Citation: | YANG Jinyan, DUAN Xingke, WANG Hongdi, et al. Review on the Effect of Non-thermal Processing Technologies on the Bioavailability of Carotenoids in Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(7): 407−416. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030218. |
[1] |
陈坚. 中国食品科技: 从2020到2035[J]. 中国食品学报,2019,19(12):1−5. [CHEN J. China Food Science and Technology: From 2020 to 2035[J]. Chinese Journal of Food Science,2019,19(12):1−5.
|
[2] |
BERNI P, CAMPOLI S S, NEGRI T C, et al. Non-conventional tropical fruits: Characterization, antioxidant potential and carotenoid bioaccessibility[J]. Plant Foods Hum Nutr,2019,74(1):141−148. doi: 10.1007/s11130-018-0710-1
|
[3] |
PRIYADARSHANI A M. A review on factors influencing bioaccessibility and bioefficacy of carotenoids[J]. Crit Rev Food Sci Nutr,2017,57(8):1710−1717. doi: 10.1080/10408398.2015.1023431
|
[4] |
刘嘉宁, 刘璇, 毕金峰. 破碎和均细化处理方式对胡萝卜汁中类胡萝卜素释放的影响[J]. 农业工程学报,2017,33(14):307−314. [LIU J N, LIU X, BI J F. Effects of crushing and homogenizing treatment methods on the release of carotenoids in carrot juice[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(14):307−314. doi: 10.11975/j.issn.1002-6819.2017.14.041
|
[5] |
ALAM M K, SAMS S, RANA Z H, et al. Minerals, vitamin C, and effect of thermal processing on carotenoids composition in nine varieties orange-fleshed sweet potato (Ipomoea batatas L. )[J]. Journal of Food Composition and Analysis,2020,92:103582. doi: 10.1016/j.jfca.2020.103582
|
[6] |
DE OLIVEIRA C L, BRYCHKOVA G, ESTEVES-FERREIRA A A, et al. Thermal disruption of the food matrix of biofortified lettuce varieties modifies absorption of carotenoids by Caco-2 cells[J]. Food Chem,2020,308:125443. doi: 10.1016/j.foodchem.2019.125443
|
[7] |
CHACON-ORDONEZ T, CARLE R, SCHWEIGGERT R. Bioaccessibility of carotenoids from plant and animal foods[J]. J Sci Food Agric,2019,99(7):3220−3239. doi: 10.1002/jsfa.9525
|
[8] |
PANOZZO A, LEMMENS L, VAN L A, et al. Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: A case study on differently coloured tomatoes[J]. Food Chem,2013,141(4):4094−100. doi: 10.1016/j.foodchem.2013.06.099
|
[9] |
MUTSOKOTI L, PANOZZO A, MUSABE E T, et al. Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices[J]. Journal of Functional Foods,2015,19:775−785. doi: 10.1016/j.jff.2015.10.017
|
[10] |
RODRIGUEZ-ROQUE M J, DE ANCOS B, SANCHEZ-VEGA R, et al. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages[J]. Food Funct,2016,7(1):380−389. doi: 10.1039/C5FO01060H
|
[11] |
TAN Y, ZHANG Z, ZHOU H, et al. Factors impacting lipid digestion and beta-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Oil droplet concentration[J]. Food Funct,2020,11(8):7126−7137. doi: 10.1039/D0FO01506G
|
[12] |
MCINERNEY J K, SECCAFIEN C A, STEWART C M, et al. Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables[J]. Innovative Food Science & Emerging Technologies,2007,8(4):543−548.
|
[13] |
易建勇, 侯春辉, 毕金峰, 等. 果蔬食品中类胡萝卜素生物利用度研究进展[J]. 中国食品学报,2019,19(9):286−297. [YI J Y, HOU C H, BI J F, et al. Research progress on the bioavailability of carotenoids in fruit and vegetable foods[J]. Chinese Journal of Food Science,2019,19(9):286−297.
|
[14] |
CILLA A, BOSCH L, BARBERÁ R, et al. Effect of processing on the bioaccessibility of bioactive compounds–A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols[J]. Journal of Food Composition and Analysis,2018,68:3−15. doi: 10.1016/j.jfca.2017.01.009
|
[15] |
WELLALA C K D, BI J, LIU X, et al. Juice related water-soluble pectin characteristics and bioaccessibility of bioactive compounds in oil and emulsion incorporated mixed juice processed by high pressure homogenization[J]. Food Hydrocolloids,2019,93:56−67. doi: 10.1016/j.foodhyd.2019.02.011
|
[16] |
KIRKHUS B, AFSETH N K, BORGE G I A, et al. Increased release of carotenoids and delayed in vitro lipid digestion of high pressure homogenized tomato and pepper emulsions[J]. Food Chem,2019,285:282−289. doi: 10.1016/j.foodchem.2019.01.124
|
[17] |
ZHANG Z, WANG X, LI Y, et al. Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes[J]. Food Funct,2017,8(12):4693−4702. doi: 10.1039/C7FO01382E
|
[18] |
BARBA F J, MARIUTTI L R B, BRAGAGNOLO N, et al. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing[J]. Trends in Food Science & Technology,2017,67:195−206.
|
[19] |
闫凤娇. 国内外食品非热加工技术发展状况[J]. 食品安全导刊,2020(18):178. [YAN F J. The development status of non-thermal food processing technology at home and abroad[J]. Food Safety Guide,2020(18):178.
|
[20] |
LIU F, LIAO X, WANG Y. Effects of high-pressure processing with or without blanching on the antioxidant and physicochemical properties of mango pulp[J]. Food and Bioprocess Technology,2016,9(8):1306−1316. doi: 10.1007/s11947-016-1718-x
|
[21] |
惠俊楠, 李若楠, 李玲茜, 等. 类胡萝卜素应用的研究进展[J]. 畜牧与兽医,2020,52(4):143−147. [HUI J N, LI R N, LI L Q, et al. Research progress in the application of carotenoids[J]. Animal Husbandry and Veterinary Medicine,2020,52(4):143−147.
|
[22] |
OCHOA B M, MOJICA C L, HSIEH L M, et al. Lutein as a functional food ingredient: Stability and bioavailability[J]. Journal of Functional Foods,2020,66:103771. doi: 10.1016/j.jff.2019.103771
|
[23] |
YI J, ZHAO Y, BI J, et al. Evaluation of processing methods and oral mastication on the carotenoid bioaccessibility of restructured carrot chips[J]. J Sci Food Agric,2020,100(13):4858−4869. doi: 10.1002/jsfa.10546
|
[24] |
VERKEMPINCK S, PALLARES PALLARES A, HEN- DRICKX M, et al. Processing as a tool to manage digestive barriers in plant-based foods: Recent advances[J]. Current Opinion in Food Science,2020,35:1−9.
|
[25] |
KHOO H E, PRASAD K N, KONG K W, et al. Carotenoids and their isomers: Color pigments in fruits and vegetables[J]. Molecules,2011,16(2):1710−1738. doi: 10.3390/molecules16021710
|
[26] |
LIU J, BI J, LIU X, et al. Effects of high pressure homogenization and addition of oil on the carotenoid bioaccessibility of carrot juice[J]. Food Funct,2019,10(1):458−468. doi: 10.1039/C8FO01925H
|
[27] |
PHAN M A T, BUCKNALL M P, ARCOT J. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulatedin vitro gastro-intestinal digestion[J]. Food Chem,2019,298:125040. doi: 10.1016/j.foodchem.2019.125040
|
[28] |
YAO K, MCCLEMENTS D J, XIANG J, et al. Improvement of carotenoid bioaccessibility from spinach by co-ingesting with excipient nanoemulsions: Impact of the oil phase composition[J]. Food Funct,2019,10(9):5302−5311. doi: 10.1039/C9FO01328H
|
[29] |
刘璇, 刘嘉宁, 毕金峰, 等. 果胶对脂类和类胡萝卜素消化利用影响研究进展[J]. 农业工程学报,2018,34(13):311−318. [LIU X, LIU J N, BI J F, et al. Research progress in the effect of pectin on the digestion and utilization of lipids and carotenoids[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(13):311−318. doi: 10.11975/j.issn.1002-6819.2018.13.038
|
[30] |
JAYATHUNGE K, STRATAKOS A C, CREGENZAN-ALBERTIA O, et al. Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies[J]. Food Chem,2017,221:698−705. doi: 10.1016/j.foodchem.2016.11.117
|
[31] |
PALMERO P, PANOZZO A, COLLE I, et al. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization[J]. Food Chem,2016,199:423−432. doi: 10.1016/j.foodchem.2015.12.062
|
[32] |
XAVIER A A O, MERCADANTE A Z. The bioaccessibility of carotenoids impacts the design of functional foods[J]. Current Opinion in Food Science,2019,26:1−8.
|
[33] |
PETRY F C, MERCADANTE A Z. Impact of in vitro digestion phases on the stability and bioaccessibility of carotenoids and their esters in mandarin pulps[J]. Food Funct,2017,8(11):3951−3963. doi: 10.1039/C7FO01075C
|
[34] |
VERRIJSSEN T A, CHRISTIAENS S, VERKEMPINCK S H, et al. In vitro beta-Carotene bioaccessibility and lipid digestion in emulsions: Influence of pectin type and degree of methyl-esterification[J]. J Food Sci,2016,81(10):C2327−C2336. doi: 10.1111/1750-3841.13408
|
[35] |
PETRY F C, MERCADANTE A Z. Bile amount affects both the degree of micellarization and the hydrolysis extent of carotenoid esters during in vitro digestion[J]. Food Funct,2019,10(12):8250−8262. doi: 10.1039/C9FO01453E
|
[36] |
COLLE I, VAN BUGGENHOUT S, VAN LOEY A, et al. High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility[J]. Food Research International,2010,43(8):2193−2200. doi: 10.1016/j.foodres.2010.07.029
|
[37] |
ZHANG W, YU Y, XIE F, et al. High pressure homogenization versus ultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids[J]. LWT,2019,116:108597. doi: 10.1016/j.lwt.2019.108597
|
[38] |
LIU X, LIU J, BI J, et al. Effects of high pressure homogenization on pectin structural characteristics and carotenoid bioaccessibility of carrot juice[J]. Carbohydr Polym,2019,203:176−184. doi: 10.1016/j.carbpol.2018.09.055
|
[39] |
COLLE I J P, LEMMENS L, VAN BUGGENHOUT S, et al. Processing tomato pulp in the presence of lipids: The impact on lycopene bioaccessibility[J]. Food Research International,2013,51(1):32−38. doi: 10.1016/j.foodres.2012.11.024
|
[40] |
SENTANDREU E, STINCO C M, VICARIO I M, et al. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids[J]. Journal of Cleaner Production,2020,262:121325. doi: 10.1016/j.jclepro.2020.121325
|
[41] |
STINCO C M, SENTANDREU E, MAPELLI-BRAHM P, et al. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice[J]. Food Chem,2020,331:127259. doi: 10.1016/j.foodchem.2020.127259
|
[42] |
JACOBO-VELÁZQUEZ D A, HERNÁNDEZ-BRENES C. Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage[J]. Innovative Food Science & Emerging Technologies,2012,16:121−128.
|
[43] |
RAMOS-PARRA P A, GARCIA-SALINAS C, RODRIGUEZ-LOPEZ C E, et al. High hydrostatic pressure treatments trigger de novo carotenoid biosynthesis in papaya fruit (Carica papaya cv. Maradol)[J]. Food Chem,2019,277:362−372. doi: 10.1016/j.foodchem.2018.10.102
|
[44] |
HUANG W, BI X, ZHANG X, et al. Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time[J]. Innovative Food Science & Emerging Technologies,2013,18:74−82.
|
[45] |
PLAZA L, SÁNCHEZ-MORENO C, DE ANCOS B, et al. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization[J]. LWT-Food Science and Technology,2011,44(4):834−839. doi: 10.1016/j.lwt.2010.12.013
|
[46] |
SANCHEZ C, BARANDA A B, MARTINEZ DE MARANON I. The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables[J]. Food Chem,2014,163:37−45. doi: 10.1016/j.foodchem.2014.04.041
|
[47] |
STINCO C M, SZCZEPANSKA J, MARSZALEK K, et al. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice[J]. Food Chem,2019,299:125112. doi: 10.1016/j.foodchem.2019.125112
|
[48] |
GUPTA R, KOPEC R E, SCHWARTZ S J, et al. Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice[J]. J Agric Food Chem,2011,59(14):7808−7817. doi: 10.1021/jf200575t
|
[49] |
CILLA A, RODRIGO M J, DE ANCOS B, et al. Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells[J]. Food Funct,2020:8951−8962.
|
[50] |
CANO M P, GOMEZ-MAQUEO A, FERNANDEZ-LOPEZ R, et al. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante)[J]. Food Res Int,2019,123:538−549. doi: 10.1016/j.foodres.2019.05.017
|
[51] |
YAN B, MARTíNEZ-MONTEAGUDO S I, COOPERSTONE J L, et al. Impact of thermal and pressure-based technologies on carotenoid retention and quality attributes in tomato juice[J]. Food and Bioprocess Technology,2017,10(5):808−818. doi: 10.1007/s11947-016-1859-y
|
[52] |
刘兰英, 李晓莺, 禄璐, 等. 超高压对果蔬类胡萝卜素及抗氧化活性影响的研究进展[J]. 宁夏农林科技,2019,60(8):56−59. [LIU L Y, LI X Y, LU L, et al. Research progress on the effects of ultra-high pressure on carotenoids and antioxidant activities of fruits and vegetables[J]. Ningxia Agriculture and Forestry Science and Technology,2019,60(8):56−59. doi: 10.3969/j.issn.1002-204x.2019.08.020
|
[53] |
ZHAO G, ZHANG R, ZHANG M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products[J]. International Journal of Food Science & Technology,2017,52(1):3−12.
|
[54] |
JACOBO-VELáZQUEZ D A, HERNáNDEZ-BRENES C, CISNEROS-ZEVALLOS L, et al. Partial purification and enzymatic characterization of avocado (Persea americana Mill, cv. Hass) lipoxygenase[J]. Food Research International,2010,43(4):1079−1085. doi: 10.1016/j.foodres.2010.01.021
|
[55] |
ANESE M, BOT F, PANOZZO A, et al. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitrobioaccessibility of tomato pulp[J]. Food Chemistry,2015,172:685−691. doi: 10.1016/j.foodchem.2014.09.140
|
[56] |
KUMCUOGLU S, YILMAZ T, TAVMAN S. Ultrasound assisted extraction of lycopene from tomato processing wastes[J]. J Food Sci Technol,2014,51(12):4102−4107. doi: 10.1007/s13197-013-0926-x
|
[57] |
BUNIOWSKA M, ARRIGONI E, ZNAMIROWSKA A, et al. Liberation and micellarization of carotenoids from different smoothies after thermal and ultrasound treatments[J]. Foods,2019,8(10):492. doi: 10.3390/foods8100492
|
[58] |
BUNIOWSKA M, CARBONELL-CAPELLA J M, FRIGOLA A, et al. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana[J]. Food Chem,2017,221:1834−1842. doi: 10.1016/j.foodchem.2016.10.093
|
[59] |
UMAIR M, JABBAR S, SENAN A M, et al. Influence of combined effect of ultra-sonication and high-voltage cold plasma treatment on quality parameters of carrot juice[J]. Foods,2019,8(11):593. doi: 10.3390/foods8110593
|
[60] |
ETZBACH L, STOLLE R, ANHEUSER K, et al. Impact of different pasteurization techniques and subsequent ultrasonication on the in vitro bioaccessibility of carotenoids in Valencia orange (Citrus sinensis (L.) Osbeck) juice[J]. Antioxidants (Basel), 2020, 9(6):534.
|
[61] |
ANESE M, MIROLO G, BERALDO P, et al. Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility[J]. Food Chem,2013,136(2):458−463. doi: 10.1016/j.foodchem.2012.08.013
|
[62] |
BOT F, VERKERK R, MASTWIJK H, et al. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix[J]. Food Chem,2018,240:415−421. doi: 10.1016/j.foodchem.2017.07.102
|
[63] |
GONZALEZ-CASADO S, MARTIN-BELLOSO O, ELEZ-MARTINEZ P, et al. Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products[J]. Food Funct,2018,9(4):2282−2289. doi: 10.1039/C7FO01857F
|
[64] |
AL-JUHAIMI F, GHAFOOR K, OZCAN M M, et al. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables[J]. J Food Sci Technol,2018,55(10):3872−3880. doi: 10.1007/s13197-018-3370-0
|
[65] |
BRAVO S, GARCíA-ALONSO J, MARTíN-POZUELO G, et al. Effects of postharvest UV-C treatment on carotenoids and phenolic compounds of vine-ripe tomatoes[J]. International Journal of Food Science & Technology,2013,48(8):1744−1749.
|
[66] |
AGUILÓ-AGUAYO I, CHARLES F, RENARD C M G C, et al. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit[J]. Postharvest Biology and Technology,2013,86:29−36. doi: 10.1016/j.postharvbio.2013.06.011
|
[67] |
URBONAVIČIENĖ D, VIŠKELIS P, VIŠKELIS J, et al. Stability of tomato lycopene under thermal-and light-irradiation treatments in an oil-based model system[J]. Zemdirbyste-Agriculture,2015,102(2):185−192. doi: 10.13080/z-a.2015.102.024
|
[68] |
ZHAO W, SUN Y, MA Y, et al. Dense phase carbon dioxide treatment of tomato juice: Effect on physico-chemical properties, phenolic composition, lycopene isomerisation and in vitro bioaccessibility[J]. International Journal of Food Science & Technology,2018,54(5):1658−1669.
|
[69] |
PATARO G, SINIK M, CAPITOLI M M, et al. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage[J]. Innovative Food Science & Emerging Technologies,2015,30:103−111.
|
[70] |
VALDIVIA-NÁJAR C G, MARTÍN-BELLOSO O, SOLIVA-FORTUNY R. Kinetics of the changes in the antioxidant potential of fresh-cut tomatoes as affected by pulsed light treatments and storage time[J]. Journal of Food Engineering,2018,237:146−153. doi: 10.1016/j.jfoodeng.2018.05.029
|
[71] |
CAPPELLETTI M, FERRENTINO G, ENDRIZZI I, et al. High pressure carbon dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality[J]. Journal of Food Engineering,2015,145:73−81. doi: 10.1016/j.jfoodeng.2014.08.012
|
[72] |
BRIONGOS H, ILLERA A E, SANZ M T, et al. Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties[J]. LWT,2016,74:411−419. doi: 10.1016/j.lwt.2016.07.069
|
[73] |
LINHARES M F D, ALVES FILHO E G, SILVA L M A, et al. Thermal and non-thermal processing effect on acai juice composition[J]. Food Res Int,2020,136:109506. doi: 10.1016/j.foodres.2020.109506
|
[74] |
MAPELLI-BRAHM P, STINCO C M, RODRIGO M J, et al. Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles[J]. Journal of Functional Foods,2018,46:38−47. doi: 10.1016/j.jff.2018.04.044
|
[75] |
STINCO C M, FERNANDEZ-VAZQUEZ R, ESCUDERO-GILETE M L, et al. Effect of orange juice's processing on the color, particle size, and bioaccessibility of carotenoids[J]. J Agric Food Chem,2012,60(6):1447−1455. doi: 10.1021/jf2043949
|
[76] |
NAGAO A, KOTAKE-NARA E, HASE M. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables[J]. Biosci Biotechnol Biochem,2013,77(5):1055−1060. doi: 10.1271/bbb.130025
|
[77] |
PALMERO P, LEMMENS L, RIBAS-AGUSTI A, et al. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems[J]. Food Chem,2013,141(3):2036−2043. doi: 10.1016/j.foodchem.2013.05.064
|
[78] |
AL-YAFEAI A, BOHM V. In vitro bioaccessibility of carotenoids and vitamin E in rosehip products and tomato paste as affected by pectin contents and food processing[J]. J Agric Food Chem,2018,66(15):3801−3809. doi: 10.1021/acs.jafc.7b05855
|
[79] |
KOPEC R E, FAILLA M L. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles[J]. Journal of Food Composition and Analysis,2018,68:16−30. doi: 10.1016/j.jfca.2017.06.008
|
[80] |
DHUIQUE-MAYER C, SERVENT A, MESSAN C, et al. Bioaccessibility of biofortified sweet potato carotenoids in baby food: Impact of manufacturing process[J]. Front Nutr,2018,5:98. doi: 10.3389/fnut.2018.00098
|
[81] |
O’SULLIVAN L, GALVIN K, AISLING A S, et al. Effects of cooking on the profile and micellarization of 9-cis-, 13-cis- and all-trans-β-carotene in green vegetables[J]. Food Research International,2010,43(4):1130−1135. doi: 10.1016/j.foodres.2010.02.012
|
[82] |
吴汝林, 王丽红. 加工处理对食品中类胡萝卜素顺反异构化作用的影响[J]. 食品科技,2006(11):126−129. [WU R L, WANG L H. The effect of processing on the cis-trans isomerization of carotenoids in food[J]. Food Science and Technology,2006(11):126−129. doi: 10.3969/j.issn.1005-9989.2006.11.035
|
[83] |
TOMAS M, SAGDIC O, CATALKAYA G, et al. Effect of dietary fibre addition in tomato sauce on the in vitro bioaccessibility of carotenoids[J]. Quality Assurance and Safety of Crops & Foods,2018,10(3):277−283.
|
[84] |
CERVANTES-PAZ B, ORNELAS-PAZ J J, RUIZ-CRUZ S, et al. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review[J]. Food Res Int, 2017, 99(Pt 2): 917−927.
|
[85] |
VERKEMPINCK S H E, SALVIA-TRUJILLO L, DENIS S, et al. Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions[J]. Food Chem,2018,262:150−161. doi: 10.1016/j.foodchem.2018.04.082
|
[86] |
IDDIR M, DINGEO G, PORRAS YARURO J F, et al. Influence of soy and whey protein, gelatin and sodium caseinate on carotenoid bioaccessibility[J]. Food Funct,2020,11(6):5446−5459. doi: 10.1039/D0FO00888E
|
[87] |
SOTOMAYOR-GERDING D, OOMAH B D, ACEVEDO F, et al. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability[J]. Food Chem,2016,199:463−470. doi: 10.1016/j.foodchem.2015.12.004
|
[1] | CHEN Xiaojing, ZHU Jinwei, ZHANG Chen, ZHOU Zhengjiang, YU Lihui, FANG Chongye. Research Progress on Anti-tumor Effects of Theaflavins[J]. Science and Technology of Food Industry, 2022, 43(12): 398-406. DOI: 10.13386/j.issn1002-0306.2021060134 |
[2] | LAI Xiaohua, DENG Tian, HU Jingfei, CHEN Dening, LV Mingsheng, WANG Shujun. Optimization of Inhibition of α-Glucosidase by Rice Bran Fermentation Products[J]. Science and Technology of Food Industry, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183 |
[3] | LU Jing-jing, SONG Yue, YUE Ying-xue, HUO Gui-cheng. Two Lactobacillus plantarum Combined to Inhibit the Formation of Obesity Induced by High Fat in Mice[J]. Science and Technology of Food Industry, 2019, 40(19): 286-290. DOI: 10.13386/j.issn1002-0306.2019.19.049 |
[4] | LI Hui-zhen, LI Bai-liang, LI Zi-ye, ZHAN Meng, LU Jing-jing, HUO Gui-cheng. Research Progress of Anti-tumor Effect of Lactobacillus[J]. Science and Technology of Food Industry, 2019, 40(2): 336-341. DOI: 10.13386/j.issn1002-0306.2019.02.059 |
[5] | ZHAO Guan-hua, TONG Chang-qing, LI Wei, QU Min. Effect of sulfated polysaccharide from Crassostrea gigas on inhibition and induction of three kinds of carcinoma cell[J]. Science and Technology of Food Industry, 2017, (13): 302-306. DOI: 10.13386/j.issn1002-0306.2017.13.056 |
[6] | YI Juan-juan, WANG Zhen-yu, QU Hang, LI Jing-tong. Research progress in the anti- tumor activities and related mechanisms of plant polyphenols[J]. Science and Technology of Food Industry, 2016, (18): 391-395. DOI: 10.13386/j.issn1002-0306.2016.18.067 |
[7] | XIE Shu-yue, MU Li-xia, LIAO Sen-tai, ZOU Yu-xiao, LIU Jun, SHI Ying, WANG Wei-min. Research progress on the anti-tumor peptides[J]. Science and Technology of Food Industry, 2015, (02): 368-372. DOI: 10.13386/j.issn1002-0306.2015.02.072 |
[8] | GENG Li-jing, QU Xing-yuan, SUN Zhu-ping, GENG Jia-ling, LIU Bing, ZHOU Wei. Research progress in the tumor suppression mechanisms of marine polyunsaturated fatty acids DHA[J]. Science and Technology of Food Industry, 2013, (22): 385-391. DOI: 10.13386/j.issn1002-0306.2013.22.015 |
[9] | The role of its anti-tumor of the flavonoids in the tea flower[J]. Science and Technology of Food Industry, 2013, (12): 157-160. DOI: 10.13386/j.issn1002-0306.2013.12.006 |
1. |
李清,马广礼,翟艺恒,孟涛. 沙棘多糖对小鼠酒精性肝炎和肠道屏障功能的治疗研究. 食品工业科技. 2025(08): 351-361 .
![]() | |
2. |
赵亚萍,杨丽霞,甘德成,朱向东,梁永林. 基于肠道菌群探讨葛根芩连汤治疗湿热型2型糖尿病研究进展. 现代中医药. 2023(02): 1-7 .
![]() |