2005,53:8176−8182. doi: 10.1021/jf0512611
    [95]
    DE MARCO L M, FISCHER S, HENLE T. High molecular weight coffee melanoidins are inhibitors for matrix metalloproteases[J]. Journal Agricultural and Food Chemistry,2011,59:11417−11423. doi: 10.1021/jf202778w
    [96]
    TAGLIAZUCCHI D, VERZELLONI E. Relationship between the chemical composition and the biological activities of food melanoidins[J]. Food Science and Biotechnology,2014,23:561−568. doi: 10.1007/s10068-014-0077-5
    [97]
    LANGNER E, RZESKI W. Biological properties of melanoidins: A review[J]. International Journal of Food Properties,2014,17:2,344−353. doi: 10.1080/10942912.2013.803119
    [98]
    PÉREZ-BURILLO S, RAJAKARUNA S, PASTORIZA S, et al. Bioactivity of food melanoidins is mediated by gut microbiota[J]. Food Chemistry,2020,316:126309. doi: 10.1016/j.foodchem.2020.126309
    [99]
    RUFIAN-HENARES J A, MORALES F J. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins[J]. Journal of Agricultural and Food Chemistry,2007,55:1480−1485. doi: 10.1021/jf062604d
    [100]
    RUFFIAN-HENARES J A, MORALES F J. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities[J]. Food Research International,2007,40:995−1002. doi: 10.1016/j.foodres.2007.05.002
    [101]
    DIAZ-MORALES N, CAVIA-SAIZ M, SALAZAR G, et al. Cytotoxicity study of bakery product melanoidins on intestinal and endothelial cell lines[J]. Food Chemistry,2020,343(8):128405. doi: 10.1016/j.foodchem.2020.128405
    [102]
    NOOSHKAM M, VARIDI M, VERMA D K. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review[J]. Food Research International,2020,131:e109003. doi: 10.1016/j.foodres.2020.109003
    [103]
    MESÍAS M, DELGADO-ANDRADE C. Melanoidins as a potential functional food ingredient[J]. Current Opinion in Food Science,2017,14:37−42. doi: 10.1016/j.cofs.2017.01.007
    [104]
    WALKER J M, MENNELLA I, FERRACANE R, et al. Melanoidins from coffee and bread differently influence energy intake: A randomized controlled trial of food intake and gut-brain axis response[J]. Journal of Functional Foods,2020,72:104063. doi: 10.1016/j.jff.2020.104063
    [105]
    SUZUKI E, OTAKE S, HAMADATE N, et al. Kurozu melanoidin, a novel oligoglucan-melanoidin complex from Japanese black vinegar, suppresses adipogenesis in vitro[J]. Journal of Functional Foods,2020,72:104046. doi: 10.1016/j.jff.2020.104046
    [106]
    GOYA L, RAMOS S, MARTÍN M A, et al. Chapter 102 - Cytoprotective effect of coffee melanoidins[M]. Editor(s): Victor R. Preedy, Coffee in Health and Disease Prevention, Academic Press, 2015: 921-929.
    [107]
    KAUSAR K, HANIF H, SADDIQA A, et al. Estimation of antioxidant potential of caramelized products by DPPH assay[J]. The International Journal of Global Sciences,2019,2(3):115−119.
    [108]
    FLORES-CALDERÓN A M D, LUNA H, ESCALONA-BUENDÍA H B. Chemical characterization and antioxidant capacity in blue corn (Zea mays L.) malt beers[J]. Journal of Institute of Brewing, 2017, 123: 506–518.
    [109]
    CÉDRIC M, GOUTTEFANGEAS C, DUBOIS C, et al. Investigation of the antioxidant capacity of caramels: Combination of laboratory assays and C. elegans model[J]. Journal of Functional Foods,2021,78:104308. doi: 10.1016/j.jff.2020.104308
    [110]
    NAGAI T, KAI N, TANOUE Y, et al. Chemical properties of commercially available honey species and the functional properties of caramelization and Maillard reaction products derived from these honey species[J]. Journal of Food Science and Technology,2018,55:586−597. doi: 10.1007/s13197-017-2968-y
    [111]
    VOLLMUTH T A. Caramel color safety–an update[J]. Food and Chemical Toxicology,2018,111:578−596. doi: 10.1016/j.fct.2017.12.004

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return