GUO Jiayao, LV Xiuli, LI Xuetong, et al. Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics[J]. Science and Technology of Food Industry, 2022, 43(4): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020232.
Citation: GUO Jiayao, LV Xiuli, LI Xuetong, et al. Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics[J]. Science and Technology of Food Industry, 2022, 43(4): 446−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020232.

Research Progress in the Application of Electrospinning Technology in the Protection of Active Ingredients and Probiotics

More Information
  • Received Date: February 28, 2021
  • Available Online: December 12, 2021
  • With the rapid development of different nanotechnologies in recent decades, the capture of bioactive ingredients into polymeric matrices for controlled release has become a popular area of research. Incorporation of bioactive components into different encapsulated matrices is a unique approach to protect these valuable components from inactivation in unfavorable in vitro or in vivo environments, maximizing their stability and bioavailability. Compared with conventional encapsulation techniques, electrospinning technology has many advantages, such as high porosity, high surface volume ratio, structural similarity to the extracellular matrix, and high envelope rate for bioactive compounds, and these structural and functional advantages make electrospinning technology a better choice in protecting bioactive components. This paper reviews the basic working principles of electrostatic spinning, the selection of nanofiber polymers, and the parameters affecting the properties of nanofibers. The advantages of electrostatic spinning nanofibers are analyzed, and the application of electrostatic spinning technology in encapsulating different types of bioactive compounds is discussed, and this paper would provide a reference for the further research and application of this technology in food processing and the development of related innovative foods.
  • [1]
    DIAS M I, FERREIRA I C F R, BARREIRO M F. Microencapsulation of bioactives for food applications[J]. Food & Function,2015,6(4):1035−1052.
    [2]
    WEN P, ZONG M H, LINHARDT R J, et al. Electrospinning: A novel nano-encapsulation approach for bioactive compounds[J]. Trends in Food Science & Technology,2017,70:56−68.
    [3]
    ZAHRA, AKBARBAGLU, SEID, et al. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates[J]. Colloids & Surfaces B Biointerfaces,2019,178:421−429.
    [4]
    TORKAMANI A E, ABIDIN S Z, HANI N M, et al. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning[J]. Food Bioscience,2018,21:60−71. doi: 10.1016/j.fbio.2017.12.001
    [5]
    RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87(9):4531−4547. doi: 10.1063/1.373532
    [6]
    WONG S C, BAJI A, LENG S. Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone)[J]. Polymer,2008,49(21):4713−4722. doi: 10.1016/j.polymer.2008.08.022
    [7]
    ANABELA M, DAN L, LESLEY O, et al. Protein encapsulation by electrospinning and electrospraying[J]. Journal of Controlled Release,2020,329:1172−1197.
    [8]
    SAJEDEH, KHORSHIDI, ATEFEH, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications[J]. Journal of Tissue Engineering & Regenerative,2016,10(9):715−738.
    [9]
    KHALF A, MADIHALLY S V. Recent advances in multiaxial electrospinning for drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2016,112:1−17.
    [10]
    ROSTAMABADI H, ASSADPOUR E, SHAHIRITABARESTANI H, et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations[J]. Trends in Food Science & Technology,2020,100:190−209.
    [11]
    CHEN Z, CHEN Z, ZHANG A, et al. Electrospun nanofibers for cancer diagnosis and therapy[J]. Biomaterials Science,2016,4(6):922−932. doi: 10.1039/C6BM00070C
    [12]
    ISIK B S, ALTAY F, CAPANOGLU E. The uniaxial and coaxial encapsulations of sour cherry(Prunus cerasus L. ) concentrate by electrospinning and their in vitro bioaccessibility[J]. Food Chemistry,2018,265:260−273. doi: 10.1016/j.foodchem.2018.05.064
    [13]
    VYSLOUŽILOVÁ L, BUZGO M, POKORNÝ P, et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers[J]. 2017, 516(1-2): 293-300.
    [14]
    RAFIEI M, JOOYBAR E, ABDEKHODAIE M J, et al. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery[J]. Materials Science and Engineering C,2020,113:110913. doi: 10.1016/j.msec.2020.110913
    [15]
    ALHARBI H F, LUQMAN M, FOUAD H, et al. Viscoelastic behavior of core-shell structured nanofibers of PLA and PVA produced by coaxial electrospinning[J]. Polymer Testing,2018,67:136−143. doi: 10.1016/j.polymertesting.2018.02.026
    [16]
    LUU Y K, KIM K, HSIAO B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers[J]. Journal of Controlled Release,2003,89(2):341−353. doi: 10.1016/S0168-3659(03)00097-X
    [17]
    JAIN R, SHETTY S, YADAV K S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers[J]. Journal of Drug Delivery Science and Technology,2020,57:101604. doi: 10.1016/j.jddst.2020.101604
    [18]
    MOHAMMADI M A, RAMAZANI S, ROSTAMI M, et al. Fabrication of food-grade nanofibers of whey protein isolate-guar gum using the electrospinning method[J]. Food Hydrocolloids,2019,90:99−104. doi: 10.1016/j.foodhyd.2018.12.010
    [19]
    AHMED F E, LALIA B S, HASHAIKEH R. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination,2015,356:15−30. doi: 10.1016/j.desal.2014.09.033
    [20]
    HMI A, AK B. A review on electrospun polymeric nanofibers: Production parameters and potential applications[J]. Polymer Testing,2020,90:106647. doi: 10.1016/j.polymertesting.2020.106647
    [21]
    RIEGER K A, BIRCH N P, SCHIFFMAN J D. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation[J]. Carbohydr Polym,2016,139:131−138. doi: 10.1016/j.carbpol.2015.11.073
    [22]
    HAIDER A, HAIDER S, KANG I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry,2018,11(8):1165−1188. doi: 10.1016/j.arabjc.2015.11.015
    [23]
    ROSTAMI M R, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015
    [24]
    XIN Y, RENEKER D H. Garland formation process in electrospinning[J]. Polymer,2012,53(16):3629−3635. doi: 10.1016/j.polymer.2012.05.060
    [25]
    QING D, DR HARDING, Y HONG, et al. Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning[J]. Polymer,2013,54(25):6752−6759. doi: 10.1016/j.polymer.2013.10.029
    [26]
    YAZGAN G, POPA A M, ROSSI R M, et al. Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning[J]. Polymer,2015,66:268−276. doi: 10.1016/j.polymer.2015.04.045
    [27]
    CLARK A L, KNIGHT G, WILES P, et al. Biosynthetic human insulin in the treatment of diabetes. A double-blind crossover trial in established diabetic patients[J]. Lancet,1982,320(8294):354−357. doi: 10.1016/S0140-6736(82)90548-7
    [28]
    LEE C L, HARRIS J L, KHANNA K K, et al. A comprehensive review on current advances in peptide drug development and design[J]. International Journal of Molecular Sciences,2019,20(10):2383. doi: 10.3390/ijms20102383
    [29]
    LWA B , TJB A , CAPA B. Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction-ScienceDirect[J]. International Journal of Pharmaceutics, 585: 119448.
    [30]
    PARDRIDGE W M. Blood-brain barrier and delivery of protein and gene therapeutics to brain[J]. Frontiers in Aging Neuroscience,2020,11:373. doi: 10.3389/fnagi.2019.00373
    [31]
    DEWANGAN R P, BISHT G S, SINGH V P, et al. Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. aureus[J]. Bioorganic Chemistry,2017:538−547.
    [32]
    NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology,2011,29(9):464−472. doi: 10.1016/j.tibtech.2011.05.001
    [33]
    孟德梅, 孙雪晴, 石林玥, 等. 抗菌肽应用于食品中的研究现状及面临的挑战[J]. 食品研究与开发,2020,41(8):218−224. [MENG D M, SUN X Q, SHI L Y, et al. Research progresses and challenges of antimicrobial peptides for application in food filed[J]. Food Research and Development,2020,41(8):218−224. doi: 10.12161/j.issn.1005-6521.2020.08.036
    [34]
    SOTO K M, HERNÁNDEZ-ITURRIAGA M, LOARCA-PIN˜A G, et al. Stable nisin food-grade electrospun fibers[J]. Journal of Food Science & Technology,2016,53(10):3787−3794.
    [35]
    WANG X, YUE T, LEE T C. Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application[J]. Food Control,2015,54:150−157. doi: 10.1016/j.foodcont.2015.02.001
    [36]
    ALONSO-GONZÁLEZ M, CORRAL-GONZÁLEZ A, FELIX M, et al. Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging[J]. International Journal of Biological Macromolecules,2020,162:913−921. doi: 10.1016/j.ijbiomac.2020.06.217
    [37]
    EL-SHISHTAWY R M, ALDHAHRI M, ALMULAIKY Y Q. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study[J]. International Journal of Biological Macromolecules,2020,163:1353−1360. doi: 10.1016/j.ijbiomac.2020.07.278
    [38]
    代云容, 牛军峰, 殷立峰, 等. 静电纺丝纳米纤维膜固定化酶及其应用[J]. 化学进展,2010,22(9):1808−1818. [DAI Y R, NIU J F, YIN L F, et al. Electrospun nanofiber membranes as supports for enzyme immobilization and its application[J]. Progress in Chemistry,2010,22(9):1808−1818.
    [39]
    WANG Z, WANG Z, WILLIAM, et al. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications[J]. NPG Asia Materials,2017,9(10):e435. doi: 10.1038/am.2017.171
    [40]
    WANG C, HOU W, GUO X, et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl,2017,79:507−515. doi: 10.1016/j.msec.2017.05.075
    [41]
    SCHNELL E, KLINKHAMMER K, BALZER S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend[J]. Biomaterials Science,2007,28(19):3012−3025. doi: 10.1016/j.biomaterials.2007.03.009
    [42]
    VALMIKINATHAN C M, DEFRODA S, YU X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor[J]. Biomacromolecules,2009,10(5):1084−1089. doi: 10.1021/bm8012499
    [43]
    YANG H, WEN P, FENG K, et al. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties[J]. RSC Advances,2017,7(24):14939−14946. doi: 10.1039/C7RA00051K
    [44]
    XIE N, NIU J, GAO X, et al. Fabrication and characterization of electrospun fatty acid form: Table phase change materials in the presence of copper nanoparticles[J]. International Journal of Energy Research,2020,44(11):8567−8577. doi: 10.1002/er.5543
    [45]
    张昭, 徐珍霞, 董绪燕, 等. ω-3脂肪酸微胶囊制备方法的研究进展[J]. 中国食物与营养,2020,26(2):41−45. [ZHANG Z, XV Z X, DONG X Y, et al. Research progress on preparation methods of ω-3 fatty acid microcapsules[J]. Food and Nutrition in China,2020,26(2):41−45. doi: 10.3969/j.issn.1006-9577.2020.02.009
    [46]
    MENDES A C, GORZELANNY C, HALTER N, et al. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery[J]. Int J Pharm,2016:48−56.
    [47]
    WANG H, HAO L, NIU B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. Journal of Agricultural,2016,64(15):3083−3090.
    [48]
    LEENA M M, YOHA K S, MOSES J A, et al. Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility[J]. Food Bioscience,2020,36:100669. doi: 10.1016/j.fbio.2020.100669
    [49]
    姚飞, 陈复生, 郝明飞. 负载茶多酚的花生分离蛋白-聚乳酸纳米纤维膜的制备及抗菌性能研究[J]. 食品工业科技,2021,42(13):6. [YAO F, CHEN F S, HAO M F. Preparation and antibacterial properties of peanut protein isolate-polylactic acid nanofiber membrane loaded with tea polyphenols[J]. Science and Technology of Food Industry,2021,42(13):6.
    [50]
    FABRA M J, LÓPEZ-RUBIO A, LAGARON J M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications-ScienceDirect[J]. Food Hydrocolloids,2016,55:11−18. doi: 10.1016/j.foodhyd.2015.10.026
    [51]
    AYTAC Z, UYAR T. Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers[J]. European Polymer Journal,2016,79:140−149. doi: 10.1016/j.eurpolymj.2016.04.029
    [52]
    LI H, LI H, WANG M, et al. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials[J]. RSC Advances,2016,6(55):50267−50277. doi: 10.1039/C6RA05092A
    [53]
    ACEITUNO-MEDINA M, MENDOZA S, LAGARON J M, et al. Photoprotection of folic acid upon encapsulation in food-grade amaranth(Amaranthus hypochondriacus L. ) protein isolate-pullulan electrospun fibers[J]. LWT-Food Science and Technology,2015,62(2):970−975. doi: 10.1016/j.lwt.2015.02.025
    [54]
    SRIDHARAN K, GOGTAY N J. Therapeutic nucleic acids: Current clinical status[J]. British Journal of Clinical Pharmacology,2016,82(3):659−672. doi: 10.1111/bcp.12987
    [55]
    NGUYEN L H, GAO M, LIN J, et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment[J]. Scientific Reports,2017,7(1):1−12. doi: 10.1038/s41598-016-0028-x
    [56]
    LI C, TZENG S Y, TELLIER L E, et al. (3-Aminopropyl)-4-methylpiperazine end-capped poly(1, 4-butanediol diacrylate-co-4-amino-1-butanol)-based multi layer films for gene delivery[J]. ACS Applied Materials & Interfaces,2013,5(13):5947−5953.
    [57]
    ACEITUNO-MEDINA M, MENDOZA S, RODRÍGUEZ B A, et al. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers[J]. Journal of Functional Foods,2015,12:332−341. doi: 10.1016/j.jff.2014.11.028
    [58]
    STOJANOV S, BERLEC A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications[J]. Frontiers in Bioengineering and Biotechnology,2020,8:130. doi: 10.3389/fbioe.2020.00130
    [59]
    MA J, XU C, YU H, et al. Electro-encapsulation of probiotics in gum arabic-pullulan blend nanofibres using electrospinning technology[J]. Food Hydrocolloids,2021,111:106381. doi: 10.1016/j.foodhyd.2020.106381
    [60]
    KATJA ŠKRLEC, ŠPELA ZUPANČIČ, SONJA PRPAR MIHEVC, et al. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics[J]. European Journal of Pharmaceutics and Biopharmaceutics,2019,136:108−119. doi: 10.1016/j.ejpb.2019.01.013
    [61]
    FENG K, HUANG R M, WU R Q, et al. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions[J]. Food Chemistry,2019,310:125977.
  • Related Articles

    [1]MA Xiangjie, ZHAO Jiansheng, HUANG Qirui, WANG Qifan, CHEN Jie, ZENG Maomao. Effects of Thermal Reaction Conditions on Dicarbonyl Compounds and Flavor Substances in Glucose-Alanine Sweet-flavored Maillard Reaction Model System[J]. Science and Technology of Food Industry, 2024, 45(16): 114-120. DOI: 10.13386/j.issn1002-0306.2023100219
    [2]SUN Bingyu, ZHENG Xinru, LIU Linlin, LÜ Mingshou, HUANG Yuyang, ZHU Ying, QU Min, ZHU Xiuqing, SHI Yanguo. Research Progress on the Influence of Coagulants and Processing Conditions on the Formation and Quality of Tofu Gel[J]. Science and Technology of Food Industry, 2024, 45(3): 388-396. DOI: 10.13386/j.issn1002-0306.2023030178
    [3]CHEN Yang, LIAO Ziwei, TAO Juanjuan, JIANG Dan, SUN Daihua, CHEN Zhiyuan. Optimization of Ultrasonic Combined with Enzymatic Extraction Process of Total Alkaloids from Artemisia argyi Leaves and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 197-205. DOI: 10.13386/j.issn1002-0306.2021090016
    [4]GONG Pin, HAN Yewen, ZHAI Pengtao, CHEN Xuefeng, ZHAI Wenjun, ZHENG Benzhong, CHEN Fuxin. Active Components, Pharmacological Action and Application in Food Processing of Eucommia ulmoides Leaves[J]. Science and Technology of Food Industry, 2022, 43(10): 395-404. DOI: 10.13386/j.issn1002-0306.2021050082
    [5]SUN Xiyun, WANG Jingwen, TIAN Sihui, XU Zihan, LI Bin. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407. DOI: 10.13386/j.issn1002-0306.2020080268
    [6]HUANG Zhiyu, SHEN Xueyu, CHEN Xunlin, GUO Zhuozhao, HUANG Wei. Isolation and Identification of Spoilage Fungi in the Fermentation Broth of Sanhua Plum, Evaluation of the Potency of Related Antibacterial Agents and Optimization of Fermentation Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 113-120. DOI: 10.13386/j.issn1002-0306.2020110278
    [7]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [8]LIU Ye, SU Hang, SONG Huan- lu, SU Ke- ran. Optimization of natto processing conditions based on nattokinase activity[J]. Science and Technology of Food Industry, 2016, (07): 170-175. DOI: 10.13386/j.issn1002-0306.2016.07.025
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]CHEN Xue-hong, QIN Wei-dong, MA Li-hua, DAI Xiao-juan. Effect of processing conditions on quality of fruit and vegetable juices[J]. Science and Technology of Food Industry, 2014, (01): 355-362. DOI: 10.13386/j.issn1002-0306.2014.01.046
  • Cited by

    Periodical cited type(18)

    1. 张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
    2. 王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
    3. 赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
    4. 肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
    5. 陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
    6. 林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
    7. 张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
    8. 申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
    9. 董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
    10. 宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
    11. 刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
    12. 张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
    13. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
    14. 田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 . 本站查看
    15. 赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
    16. 郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
    17. 吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 . 本站查看
    18. 张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (295) PDF downloads (28) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return