GUO Jiayao, LV Xiuli, LI Xuetong, et al. Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics[J]. Science and Technology of Food Industry, 2022, 43(4): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020232.
Citation: GUO Jiayao, LV Xiuli, LI Xuetong, et al. Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics[J]. Science and Technology of Food Industry, 2022, 43(4): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020232.

Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics

More Information
  • Received Date: February 28, 2021
  • Available Online: December 12, 2021
  • With the rapid development of different nanotechnologies in recent decades, the capture of bioactive ingredients into polymeric matrices for controlled release has become a popular area of research. Incorporation of bioactive components into different encapsulated matrices is a unique approach to protect these valuable components from inactivation in unfavorable in vitro or in vivo environments, maximizing their stability and bioavailability. Compared with conventional encapsulation techniques, electrospinning technology has many advantages, such as high porosity, high surface volume ratio, structural similarity to the extracellular matrix, and high envelope rate for bioactive compounds, and these structural and functional advantages make electrospinning technology a better choice in protecting bioactive components. This paper reviews the basic working principles of electrostatic spinning, the selection of nanofiber polymers, and the parameters affecting the properties of nanofibers. The advantages of electrostatic spinning nanofibers are analyzed, and the application of electrostatic spinning technology in encapsulating different types of bioactive compounds is discussed, and this paper would provide a reference for the further research and application of this technology in food processing and the development of related innovative foods.
  • [1]
    DIAS M I, FERREIRA I C F R, BARREIRO M F. Microencapsulation of bioactives for food applications[J]. Food & Function,2015,6(4):1035−1052.
    [2]
    WEN P, ZONG M H, LINHARDT R J, et al. Electrospinning: A novel nano-encapsulation approach for bioactive compounds[J]. Trends in Food Science & Technology,2017,70:56−68.
    [3]
    ZAHRA, AKBARBAGLU, SEID, et al. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates[J]. Colloids & Surfaces B Biointerfaces,2019,178:421−429.
    [4]
    TORKAMANI A E, ABIDIN S Z, HANI N M, et al. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning[J]. Food Bioscience,2018,21:60−71. doi: 10.1016/j.fbio.2017.12.001
    [5]
    RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87(9):4531−4547. doi: 10.1063/1.373532
    [6]
    WONG S C, BAJI A, LENG S. Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone)[J]. Polymer,2008,49(21):4713−4722. doi: 10.1016/j.polymer.2008.08.022
    [7]
    ANABELA M, DAN L, LESLEY O, et al. Protein encapsulation by electrospinning and electrospraying[J]. Journal of Controlled Release,2020,329:1172−1197.
    [8]
    SAJEDEH, KHORSHIDI, ATEFEH, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications[J]. Journal of Tissue Engineering & Regenerative,2016,10(9):715−738.
    [9]
    KHALF A, MADIHALLY S V. Recent advances in multiaxial electrospinning for drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2016,112:1−17.
    [10]
    ROSTAMABADI H, ASSADPOUR E, SHAHIRITABARESTANI H, et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations[J]. Trends in Food Science & Technology,2020,100:190−209.
    [11]
    CHEN Z, CHEN Z, ZHANG A, et al. Electrospun nanofibers for cancer diagnosis and therapy[J]. Biomaterials Science,2016,4(6):922−932. doi: 10.1039/C6BM00070C
    [12]
    ISIK B S, ALTAY F, CAPANOGLU E. The uniaxial and coaxial encapsulations of sour cherry(Prunus cerasus L. ) concentrate by electrospinning and their in vitro bioaccessibility[J]. Food Chemistry,2018,265:260−273. doi: 10.1016/j.foodchem.2018.05.064
    [13]
    VYSLOUŽILOVÁ L, BUZGO M, POKORNÝ P, et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers[J]. 2017, 516(1-2): 293-300.
    [14]
    RAFIEI M, JOOYBAR E, ABDEKHODAIE M J, et al. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery[J]. Materials Science and Engineering C,2020,113:110913. doi: 10.1016/j.msec.2020.110913
    [15]
    ALHARBI H F, LUQMAN M, FOUAD H, et al. Viscoelastic behavior of core-shell structured nanofibers of PLA and PVA produced by coaxial electrospinning[J]. Polymer Testing,2018,67:136−143. doi: 10.1016/j.polymertesting.2018.02.026
    [16]
    LUU Y K, KIM K, HSIAO B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers[J]. Journal of Controlled Release,2003,89(2):341−353. doi: 10.1016/S0168-3659(03)00097-X
    [17]
    JAIN R, SHETTY S, YADAV K S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers[J]. Journal of Drug Delivery Science and Technology,2020,57:101604. doi: 10.1016/j.jddst.2020.101604
    [18]
    MOHAMMADI M A, RAMAZANI S, ROSTAMI M, et al. Fabrication of food-grade nanofibers of whey protein isolate-guar gum using the electrospinning method[J]. Food Hydrocolloids,2019,90:99−104. doi: 10.1016/j.foodhyd.2018.12.010
    [19]
    AHMED F E, LALIA B S, HASHAIKEH R. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination,2015,356:15−30. doi: 10.1016/j.desal.2014.09.033
    [20]
    HMI A, AK B. A review on electrospun polymeric nanofibers: Production parameters and potential applications[J]. Polymer Testing,2020,90:106647. doi: 10.1016/j.polymertesting.2020.106647
    [21]
    RIEGER K A, BIRCH N P, SCHIFFMAN J D. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation[J]. Carbohydr Polym,2016,139:131−138. doi: 10.1016/j.carbpol.2015.11.073
    [22]
    HAIDER A, HAIDER S, KANG I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry,2018,11(8):1165−1188. doi: 10.1016/j.arabjc.2015.11.015
    [23]
    ROSTAMI M R, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015
    [24]
    XIN Y, RENEKER D H. Garland formation process in electrospinning[J]. Polymer,2012,53(16):3629−3635. doi: 10.1016/j.polymer.2012.05.060
    [25]
    QING D, DR HARDING, Y HONG, et al. Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning[J]. Polymer,2013,54(25):6752−6759. doi: 10.1016/j.polymer.2013.10.029
    [26]
    YAZGAN G, POPA A M, ROSSI R M, et al. Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning[J]. Polymer,2015,66:268−276. doi: 10.1016/j.polymer.2015.04.045
    [27]
    CLARK A L, KNIGHT G, WILES P, et al. Biosynthetic human insulin in the treatment of diabetes. A double-blind crossover trial in established diabetic patients[J]. Lancet,1982,320(8294):354−357. doi: 10.1016/S0140-6736(82)90548-7
    [28]
    LEE C L, HARRIS J L, KHANNA K K, et al. A comprehensive review on current advances in peptide drug development and design[J]. International Journal of Molecular Sciences,2019,20(10):2383. doi: 10.3390/ijms20102383
    [29]
    LWA B , TJB A , CAPA B. Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction-ScienceDirect[J]. International Journal of Pharmaceutics, 585: 119448.
    [30]
    PARDRIDGE W M. Blood-brain barrier and delivery of protein and gene therapeutics to brain[J]. Frontiers in Aging Neuroscience,2020,11:373. doi: 10.3389/fnagi.2019.00373
    [31]
    DEWANGAN R P, BISHT G S, SINGH V P, et al. Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. aureus[J]. Bioorganic Chemistry,2017:538−547.
    [32]
    NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology,2011,29(9):464−472. doi: 10.1016/j.tibtech.2011.05.001
    [33]
    孟德梅, 孙雪晴, 石林玥, 等. 抗菌肽应用于食品中的研究现状及面临的挑战[J]. 食品研究与开发,2020,41(8):218−224. [MENG D M, SUN X Q, SHI L Y, et al. Research progresses and challenges of antimicrobial peptides for application in food filed[J]. Food Research and Development,2020,41(8):218−224. doi: 10.12161/j.issn.1005-6521.2020.08.036
    [34]
    SOTO K M, HERNÁNDEZ-ITURRIAGA M, LOARCA-PIN˜A G, et al. Stable nisin food-grade electrospun fibers[J]. Journal of Food Science & Technology,2016,53(10):3787−3794.
    [35]
    WANG X, YUE T, LEE T C. Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application[J]. Food Control,2015,54:150−157. doi: 10.1016/j.foodcont.2015.02.001
    [36]
    ALONSO-GONZÁLEZ M, CORRAL-GONZÁLEZ A, FELIX M, et al. Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging[J]. International Journal of Biological Macromolecules,2020,162:913−921. doi: 10.1016/j.ijbiomac.2020.06.217
    [37]
    EL-SHISHTAWY R M, ALDHAHRI M, ALMULAIKY Y Q. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study[J]. International Journal of Biological Macromolecules,2020,163:1353−1360. doi: 10.1016/j.ijbiomac.2020.07.278
    [38]
    代云容, 牛军峰, 殷立峰, 等. 静电纺丝纳米纤维膜固定化酶及其应用[J]. 化学进展,2010,22(9):1808−1818. [DAI Y R, NIU J F, YIN L F, et al. Electrospun nanofiber membranes as supports for enzyme immobilization and its application[J]. Progress in Chemistry,2010,22(9):1808−1818.
    [39]
    WANG Z, WANG Z, WILLIAM, et al. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications[J]. NPG Asia Materials,2017,9(10):e435. doi: 10.1038/am.2017.171
    [40]
    WANG C, HOU W, GUO X, et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl,2017,79:507−515. doi: 10.1016/j.msec.2017.05.075
    [41]
    SCHNELL E, KLINKHAMMER K, BALZER S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend[J]. Biomaterials Science,2007,28(19):3012−3025. doi: 10.1016/j.biomaterials.2007.03.009
    [42]
    VALMIKINATHAN C M, DEFRODA S, YU X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor[J]. Biomacromolecules,2009,10(5):1084−1089. doi: 10.1021/bm8012499
    [43]
    YANG H, WEN P, FENG K, et al. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties[J]. RSC Advances,2017,7(24):14939−14946. doi: 10.1039/C7RA00051K
    [44]
    XIE N, NIU J, GAO X, et al. Fabrication and characterization of electrospun fatty acid form: Table phase change materials in the presence of copper nanoparticles[J]. International Journal of Energy Research,2020,44(11):8567−8577. doi: 10.1002/er.5543
    [45]
    张昭, 徐珍霞, 董绪燕, 等. ω-3脂肪酸微胶囊制备方法的研究进展[J]. 中国食物与营养,2020,26(2):41−45. [ZHANG Z, XV Z X, DONG X Y, et al. Research progress on preparation methods of ω-3 fatty acid microcapsules[J]. Food and Nutrition in China,2020,26(2):41−45. doi: 10.3969/j.issn.1006-9577.2020.02.009
    [46]
    MENDES A C, GORZELANNY C, HALTER N, et al. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery[J]. Int J Pharm,2016:48−56.
    [47]
    WANG H, HAO L, NIU B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. Journal of Agricultural,2016,64(15):3083−3090.
    [48]
    LEENA M M, YOHA K S, MOSES J A, et al. Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility[J]. Food Bioscience,2020,36:100669. doi: 10.1016/j.fbio.2020.100669
    [49]
    姚飞, 陈复生, 郝明飞. 负载茶多酚的花生分离蛋白-聚乳酸纳米纤维膜的制备及抗菌性能研究[J]. 食品工业科技,2021,42(13):6. [YAO F, CHEN F S, HAO M F. Preparation and antibacterial properties of peanut protein isolate-polylactic acid nanofiber membrane loaded with tea polyphenols[J]. Science and Technology of Food Industry,2021,42(13):6.
    [50]
    FABRA M J, LÓPEZ-RUBIO A, LAGARON J M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications-ScienceDirect[J]. Food Hydrocolloids,2016,55:11−18. doi: 10.1016/j.foodhyd.2015.10.026
    [51]
    AYTAC Z, UYAR T. Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers[J]. European Polymer Journal,2016,79:140−149. doi: 10.1016/j.eurpolymj.2016.04.029
    [52]
    LI H, LI H, WANG M, et al. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials[J]. RSC Advances,2016,6(55):50267−50277. doi: 10.1039/C6RA05092A
    [53]
    ACEITUNO-MEDINA M, MENDOZA S, LAGARON J M, et al. Photoprotection of folic acid upon encapsulation in food-grade amaranth(Amaranthus hypochondriacus L. ) protein isolate-pullulan electrospun fibers[J]. LWT-Food Science and Technology,2015,62(2):970−975. doi: 10.1016/j.lwt.2015.02.025
    [54]
    SRIDHARAN K, GOGTAY N J. Therapeutic nucleic acids: Current clinical status[J]. British Journal of Clinical Pharmacology,2016,82(3):659−672. doi: 10.1111/bcp.12987
    [55]
    NGUYEN L H, GAO M, LIN J, et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment[J]. Scientific Reports,2017,7(1):1−12. doi: 10.1038/s41598-016-0028-x
    [56]
    LI C, TZENG S Y, TELLIER L E, et al. (3-Aminopropyl)-4-methylpiperazine end-capped poly(1, 4-butanediol diacrylate-co-4-amino-1-butanol)-based multi layer films for gene delivery[J]. ACS Applied Materials & Interfaces,2013,5(13):5947−5953.
    [57]
    ACEITUNO-MEDINA M, MENDOZA S, RODRÍGUEZ B A, et al. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers[J]. Journal of Functional Foods,2015,12:332−341. doi: 10.1016/j.jff.2014.11.028
    [58]
    STOJANOV S, BERLEC A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications[J]. Frontiers in Bioengineering and Biotechnology,2020,8:130. doi: 10.3389/fbioe.2020.00130
    [59]
    MA J, XU C, YU H, et al. Electro-encapsulation of probiotics in gum arabic-pullulan blend nanofibres using electrospinning technology[J]. Food Hydrocolloids,2021,111:106381. doi: 10.1016/j.foodhyd.2020.106381
    [60]
    KATJA ŠKRLEC, ŠPELA ZUPANČIČ, SONJA PRPAR MIHEVC, et al. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics[J]. European Journal of Pharmaceutics and Biopharmaceutics,2019,136:108−119. doi: 10.1016/j.ejpb.2019.01.013
    [61]
    FENG K, HUANG R M, WU R Q, et al. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions[J]. Food Chemistry,2019,310:125977.
  • Cited by

    Periodical cited type(18)

    1. 周水清,周政. 在饲粮中添加艾草粉对散养鸡的生产性能和抗病能力的影响. 青海畜牧兽医杂志. 2025(01): 13-15+35 .
    2. 雷娇,邵起菊,肖欣,李志荣,洪金伶,王森,陈荣祥. 基于HPLC-ECD测定鱼腥草叶多酚含量及抗氧化活性. 食品工业科技. 2024(04): 221-228 . 本站查看
    3. 孙立秋,王丹,赵英楠,时志春,李军,王金兰,赵明,张树军. 一测多评法测定艾叶中7个黄酮类成分的含量. 药物分析杂志. 2024(05): 806-815 .
    4. 郑文涛,刘元会,魏光强,赵兴文,黄艾祥. 蜂蜜桑茶复合饮料的工艺优化及其抗氧化活性研究. 食品科技. 2024(04): 100-107 .
    5. 崔英才,蒋梦宇,刘梦茹,来金良,姚型文,王正国,燕磊,刘永学. 艾草粉对蛋鸡生产性能、蛋品质、抗氧化功能及粪便评分的影响. 饲料研究. 2024(12): 39-43 .
    6. 纪德佳,苏慧,刘少雄,廖小兰,侯春久. 黎川县艾叶不同采收期总黄酮及山奈酚、异泽兰黄素的测定. 山东化工. 2024(24): 118-120+124 .
    7. 王文哲,梁芳,类成通,孔祥青,王裕玉. 艾蒿及其提取物在动物生产中的应用研究进展. 饲料研究. 2024(24): 158-162 .
    8. 廖富友,姚炳浓,杨娇一,王姣,祝保国,杨胜林. 饲粮添加艾叶粉对青年期蛋鸭生长性能、抗氧化功能及免疫性能的影响. 中国家禽. 2023(01): 76-81 .
    9. 李胜有,荣冬芸,潘卫东,郑志昌. 艾叶的活性成分、功效及其在动物饲养中的应用研究进展. 饲料研究. 2023(01): 137-141 .
    10. 程银水,张勇,秦志旺,董阳,李志浩,郝新才. 超高效液相色谱指纹图谱结合化学模式识别分析艾叶质量. 理化检验-化学分册. 2023(07): 837-843 .
    11. 孙君燕,孙敏,宋诗清,王化田,冯涛,姚凌云,俞文华. 香榧纯露的挥发性成分及抗氧化活性研究. 食品工业科技. 2022(03): 40-47 . 本站查看
    12. 周永强,赵春丽,殷鑫,周涛,韩伟,张永萍. 小花清风藤醇提物的化学成分及体外抗氧化活性研究. 中国药房. 2022(05): 530-534 .
    13. 陈誉华,马钱波,魏元浩,黄倩倩. 艾叶不同极性溶剂提取物的抗氧化能力的研究. 饲料研究. 2022(14): 64-68 .
    14. 赵永恒,张勇,秦志旺,董阳,汤哲伟,陈富超,罗雪,郝新才. 气相色谱-质谱指纹图谱结合化学计量学方法分析不同产地艾叶挥发油的差异. 理化检验-化学分册. 2022(11): 1277-1282 .
    15. 朱平平,覃智恒,彭慧倩,刘育文,刘静,陈锦涛,彭颖. 艾叶中多糖和黄酮联合提取工艺及抗氧化性研究. 广州化工. 2022(23): 66-69+98 .
    16. 王美英,李化强,吴菲菲. 超声波辅助提取竹叶鸡爪茶总黄酮的工艺优化及抗氧化、抑菌活性研究. 粮食与油脂. 2021(06): 105-111 .
    17. 王举翠,李明芝. 鲜芦根荷叶复合饮料研制及对运动耐力的影响研究. 食品安全质量检测学报. 2021(17): 7021-7029 .
    18. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (290) PDF downloads (26) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return