FAN Rong, MA Guohua, YU Shanshan. Protective Effect of Polysaccharide from Gastrodia elata Blume on Non-alcoholic Fatty Liver Induced by High Fat Diet[J]. Science and Technology of Food Industry, 2022, 43(1): 381−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040193.
Citation: FAN Rong, MA Guohua, YU Shanshan. Protective Effect of Polysaccharide from Gastrodia elata Blume on Non-alcoholic Fatty Liver Induced by High Fat Diet[J]. Science and Technology of Food Industry, 2022, 43(1): 381−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040193.

Protective Effect of Polysaccharide from Gastrodia elata Blume on Non-alcoholic Fatty Liver Induced by High Fat Diet

More Information
  • Received Date: April 25, 2021
  • Available Online: November 05, 2021
  • Objective: To investigate the protective and delayed effects of Gastrodia elata polysaccharide on non-alcoholic fatty liver (NAFLD) and its molecular mechanism. Methods:60 ICR mice were randomly divided into normal group, model group and Gastrodia elata polysaccharide group (50, 100 and 200 mg/kg). Except the normal group, the other groups were given high-fat diet to induce NAFLD model. At the same time, the corresponding drugs were given once a day for 10 weeks. At 30 min after the last administration, the body weight and organ index of mice were recorded, the pathological changes of liver tissue were evaluated by histopathology. At the same time, the activity of serum aspartate amino transferase (AST) and alanine amino transferase (ALT) were measured, and the related signal transduction pathways were examined including oxidative stress injury and lipid metabolism. Results:Compared with the model group, the activity of AST and ALT in serum were significantly decreased (P<0.05), and the pathological symptoms of fatty liver tissue was alleviated, and the level of genes expression related to lipid accumulation were regulated to improve lipid metabolism (P<0.05); In addition, Gastrodia elata polysaccharide also improved oxidative stress injury by upregulating Nrf2/GPX signaling pathway (P<0.05), inhibited the expression of NF-κB, TNF-α, IL-1β, iNOS and COX-2 proteins related to inflammatory response (P<0.05), and inhibited the expression of Bax and upregulated Bcl-2 proteins (P<0.05). Conclusion: Gastrodia elata Blume polysaccharide (GBP) can improve the liver function of NAFLD model mice, regulate the level of lipid metabolism and reduce the accumulation of fat, alleviate the oxidative stress injury of liver and inhibit inflammation to protect and delay NAFLD symptoms caused by high fat diet.
  • [1]
    RECTOR R S, THYFAULT J P, WEI Y, et al. Non-alcoholic fatty liver disease and the metabolic syndrome: An update[J]. World J Gastroenterol,2008,14(2):185−192. doi: 10.3748/wjg.14.185
    [2]
    BROWNING J D, HORTON J D. Molecular mediators of hepatic steatosis and liver injury[J]. The Journal of Clinical Investigation,2004,114(2):147−152. doi: 10.1172/JCI200422422
    [3]
    宫海艳, 姜莉. 慢性阻塞性肺疾病合并肺间质纤维化的研究进展[J]. 国际呼吸杂志,2012,32(14):1098−1104. [ GONG H Y, JIANG L. Research progress of chronic obstructive pulmonary disease with pulmonary fibrosis[J]. International Respiratory Journal,2012,32(14):1098−1104. doi: 10.3760/cma.j.issn.1673-436X.2012.014.015
    [4]
    张声生, 李乾构, 李军祥. 非酒精性脂肪性肝病中医诊疗共识意见[J]. 北京中医药,2011,30(2):83−86. [ZHANG S S, LI Q G, LI J X. Consensus opinions on diagnosis and treatment of non-alcoholic fatty liver disease in traditional Chinese medicine[J]. Beijing Traditional Chinese Medicine,2011,30(2):83−86.
    [5]
    范建高. 非酒精性脂肪肝的临床流行病学研究[J]. 中华消化杂志,2002,22(2):106−107. [FAN J G. Clinical epidemiological study of non-alcoholic fatty liver[J]. Chinese Journal of Digestion,2002,22(2):106−107. doi: 10.3760/j.issn:0254-1432.2002.02.012
    [6]
    ANDRONESCU C, PURCAREA M R, BABES P A. Nonalcoholic fatty liver disease: Epidemiology, pathogenesis and the rapeutic implications[J]. Journal of Medicine and Life,2018,11(1):20−23.
    [7]
    BEDOGNI G, BELLENTANI S. Fatty liver: How frequent is it and why[J]. Annals of Hepatology,2004,3(2):63−65. doi: 10.1016/S1665-2681(19)32110-6
    [8]
    DAY C P, JAMES O. Steatohepatitis: A tale of two “hits”[J]. Gastroenterology,1998,114(4):842−845. doi: 10.1016/S0016-5085(98)70599-2
    [9]
    KOHEI O, HIROFUMI U, SEIICHI M, et al. Clinical features of hepatocellular carcinoma associated with nonalcoholic fatty liver disease: A review of human studies[J]. Clinical Journal of Gastroenterology,2015,8(1):1−9. doi: 10.1007/s12328-014-0548-5
    [10]
    REENAM K, FERNANDO B, KEN C, et al. Modulation of insulin resistance in NAFLD[J]. Hepatology,2018,70(2):711−724.
    [11]
    中国科学院植物研究所. 中国高等植物图鉴: 第五册[M]. 北京: 科学出版社, 2002.

    Institute of Botany, Chinese Academy of Sciences. An illustrated book of Chinese higher plants: Volume 5 [M]. Beijing: Science Press, 2002.
    [12]
    国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社, 2020.

    National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China (Volume I)[M]. Beijing: China Pharmaceutical Science and Technology Press, 2020.
    [13]
    张金芝, 黄光清, 郑卫红, 等. 天麻素对长春新碱诱导大鼠神经病理性疼痛的抑制作用[J]. 中药药理与临床,2012(6):44−46. [ZHANG J Z, HUANG G Q, ZHENG W H, et al. Inhibitory effect of gastrodin on vincristine induced neuropathic pain in rats[J]. Pharmacology and Clinic of Traditional Chinese Medicine,2012(6):44−46.
    [14]
    陈小银, 田礼义. 天麻素对戊四氮致痫大鼠海马氨基酸递质的影响[J]. 天津中医药,2009,26(6):476−478. [CHEN X Y, TIAN L Y. Influence of gastrodin on amino acid transmitter in hippocampus of pentylenetetrazole-induced epileptic rats[J]. Tianjin Traditional Chinese Medicine,2009,26(6):476−478.
    [15]
    许廷生, 陆龙存, 黄子冬. 天麻有效成分的药理作用分析与临床应用研究进展[J]. 中医临床研究,2020,12(21):133−135. [XU T S, LU L C, HUANG Z D. Progress in pharmacological action analysis and clinical application of active components of gastrodia elata[J]. Clinical research of Traditional Chinese Medicine,2020,12(21):133−135.
    [16]
    王耀, 李光布, 朱启云. 天麻素治疗椎-基底动脉供血不足疗效观察[J]. 中华全科医学,2014,12(2):326−327. [WANG Y, LI G B, ZHU Q Y. Effect of gastrodin on vertebrobasilar insufficiency[J]. Chinese General Medicine,2014,12(2):326−327.
    [17]
    何珊珊, 李锐, 吴迪, 等. 天麻素对脑缺血再灌注小鼠海马新生神经元的保护作用[J]. 现代生物医学进展,2015,15(32):6241−6244. [HE S S, LI R, WU D, et al. Protective effects of gastrodin on hippocampal newborn neurons in cerebral ischemia-reperfusion[J]. Progress of Modern Biomedicine,2015,15(32):6241−6244.
    [18]
    赵晓慧, 许燕, 林佶, 徐丹先. 小草坝新鲜天麻中多种金属元素评价分析[J]. 食品安全质量检测学报,2018,9(22):5987−5992. [ZHAO X H, XU Y, LIN J, et al. Evaluation and analysis of many kings of metal elements in Xiaocaoba fresh gastrodia elata in Xiaocaoba[J]. Journal of Food Safety and Quality Inspection,2018,9(22):5987−5992. doi: 10.3969/j.issn.2095-0381.2018.22.032
    [19]
    吴静澜. 天麻作为保健食品原料药的应用思考[J]. 世界最新医学信息文摘,2017,17(39):103−104. [WU J L. Thoughts on the application of Gastrodia elata as a health food API[J]. World Latest Medical Information Digest,2017,17(39):103−104.
    [20]
    陈维红, 罗栋. 天麻素、天麻多糖药理作用研究进展[J]. 中国药物评价,2013,30(3):132−141. [CHEN W H, LUO D. Research progress in the pharmacological effects of gastrodin and Gastrodia elata polysaccharides[J]. China Drug Evaluation,2013,30(3):132−141. doi: 10.3969/j.issn.2095-3593.2013.03.002
    [21]
    李云, 王志伟, 刘大会, 等. 天麻化学成分研究进展[J]. 山东科学,2016,29(4):24−29. [LI Y, WANG Z W, LIU D H, et al. Research progress on the chemical constituents of Gastrodia[J]. Shandong Science,2016,29(4):24−29. doi: 10.3976/j.issn.1002-4026.2016.04.006
    [22]
    李晶, 苏薇薇, 李沛波, 等. 膜分离技术应用于麦冬多糖纯化工艺的研究[J]. 中医药导报,2017,23(4):51−57. [Li J, Su W W, Li P B, et al. Study on the application of membrane separation technology in the purification process of Ophiopogon japonicus polysaccharide[J]. Guide of Chinese Medicine,2017,23(4):51−57.
    [23]
    LIU J, MORIA A. Antioxidant and free radical scavenging activi-ties of Gastrodia elata and Uncaria rhynchophylla (Miq) Jacks[J]. Neuropharmacology,1992,31(12):87−98.
    [24]
    鞠桂春. 天麻及其制剂的药理作用和临床应用研究进展[J]. 中国药业,2008,17(1):64−66. [JU G C. Research progress in the pharmacological effects and clinical application of Gastrodia and its preparations[J]. China Pharmaceuticals,2008,17(1):64−66. doi: 10.3969/j.issn.1006-4931.2008.01.045
    [25]
    KOMATSU T, KIDO N, SUGIYAMA T, et al. Antiviralactivity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection[J]. Immunopharmacology and Immunotoxicology,2013,35(1):1−7. doi: 10.3109/08923973.2012.710636
    [26]
    HUANG G B, ZHAO T, MUNA S S, et al. Therapeutic potential of Gastrodia elata Bl. for the treatment of Alzheimer’s disease[J]. Neural Regeneration Research,2013,8(12):1061−1070.
    [27]
    DOO A R, KIM S N, HAHM D H, et al. Gastrodia elata Bl. alleviates L-DOPA-induced dyskinesia by normalizing FosB and ERK activation in a 6-OHDA-lesioned Parkinson’s disease mouse model[J]. BMC Complementary and Alternative Medicine,2014,14(1):107−114. doi: 10.1186/1472-6882-14-107
    [28]
    KÜHNEL F, ZENDER L, PAUL Y, et al. NF-κB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis[J]. The Journal of Biological Chemistry,2000,275(5):6421−6427.
    [29]
    刘涛, 尼玛卓玛, 尼珍. 苯酚-浓硫酸法测定西藏天麻中多糖含量的条件优化[J]. 广东农业科学,2011,38(8):132−134. [LIU T, NIMA Z M, NI Z, et al. Determination of the polysaccharide content of Tibetan Rhizoma Gastrodiae by Phenol-colorimetric concentrated sulfuric acid[J]. Guangdong Agricultural Science,2011,38(8):132−134. doi: 10.3969/j.issn.1004-874X.2011.08.052
    [30]
    李晓冰, 展俊平, 张月腾, 等. 天麻多糖对环磷酰胺所致免疫功能低下小鼠体液免疫功能的影响[J]. 中国老年学杂志,2016,36(5):1027−1028. [LI X B, ZHAN J P, ZHANG Y T, et al. Effect of polysaccharide from Gastrodia elata B1 on humoral immune function in immunosuppressed mice induced by cyclophosphamide[J]. Chinese Journal of Gerontology,2016,36(5):1027−1028. doi: 10.3969/j.issn.1005-9202.2016.05.002
    [31]
    HUANG R, ZHAO J, WU F, et al. Effect of electroacupuncture plus polysaccharide of Gastrodia elata Blume on expression of nestin and brain derived neurotrophic factor in the basolateral amygdala of focal cerebral ischemia rats[J]. Acupuncture Research,2016,41(3):230−234.
    [32]
    JUN N H, XING Y X, WEI L, et al. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis[J]. Journal of Ginseng Research,2017,43(1):10−19.
    [33]
    LI W, LIU Y, WANG Z, et al. Platycodin D isolated from the aerial parts of Platycodon grandiflorum protects alcohol-induced liver injury in mice[J]. Food Function,2015,6(5):1418−1427. doi: 10.1039/C5FO00094G
    [34]
    HAN Y, XU Q, HU J N, et al. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice[J]. Nutrients,2015,7(1):682−696. doi: 10.3390/nu7010682
    [35]
    SINGH S, OSNA N A, KHARBANDA K K. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review[J]. World Journal of Gastroenterol,2017,23(36):6549−6570. doi: 10.3748/wjg.v23.i36.6549
    [36]
    TAKAHASHI Y, SOEJIMA Y, FUKUSATO T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. World Journal of Gastroenterology,2012,18(19):2300−2308. doi: 10.3748/wjg.v18.i19.2300
    [37]
    OFOSU A, RAMAI D, REDDY M. Non-alcoholic fatty liver disease: Con-trolling an emerging epidemic, challenges, and future directions[J]. Ann Gastroenterol,2018,31(3):288−295.
    [38]
    DUMITRASCU D L, NEUMAN M G. Non-alcoholic fatty liver disease: An update on diagnosis[J]. Clujul Medical,2018,91(2):147−150.
    [39]
    BELLENTANI S, SCAGLIONI F, MARINO M, et al. Epidemiology of non-alcoholic fatty liver disease[J]. Journal of Digestive Diseases,2010,28(1):155−161. doi: 10.1159/000282080
    [40]
    BRAUD L, BATTAULT S, MEYER G, et al. Antioxidant properties of tea blunt ROS-dependent lipogenesis: Benefificial effffect on hepatic steatosis in a high fat-high sucrose diet NAFLD obese rat model[J]. The Journal of Nutritional Biochemistry,2017,40:95−104. doi: 10.1016/j.jnutbio.2016.10.012
    [41]
    SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflflammatory caspases determines pyroptotic cell death[J]. Nature,2015,526(7575):660−665. doi: 10.1038/nature15514
    [42]
    SIRAJ F M, SATHISHKUMAR N, KIM Y J, et al. Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte difffferentiation in the 3T3-L1 cell line[J]. Journal of Medicinal Chemistry,2015,30(1):9−14.
    [43]
    SøNDERGAARD E, JOHANSEN R F, JENSEN M D, et al. Postprandial VLDL-TG metabolism in type 2 diabetes[J]. Metabolism,2017,75:25−35. doi: 10.1016/j.metabol.2017.07.002
    [44]
    YAN W, ZHANG H, LIU P, et al. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart[J]. Basic Research in Cardiology,2013,108(3):329−343. doi: 10.1007/s00395-013-0329-1
    [45]
    LI Y, XU S, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metabolism,2011,13(4):376−388. doi: 10.1016/j.cmet.2011.03.009
    [46]
    BERLANGA A, GUIU-JURADO E, PORRAS J A, et al. Molecular pathways in non-alcoholic fatty liver disease[J]. Clin Exp Gastroenterol,2014,7:221−239.
    [47]
    朱贺, 陈思娇, 宋金丹. 核因子κB及其SUMO化调控与糖尿病肺改变[J]. 医学综述,2012,18(8):1143−1146. [ZHU H, CHEN S J, SONG J D. Nuclear factor κB and its SUMOylation regulation and diabetic lung changes[J]. Medicine Review,2012,18(8):1143−1146. doi: 10.3969/j.issn.1006-2084.2012.08.008
    [48]
    KULMS D, SCHWARZ T. NF-kappa B and cytokines[J]. Vitam Horm,2006,74:283−300.
    [49]
    马晓燕, 司英奎, 韩雪霖. 脂肪性肝病中NF-κB活性变化及其意义[J]. 中国病理生理杂志,2007,23(11):2276−2277. [MA X Y, SI Y K, HAN X L. Changes of NF-κB activity in fatty liver disease and its significance[J]. Chinese J Pathophysiology,2007,23(11):2276−2277. doi: 10.3321/j.issn:1000-4718.2007.11.046
    [50]
    赵彩彦. 实验性脂肪肝病发病机制的研究[D]. 石家庄: 河北医科大学, 2004.

    ZHAO C Y. Study on the pathogenesis of experimental fatty liver disease[D]. Shijiazhuang: Hebei Medical University, 2004.
    [51]
    宋艳芳, 林青, 祝先进, 等. 趋化因子CX3CL1对β-淀粉样蛋白激活的小胶质细胞IL-1β、TNF-α和NO表达的影响[J]. 免疫学杂志,2016,32(12):1101−1104. [SONG Y F, LIN Q, ZHU X J, et al. Effect of chemokine CX3CL1 on the expression of IL-1β, TNF-α and NO in microglia activated by β-amyloid[J]. J Immunology,2016,32(12):1101−1104.
    [52]
    MATTHAY M A, ZIMMERMAN G A. Acute lung injury and the acute respiratorydistress syndrome: Four decades of inquiry into pathogenesis and rational management[J]. American Journal of Respiratory Cell and Molecular Biology,2005,33(4):319−27. doi: 10.1165/rcmb.F305
    [53]
    王红嫚, 王阳, 薛关生, 等. PDTC对大鼠急性肺损伤 TNF-α、IL-1β及核因子-KB蛋白表达的影响[J]. 中国老年学杂志,2013,33(10):3116−3118. [WANG H M, WANG Y, XUE G S, et al. Effect of PDTC on the expression of TNF-α, IL-1β and nuclear factor-KB protein in rats with acute lung injury[J]. Chinese Journal Gerontology,2013,33(10):3116−3118.
    [54]
    BAI J, WANG S. Panaxatriol saponin ameliorated liver injury by acetaminophen via restoring thioredoxin-1 and pro-caspase-12[J]. Liver International,2014,34(6):963. doi: 10.1111/liv.12463
    [55]
    OZ H S, CHEN T S. Green-tea polyphenols downregulate cyclooxygenase and Bcl-2 activity in acetaminophen-induced hepatotoxicity[J]. Digestive Diseases and Sciences,2008,53(11):2980−2988. doi: 10.1007/s10620-008-0239-5
  • Related Articles

    [1]MA Xiangjie, ZHAO Jiansheng, HUANG Qirui, WANG Qifan, CHEN Jie, ZENG Maomao. Effects of Thermal Reaction Conditions on Dicarbonyl Compounds and Flavor Substances in Glucose-Alanine Sweet-flavored Maillard Reaction Model System[J]. Science and Technology of Food Industry, 2024, 45(16): 114-120. DOI: 10.13386/j.issn1002-0306.2023100219
    [2]SUN Bingyu, ZHENG Xinru, LIU Linlin, LÜ Mingshou, HUANG Yuyang, ZHU Ying, QU Min, ZHU Xiuqing, SHI Yanguo. Research Progress on the Influence of Coagulants and Processing Conditions on the Formation and Quality of Tofu Gel[J]. Science and Technology of Food Industry, 2024, 45(3): 388-396. DOI: 10.13386/j.issn1002-0306.2023030178
    [3]CHEN Yang, LIAO Ziwei, TAO Juanjuan, JIANG Dan, SUN Daihua, CHEN Zhiyuan. Optimization of Ultrasonic Combined with Enzymatic Extraction Process of Total Alkaloids from Artemisia argyi Leaves and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 197-205. DOI: 10.13386/j.issn1002-0306.2021090016
    [4]GONG Pin, HAN Yewen, ZHAI Pengtao, CHEN Xuefeng, ZHAI Wenjun, ZHENG Benzhong, CHEN Fuxin. Active Components, Pharmacological Action and Application in Food Processing of Eucommia ulmoides Leaves[J]. Science and Technology of Food Industry, 2022, 43(10): 395-404. DOI: 10.13386/j.issn1002-0306.2021050082
    [5]SUN Xiyun, WANG Jingwen, TIAN Sihui, XU Zihan, LI Bin. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407. DOI: 10.13386/j.issn1002-0306.2020080268
    [6]HUANG Zhiyu, SHEN Xueyu, CHEN Xunlin, GUO Zhuozhao, HUANG Wei. Isolation and Identification of Spoilage Fungi in the Fermentation Broth of Sanhua Plum, Evaluation of the Potency of Related Antibacterial Agents and Optimization of Fermentation Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 113-120. DOI: 10.13386/j.issn1002-0306.2020110278
    [7]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [8]LIU Ye, SU Hang, SONG Huan- lu, SU Ke- ran. Optimization of natto processing conditions based on nattokinase activity[J]. Science and Technology of Food Industry, 2016, (07): 170-175. DOI: 10.13386/j.issn1002-0306.2016.07.025
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]CHEN Xue-hong, QIN Wei-dong, MA Li-hua, DAI Xiao-juan. Effect of processing conditions on quality of fruit and vegetable juices[J]. Science and Technology of Food Industry, 2014, (01): 355-362. DOI: 10.13386/j.issn1002-0306.2014.01.046
  • Cited by

    Periodical cited type(18)

    1. 张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
    2. 王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
    3. 赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
    4. 肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
    5. 陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
    6. 林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
    7. 张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
    8. 申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
    9. 董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
    10. 宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
    11. 刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
    12. 张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
    13. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
    14. 田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 . 本站查看
    15. 赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
    16. 郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
    17. 吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 . 本站查看
    18. 张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (275) PDF downloads (45) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return