Citation: | GUO Jiayao, LV Xiuli, LI Xuetong, et al. Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics[J]. Science and Technology of Food Industry, 2022, 43(4): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020232. |
[1] |
DIAS M I, FERREIRA I C F R, BARREIRO M F. Microencapsulation of bioactives for food applications[J]. Food & Function,2015,6(4):1035−1052.
|
[2] |
WEN P, ZONG M H, LINHARDT R J, et al. Electrospinning: A novel nano-encapsulation approach for bioactive compounds[J]. Trends in Food Science & Technology,2017,70:56−68.
|
[3] |
ZAHRA, AKBARBAGLU, SEID, et al. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates[J]. Colloids & Surfaces B Biointerfaces,2019,178:421−429.
|
[4] |
TORKAMANI A E, ABIDIN S Z, HANI N M, et al. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning[J]. Food Bioscience,2018,21:60−71. doi: 10.1016/j.fbio.2017.12.001
|
[5] |
RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87(9):4531−4547. doi: 10.1063/1.373532
|
[6] |
WONG S C, BAJI A, LENG S. Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone)[J]. Polymer,2008,49(21):4713−4722. doi: 10.1016/j.polymer.2008.08.022
|
[7] |
ANABELA M, DAN L, LESLEY O, et al. Protein encapsulation by electrospinning and electrospraying[J]. Journal of Controlled Release,2020,329:1172−1197.
|
[8] |
SAJEDEH, KHORSHIDI, ATEFEH, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications[J]. Journal of Tissue Engineering & Regenerative,2016,10(9):715−738.
|
[9] |
KHALF A, MADIHALLY S V. Recent advances in multiaxial electrospinning for drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2016,112:1−17.
|
[10] |
ROSTAMABADI H, ASSADPOUR E, SHAHIRITABARESTANI H, et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations[J]. Trends in Food Science & Technology,2020,100:190−209.
|
[11] |
CHEN Z, CHEN Z, ZHANG A, et al. Electrospun nanofibers for cancer diagnosis and therapy[J]. Biomaterials Science,2016,4(6):922−932. doi: 10.1039/C6BM00070C
|
[12] |
ISIK B S, ALTAY F, CAPANOGLU E. The uniaxial and coaxial encapsulations of sour cherry(Prunus cerasus L. ) concentrate by electrospinning and their in vitro bioaccessibility[J]. Food Chemistry,2018,265:260−273. doi: 10.1016/j.foodchem.2018.05.064
|
[13] |
VYSLOUŽILOVÁ L, BUZGO M, POKORNÝ P, et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers[J]. 2017, 516(1-2): 293-300.
|
[14] |
RAFIEI M, JOOYBAR E, ABDEKHODAIE M J, et al. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery[J]. Materials Science and Engineering C,2020,113:110913. doi: 10.1016/j.msec.2020.110913
|
[15] |
ALHARBI H F, LUQMAN M, FOUAD H, et al. Viscoelastic behavior of core-shell structured nanofibers of PLA and PVA produced by coaxial electrospinning[J]. Polymer Testing,2018,67:136−143. doi: 10.1016/j.polymertesting.2018.02.026
|
[16] |
LUU Y K, KIM K, HSIAO B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers[J]. Journal of Controlled Release,2003,89(2):341−353. doi: 10.1016/S0168-3659(03)00097-X
|
[17] |
JAIN R, SHETTY S, YADAV K S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers[J]. Journal of Drug Delivery Science and Technology,2020,57:101604. doi: 10.1016/j.jddst.2020.101604
|
[18] |
MOHAMMADI M A, RAMAZANI S, ROSTAMI M, et al. Fabrication of food-grade nanofibers of whey protein isolate-guar gum using the electrospinning method[J]. Food Hydrocolloids,2019,90:99−104. doi: 10.1016/j.foodhyd.2018.12.010
|
[19] |
AHMED F E, LALIA B S, HASHAIKEH R. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination,2015,356:15−30. doi: 10.1016/j.desal.2014.09.033
|
[20] |
HMI A, AK B. A review on electrospun polymeric nanofibers: Production parameters and potential applications[J]. Polymer Testing,2020,90:106647. doi: 10.1016/j.polymertesting.2020.106647
|
[21] |
RIEGER K A, BIRCH N P, SCHIFFMAN J D. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation[J]. Carbohydr Polym,2016,139:131−138. doi: 10.1016/j.carbpol.2015.11.073
|
[22] |
HAIDER A, HAIDER S, KANG I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry,2018,11(8):1165−1188. doi: 10.1016/j.arabjc.2015.11.015
|
[23] |
ROSTAMI M R, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015
|
[24] |
XIN Y, RENEKER D H. Garland formation process in electrospinning[J]. Polymer,2012,53(16):3629−3635. doi: 10.1016/j.polymer.2012.05.060
|
[25] |
QING D, DR HARDING, Y HONG, et al. Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning[J]. Polymer,2013,54(25):6752−6759. doi: 10.1016/j.polymer.2013.10.029
|
[26] |
YAZGAN G, POPA A M, ROSSI R M, et al. Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning[J]. Polymer,2015,66:268−276. doi: 10.1016/j.polymer.2015.04.045
|
[27] |
CLARK A L, KNIGHT G, WILES P, et al. Biosynthetic human insulin in the treatment of diabetes. A double-blind crossover trial in established diabetic patients[J]. Lancet,1982,320(8294):354−357. doi: 10.1016/S0140-6736(82)90548-7
|
[28] |
LEE C L, HARRIS J L, KHANNA K K, et al. A comprehensive review on current advances in peptide drug development and design[J]. International Journal of Molecular Sciences,2019,20(10):2383. doi: 10.3390/ijms20102383
|
[29] |
LWA B , TJB A , CAPA B. Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction-ScienceDirect[J]. International Journal of Pharmaceutics, 585: 119448.
|
[30] |
PARDRIDGE W M. Blood-brain barrier and delivery of protein and gene therapeutics to brain[J]. Frontiers in Aging Neuroscience,2020,11:373. doi: 10.3389/fnagi.2019.00373
|
[31] |
DEWANGAN R P, BISHT G S, SINGH V P, et al. Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. aureus[J]. Bioorganic Chemistry,2017:538−547.
|
[32] |
NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology,2011,29(9):464−472. doi: 10.1016/j.tibtech.2011.05.001
|
[33] |
孟德梅, 孙雪晴, 石林玥, 等. 抗菌肽应用于食品中的研究现状及面临的挑战[J]. 食品研究与开发,2020,41(8):218−224. [MENG D M, SUN X Q, SHI L Y, et al. Research progresses and challenges of antimicrobial peptides for application in food filed[J]. Food Research and Development,2020,41(8):218−224. doi: 10.12161/j.issn.1005-6521.2020.08.036
|
[34] |
SOTO K M, HERNÁNDEZ-ITURRIAGA M, LOARCA-PIN˜A G, et al. Stable nisin food-grade electrospun fibers[J]. Journal of Food Science & Technology,2016,53(10):3787−3794.
|
[35] |
WANG X, YUE T, LEE T C. Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application[J]. Food Control,2015,54:150−157. doi: 10.1016/j.foodcont.2015.02.001
|
[36] |
ALONSO-GONZÁLEZ M, CORRAL-GONZÁLEZ A, FELIX M, et al. Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging[J]. International Journal of Biological Macromolecules,2020,162:913−921. doi: 10.1016/j.ijbiomac.2020.06.217
|
[37] |
EL-SHISHTAWY R M, ALDHAHRI M, ALMULAIKY Y Q. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study[J]. International Journal of Biological Macromolecules,2020,163:1353−1360. doi: 10.1016/j.ijbiomac.2020.07.278
|
[38] |
代云容, 牛军峰, 殷立峰, 等. 静电纺丝纳米纤维膜固定化酶及其应用[J]. 化学进展,2010,22(9):1808−1818. [DAI Y R, NIU J F, YIN L F, et al. Electrospun nanofiber membranes as supports for enzyme immobilization and its application[J]. Progress in Chemistry,2010,22(9):1808−1818.
|
[39] |
WANG Z, WANG Z, WILLIAM, et al. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications[J]. NPG Asia Materials,2017,9(10):e435. doi: 10.1038/am.2017.171
|
[40] |
WANG C, HOU W, GUO X, et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl,2017,79:507−515. doi: 10.1016/j.msec.2017.05.075
|
[41] |
SCHNELL E, KLINKHAMMER K, BALZER S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend[J]. Biomaterials Science,2007,28(19):3012−3025. doi: 10.1016/j.biomaterials.2007.03.009
|
[42] |
VALMIKINATHAN C M, DEFRODA S, YU X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor[J]. Biomacromolecules,2009,10(5):1084−1089. doi: 10.1021/bm8012499
|
[43] |
YANG H, WEN P, FENG K, et al. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties[J]. RSC Advances,2017,7(24):14939−14946. doi: 10.1039/C7RA00051K
|
[44] |
XIE N, NIU J, GAO X, et al. Fabrication and characterization of electrospun fatty acid form: Table phase change materials in the presence of copper nanoparticles[J]. International Journal of Energy Research,2020,44(11):8567−8577. doi: 10.1002/er.5543
|
[45] |
张昭, 徐珍霞, 董绪燕, 等. ω-3脂肪酸微胶囊制备方法的研究进展[J]. 中国食物与营养,2020,26(2):41−45. [ZHANG Z, XV Z X, DONG X Y, et al. Research progress on preparation methods of ω-3 fatty acid microcapsules[J]. Food and Nutrition in China,2020,26(2):41−45. doi: 10.3969/j.issn.1006-9577.2020.02.009
|
[46] |
MENDES A C, GORZELANNY C, HALTER N, et al. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery[J]. Int J Pharm,2016:48−56.
|
[47] |
WANG H, HAO L, NIU B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. Journal of Agricultural,2016,64(15):3083−3090.
|
[48] |
LEENA M M, YOHA K S, MOSES J A, et al. Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility[J]. Food Bioscience,2020,36:100669. doi: 10.1016/j.fbio.2020.100669
|
[49] |
姚飞, 陈复生, 郝明飞. 负载茶多酚的花生分离蛋白-聚乳酸纳米纤维膜的制备及抗菌性能研究[J]. 食品工业科技,2021,42(13):6. [YAO F, CHEN F S, HAO M F. Preparation and antibacterial properties of peanut protein isolate-polylactic acid nanofiber membrane loaded with tea polyphenols[J]. Science and Technology of Food Industry,2021,42(13):6.
|
[50] |
FABRA M J, LÓPEZ-RUBIO A, LAGARON J M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications-ScienceDirect[J]. Food Hydrocolloids,2016,55:11−18. doi: 10.1016/j.foodhyd.2015.10.026
|
[51] |
AYTAC Z, UYAR T. Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers[J]. European Polymer Journal,2016,79:140−149. doi: 10.1016/j.eurpolymj.2016.04.029
|
[52] |
LI H, LI H, WANG M, et al. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials[J]. RSC Advances,2016,6(55):50267−50277. doi: 10.1039/C6RA05092A
|
[53] |
ACEITUNO-MEDINA M, MENDOZA S, LAGARON J M, et al. Photoprotection of folic acid upon encapsulation in food-grade amaranth(Amaranthus hypochondriacus L. ) protein isolate-pullulan electrospun fibers[J]. LWT-Food Science and Technology,2015,62(2):970−975. doi: 10.1016/j.lwt.2015.02.025
|
[54] |
SRIDHARAN K, GOGTAY N J. Therapeutic nucleic acids: Current clinical status[J]. British Journal of Clinical Pharmacology,2016,82(3):659−672. doi: 10.1111/bcp.12987
|
[55] |
NGUYEN L H, GAO M, LIN J, et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment[J]. Scientific Reports,2017,7(1):1−12. doi: 10.1038/s41598-016-0028-x
|
[56] |
LI C, TZENG S Y, TELLIER L E, et al. (3-Aminopropyl)-4-methylpiperazine end-capped poly(1, 4-butanediol diacrylate-co-4-amino-1-butanol)-based multi layer films for gene delivery[J]. ACS Applied Materials & Interfaces,2013,5(13):5947−5953.
|
[57] |
ACEITUNO-MEDINA M, MENDOZA S, RODRÍGUEZ B A, et al. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers[J]. Journal of Functional Foods,2015,12:332−341. doi: 10.1016/j.jff.2014.11.028
|
[58] |
STOJANOV S, BERLEC A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications[J]. Frontiers in Bioengineering and Biotechnology,2020,8:130. doi: 10.3389/fbioe.2020.00130
|
[59] |
MA J, XU C, YU H, et al. Electro-encapsulation of probiotics in gum arabic-pullulan blend nanofibres using electrospinning technology[J]. Food Hydrocolloids,2021,111:106381. doi: 10.1016/j.foodhyd.2020.106381
|
[60] |
KATJA ŠKRLEC, ŠPELA ZUPANČIČ, SONJA PRPAR MIHEVC, et al. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics[J]. European Journal of Pharmaceutics and Biopharmaceutics,2019,136:108−119. doi: 10.1016/j.ejpb.2019.01.013
|
[61] |
FENG K, HUANG R M, WU R Q, et al. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions[J]. Food Chemistry,2019,310:125977.
|
1. |
张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
![]() | |
2. |
王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
![]() | |
3. |
赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
![]() | |
4. |
肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
![]() | |
5. |
陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
![]() | |
6. |
林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
![]() | |
7. |
张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
![]() | |
8. |
申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
![]() | |
9. |
董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
![]() | |
10. |
宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
![]() | |
11. |
刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
![]() | |
12. |
张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
![]() | |
13. |
张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
![]() | |
14. |
田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 .
![]() | |
15. |
赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
![]() | |
16. |
郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
![]() | |
17. |
吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 .
![]() | |
18. |
张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 .
![]() |