Citation: | TIAN Hua. Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas[J]. Science and Technology of Food Industry, 2021, 42(18): 41−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120265. |
[1] |
王文霞, 马本学, 罗秀芝, 等. 近红外光谱结合变量优选和GA-ELM模型的干制哈密大枣水分含量研究[J]. 光谱学与光谱分析,2020,40(2):543−549. [Wang W X, Ma B X, Luo X Z, et al. Study on the moisture content of dried hami big jujubes by near infrared spectroscopy combined with variable preferred and GA-ELM model[J]. Spectroscopy and Spectral Analysis,2020,40(2):543−549.
|
[2] |
何鸿举, 朱亚东, 王慧, 等. 近红外光谱技术在生鲜禽肉质量检测中应用的研究进展[J]. 食品科学,2019,40(21):317−323. [He H J, Zhu Y D, Wang H, et al. Recent advances in application of near-infrared spectroscopy for quality detection in fresh poultry meat[J]. Food Science,2019,40(21):317−323. doi: 10.7506/spkx1002-6630-20181119-218
|
[3] |
田华, 侯志杰, 陈报阳, 等. 近红外光谱在鱼类及鱼制品定性定量分析中的应用[J]. 食品与发酵工业,2017,43(6):274−278. [Tian H, Hou Z J, Chen B Y, et al. Prospects of applying near infrared spectroscopy in qualitative and quantitative analysis of fish and its products[J]. Food and Fermentation Industries,2017,43(6):274−278.
|
[4] |
张萌, 赵忠盖. 深度信念网络的近红外光谱分析建模方法[J]. 光谱学与光谱分析,2020,40(8):2512−2517. [Zhang M, Zhao G Z. Near infrared spectral analysis modeling method based on deep belief network[J]. Spectroscopy and Spectral Analysis,2020,40(8):2512−2517.
|
[5] |
Hao Y, Geng P, Wu W H, et al. Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics[J]. Molecules,2019,24:4568. doi: 10.3390/molecules24244568
|
[6] |
Cortes V, Cubero S, Blasco J, et al. In-line application of visible and near-infrared diffuse reflectance spectroscopy to identify apple varieties[J]. Food and Bioprocess Technology,2019,12(6):1021−1030.
|
[7] |
Li C L, Guo H W, Zong B Z, et al. Rapid and non-destructive discrimination of special-grade flat green tea using near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,206:254−262. doi: 10.1016/j.saa.2018.07.085
|
[8] |
Okubo N, Kurata Y. Nondestructive classification analysis of green coffee beans by using near-infrared spectroscopy[J]. Foods,2019,22, 8(2):82.
|
[9] |
Oliveira M M, Cruz-Tirado J P, Roque J V, et al. Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder[J]. Journal of Food Composition and Analysis,2020:87.
|
[10] |
Chen H, Tan C, Li HJ. Untargeted Identification of adulterated sanqi powder by near-infrared spectroscopy and one-class model[J]. Journal of Food Composition and Analysis,2020:88.
|
[11] |
Wiedemair V, Ramoner R, Huck C W. Investigations into the total antioxidant capacities of cultivars of gluten-free grains using near-infrared spectroscopy[J]. Food Control,2019,95:189−195. doi: 10.1016/j.foodcont.2018.07.045
|
[12] |
McGoverin C M, Weeranantanaphan J, Downey G, et al. The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities[J]. Journal of Near Infrared Spectroscopy,2010,18(2):87−111. doi: 10.1255/jnirs.874
|
[13] |
Li Z X, Tang X Y, Shen Z X, et al. Comprehensive comparison of multiple quantitative near-infrared spectroscopy models for Aspergillus flavus contamination detection in peanut[J]. Journal of the Science of Food and Agriculture,2019,99(13):5671−5679. doi: 10.1002/jsfa.9828
|
[14] |
Johnson J B. An Overview of Near-infrared Spectroscopy (NIRS) for the detection of insect pests in stored grains[J]. Journal of Stored Products Research,2020:86.
|
[15] |
Li L Q, Pan X P, Chen W L, et al. Multi-manufacturer drug identification based on near infrared spectroscopy and deep transfer learning[J]. Journal of Innovative Optical Health Sciences,2020,13(4):2050016. doi: 10.1142/S1793545820500169
|
[16] |
Sans S, Ferre J, Boque R, et al. Estimating sensory properties with near-infraredspectroscopy: a tool for quality control and breeding of ‘calçots’ (Allium cepa L.)[J]. Agronomy,2020,10(6):828. doi: 10.3390/agronomy10060828
|
[17] |
Cayuela J A, Puertas B, Cantos-Villar E. Assessing wine sensory attributes using Vis/NIR[J]. European Food Research and Technology,2017,243(6):941−953. doi: 10.1007/s00217-016-2807-9
|
[18] |
Ribeiro J S, Ferreira M M C, Salva T J G. Chemometric models for the quantitative descriptive sensory analysis of arabica coffee beverages using near infrared spectroscopy[J]. Talanta,2011,83(5):1352−1358. doi: 10.1016/j.talanta.2010.11.001
|
[19] |
Baqueta M R, Coqueiro A, Valderrama P. Brazilian coffee blends: A simple and fast method by near-infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping[J]. Journal of Food Science,2019,84(6):1247−1255. doi: 10.1111/1750-3841.14617
|
[20] |
Francois I M, Wins H, Buysens S, et al. Predicting sensory attributes of different chicory hybrids using physico-chemical measurements and visible/near infrared spectroscopy[J]. Postharvest Biology and Technology,2008,49(3):366−373. doi: 10.1016/j.postharvbio.2008.02.011
|
[21] |
Plans M, Simo J, Casanas F, et al. Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy[J]. Food Research International,2014,56:55−62. doi: 10.1016/j.foodres.2013.12.003
|
[22] |
Van Dijk C, Fischer M, Holm J, et al. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry,2002,50(18):5082−5088. doi: 10.1021/jf011509w
|
[23] |
Gonzalez-Mohino A, Antequera T, Ventanas S, et al. Near-infrared spectroscopy-based analysis to study sensory parameters on pork loins as affected by cooking methods and conditions[J]. Journal of the Science of Food and Agriculture,2018,98(11):4227−4236. doi: 10.1002/jsfa.8944
|
[24] |
邱均平. 文献计量学[M]. 北京: 科学出版社, 2019.
Qiu J P. Bibliometrics[M]. Beijing: Science Press, 2019.
|
[25] |
骆靖阳, 陆柏益. 基于文献计量学的食品大数据技术研究分析[J]. 食品科学,2021,42(5):278-287.
Lu J Y, Lu B Y. Research and analysis of food big data technology based on bibliometrics[J]. Food Science,2021,42(5):278-287.
|
[26] |
许智勇, 马爱民. 基于文献计量的全球营养基因组学研究态势分析[J]. 食品科学,2020,41(5):237−245. [Xu Z Y, Ma A M. Global trends in nutrigenomic research: a bibliometric analysis[J]. Food Science,2020,41(5):237−245. doi: 10.7506/spkx1002-6630-20190716-213
|
[27] |
Chen H, Jiang W, Yang Y, et al. State of the art on food waste research: a bibliometrics study from 1997 to 2014[J]. Journal of Cleaner Production,2016,140(s1):840−846.
|
[28] |
Sharifi A, Simangan D, Kaneko S. Three decades of research on climate change and peace: A bibliometrics analysis[J]. Sustainability Science,2020,8:1−17.
|
[29] |
肖鹏飞, 安璐, 吴德东. 基于文献计量学分析的全球生物质炭研究进展[J]. 农业工程学报,2020,36(18):292. [Xiao Pengfei, An Lu, Wu Dedong. Research progress of biochar in the world based on bibliometrics analysis[J]. CAB International,2020,36(18):292. doi: 10.11975/j.issn.1002-6819.2020.18.034
|
1. |
黄潇漪,贾利蓉,孙玉鼎,曹月刚,冉旭. 天然香辛料对烘炒花生仁货架期品质的影响. 食品工业科技. 2024(12): 285-293 .
![]() | |
2. |
魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 .
![]() | |
3. |
邹林武,姜福全,戚智胜. 白冰糖提取玫瑰花风味的工艺研究. 现代食品. 2022(15): 94-96+117 .
![]() | |
4. |
宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
![]() |