TIAN Hua. Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas[J]. Science and Technology of Food Industry, 2021, 42(18): 41−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120265.
Citation: TIAN Hua. Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas[J]. Science and Technology of Food Industry, 2021, 42(18): 41−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120265.

Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas

More Information
  • Received Date: December 29, 2020
  • Available Online: July 11, 2021
  • As a convenient and rapid nondestructive testing technology, near infrared spectroscopy has been widely used in food research due to its advantages of simple operation, low analysis cost and strong reproducibility. In order to understand the evolution trend of near-infrared spectroscopy application in the global food field, this paper uses online literature analysis platform, online word cloud mapping platform and CiteSpace visualization software to analyze the evolution trend of near-infrared spectroscopy application. A bibliometric analysis of 584 papers on near infrared spectroscopy in food field published in science core collection of Web of Science data base from 2010 to 2021 was carried out. Present condition and development prospects are introduced from the time and space distribution of literature, influence and cooperation relationship between countries/regions and relevant institutions, research hotspots and research frontiers.
  • [1]
    王文霞, 马本学, 罗秀芝, 等. 近红外光谱结合变量优选和GA-ELM模型的干制哈密大枣水分含量研究[J]. 光谱学与光谱分析,2020,40(2):543−549. [Wang W X, Ma B X, Luo X Z, et al. Study on the moisture content of dried hami big jujubes by near infrared spectroscopy combined with variable preferred and GA-ELM model[J]. Spectroscopy and Spectral Analysis,2020,40(2):543−549.
    [2]
    何鸿举, 朱亚东, 王慧, 等. 近红外光谱技术在生鲜禽肉质量检测中应用的研究进展[J]. 食品科学,2019,40(21):317−323. [He H J, Zhu Y D, Wang H, et al. Recent advances in application of near-infrared spectroscopy for quality detection in fresh poultry meat[J]. Food Science,2019,40(21):317−323. doi: 10.7506/spkx1002-6630-20181119-218
    [3]
    田华, 侯志杰, 陈报阳, 等. 近红外光谱在鱼类及鱼制品定性定量分析中的应用[J]. 食品与发酵工业,2017,43(6):274−278. [Tian H, Hou Z J, Chen B Y, et al. Prospects of applying near infrared spectroscopy in qualitative and quantitative analysis of fish and its products[J]. Food and Fermentation Industries,2017,43(6):274−278.
    [4]
    张萌, 赵忠盖. 深度信念网络的近红外光谱分析建模方法[J]. 光谱学与光谱分析,2020,40(8):2512−2517. [Zhang M, Zhao G Z. Near infrared spectral analysis modeling method based on deep belief network[J]. Spectroscopy and Spectral Analysis,2020,40(8):2512−2517.
    [5]
    Hao Y, Geng P, Wu W H, et al. Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics[J]. Molecules,2019,24:4568. doi: 10.3390/molecules24244568
    [6]
    Cortes V, Cubero S, Blasco J, et al. In-line application of visible and near-infrared diffuse reflectance spectroscopy to identify apple varieties[J]. Food and Bioprocess Technology,2019,12(6):1021−1030.
    [7]
    Li C L, Guo H W, Zong B Z, et al. Rapid and non-destructive discrimination of special-grade flat green tea using near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,206:254−262. doi: 10.1016/j.saa.2018.07.085
    [8]
    Okubo N, Kurata Y. Nondestructive classification analysis of green coffee beans by using near-infrared spectroscopy[J]. Foods,2019,22, 8(2):82.
    [9]
    Oliveira M M, Cruz-Tirado J P, Roque J V, et al. Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder[J]. Journal of Food Composition and Analysis,2020:87.
    [10]
    Chen H, Tan C, Li HJ. Untargeted Identification of adulterated sanqi powder by near-infrared spectroscopy and one-class model[J]. Journal of Food Composition and Analysis,2020:88.
    [11]
    Wiedemair V, Ramoner R, Huck C W. Investigations into the total antioxidant capacities of cultivars of gluten-free grains using near-infrared spectroscopy[J]. Food Control,2019,95:189−195. doi: 10.1016/j.foodcont.2018.07.045
    [12]
    McGoverin C M, Weeranantanaphan J, Downey G, et al. The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities[J]. Journal of Near Infrared Spectroscopy,2010,18(2):87−111. doi: 10.1255/jnirs.874
    [13]
    Li Z X, Tang X Y, Shen Z X, et al. Comprehensive comparison of multiple quantitative near-infrared spectroscopy models for Aspergillus flavus contamination detection in peanut[J]. Journal of the Science of Food and Agriculture,2019,99(13):5671−5679. doi: 10.1002/jsfa.9828
    [14]
    Johnson J B. An Overview of Near-infrared Spectroscopy (NIRS) for the detection of insect pests in stored grains[J]. Journal of Stored Products Research,2020:86.
    [15]
    Li L Q, Pan X P, Chen W L, et al. Multi-manufacturer drug identification based on near infrared spectroscopy and deep transfer learning[J]. Journal of Innovative Optical Health Sciences,2020,13(4):2050016. doi: 10.1142/S1793545820500169
    [16]
    Sans S, Ferre J, Boque R, et al. Estimating sensory properties with near-infraredspectroscopy: a tool for quality control and breeding of ‘calçots’ (Allium cepa L.)[J]. Agronomy,2020,10(6):828. doi: 10.3390/agronomy10060828
    [17]
    Cayuela J A, Puertas B, Cantos-Villar E. Assessing wine sensory attributes using Vis/NIR[J]. European Food Research and Technology,2017,243(6):941−953. doi: 10.1007/s00217-016-2807-9
    [18]
    Ribeiro J S, Ferreira M M C, Salva T J G. Chemometric models for the quantitative descriptive sensory analysis of arabica coffee beverages using near infrared spectroscopy[J]. Talanta,2011,83(5):1352−1358. doi: 10.1016/j.talanta.2010.11.001
    [19]
    Baqueta M R, Coqueiro A, Valderrama P. Brazilian coffee blends: A simple and fast method by near-infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping[J]. Journal of Food Science,2019,84(6):1247−1255. doi: 10.1111/1750-3841.14617
    [20]
    Francois I M, Wins H, Buysens S, et al. Predicting sensory attributes of different chicory hybrids using physico-chemical measurements and visible/near infrared spectroscopy[J]. Postharvest Biology and Technology,2008,49(3):366−373. doi: 10.1016/j.postharvbio.2008.02.011
    [21]
    Plans M, Simo J, Casanas F, et al. Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy[J]. Food Research International,2014,56:55−62. doi: 10.1016/j.foodres.2013.12.003
    [22]
    Van Dijk C, Fischer M, Holm J, et al. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry,2002,50(18):5082−5088. doi: 10.1021/jf011509w
    [23]
    Gonzalez-Mohino A, Antequera T, Ventanas S, et al. Near-infrared spectroscopy-based analysis to study sensory parameters on pork loins as affected by cooking methods and conditions[J]. Journal of the Science of Food and Agriculture,2018,98(11):4227−4236. doi: 10.1002/jsfa.8944
    [24]
    邱均平. 文献计量学[M]. 北京: 科学出版社, 2019.

    Qiu J P. Bibliometrics[M]. Beijing: Science Press, 2019.
    [25]
    骆靖阳, 陆柏益. 基于文献计量学的食品大数据技术研究分析[J]. 食品科学,2021,42(5):278-287.

    Lu J Y, Lu B Y. Research and analysis of food big data technology based on bibliometrics[J]. Food Science,2021,42(5):278-287.
    [26]
    许智勇, 马爱民. 基于文献计量的全球营养基因组学研究态势分析[J]. 食品科学,2020,41(5):237−245. [Xu Z Y, Ma A M. Global trends in nutrigenomic research: a bibliometric analysis[J]. Food Science,2020,41(5):237−245. doi: 10.7506/spkx1002-6630-20190716-213
    [27]
    Chen H, Jiang W, Yang Y, et al. State of the art on food waste research: a bibliometrics study from 1997 to 2014[J]. Journal of Cleaner Production,2016,140(s1):840−846.
    [28]
    Sharifi A, Simangan D, Kaneko S. Three decades of research on climate change and peace: A bibliometrics analysis[J]. Sustainability Science,2020,8:1−17.
    [29]
    肖鹏飞, 安璐, 吴德东. 基于文献计量学分析的全球生物质炭研究进展[J]. 农业工程学报,2020,36(18):292. [Xiao Pengfei, An Lu, Wu Dedong. Research progress of biochar in the world based on bibliometrics analysis[J]. CAB International,2020,36(18):292. doi: 10.11975/j.issn.1002-6819.2020.18.034
  • Related Articles

    [1]LIU Cheng, ZHAO Lulu, ZHOU Songbin, LIU Yisen, WANG Tingyou. Rapid Discrimination of Aging Year of Chenpi Based on Hyperspectral Images[J]. Science and Technology of Food Industry, 2024, 45(24): 243-251. DOI: 10.13386/j.issn1002-0306.2024010229
    [2]XIE Dan, WU Cheng, BI Yuanlin, HU Jianfeng, HUANG Wei, HU Feng, FENG Xiaobing, CHENG Pingyan. Study on the Correlation between Microbial Community Succession and Physicochemical Factors during the Storage of Maotai-flavor Liquor in Daqu at High Temperature[J]. Science and Technology of Food Industry, 2023, 44(15): 151-158. DOI: 10.13386/j.issn1002-0306.2022090153
    [3]Shumin LIU, Xiaodan CHEN, Kailin ZENG, Xiaojun HU. Formulation Optimization of Coconut Oil Complex Gel Fudge and the Effect of Storage Time on Its Textural Properties[J]. Science and Technology of Food Industry, 2023, 44(13): 207-213. DOI: 10.13386/j.issn1002-0306.2022090144
    [4]LI Yumei, WAN Xin, CAO Yanping, XIE Jiuying, JI Jingjun, WANG Xin. Data Visual Analysis of Physicochemical Parameters of Two Batches of Frying Oil with Different Storage Time[J]. Science and Technology of Food Industry, 2022, 43(20): 281-290. DOI: 10.13386/j.issn1002-0306.2021090337
    [5]XIANG Zhuoya, XIA Chen, ZHU Yongqing, LUO Kebin, DENG Junlin, CHEN Jian, SHI Liugang. Effect of Storage Time on Functional Ingredient and Antioxidant Activity of Ya’an Tibetan Tea[J]. Science and Technology of Food Industry, 2021, 42(11): 67-72. DOI: 10.13386/j.issn1002-0306.2020080081
    [6]Jianting YANG, Sunyan WANG, Jinpeng HU, Ligong ZHAI, Yan LIU. Storage Life Prediction of Pickled White Ginger with Sugar and Vinegar according to Texture Evaluation[J]. Science and Technology of Food Industry, 2021, 42(8): 282-287. DOI: 10.13386/j.issn1002-0306.2020080111
    [7]WANG Chun-yan, WANG Rui, KANG Zhuang-li, LU Xue-jun, MA Han-jun, SONG Zhao-jun. Effect of the Different Cold Storage Time on Gel Properties of Chilled Pork Batters[J]. Science and Technology of Food Industry, 2018, 39(19): 76-79. DOI: 10.13386/j.issn1002-0306.2018.19.013
    [8]YANG Ping, HE Tian-peng, SONG Huan-lu. Characterization of the key-aroma compounds in egg yolk powder and the changes of aroma profile during the storage[J]. Science and Technology of Food Industry, 2018, 39(6): 265-270. DOI: 10.13386/j.issn1002-0306.2018.06.049
    [9]WANG Zhuo, PAN Lei-qing, WU Yong-jin, KE Bo, TU Kang. Quality evaluation of fresh satsuma mandarins juice during storage of satsuma mandarins by electronic nose[J]. Science and Technology of Food Industry, 2016, (09): 327-330. DOI: 10.13386/j.issn1002-0306.2016.09.055
    [10]ZHANG Hong, JIANG Xu-yang, MIAO Chang-qi, LIU Guang-hao, HAN Ying. Determination of the inosinic-5'-monophosphate contents in Culter alburnus muscle tissues under different storage circumstance[J]. Science and Technology of Food Industry, 2015, (08): 320-323. DOI: 10.13386/j.issn1002-0306.2015.08.058
  • Cited by

    Periodical cited type(4)

    1. 黄潇漪,贾利蓉,孙玉鼎,曹月刚,冉旭. 天然香辛料对烘炒花生仁货架期品质的影响. 食品工业科技. 2024(12): 285-293 . 本站查看
    2. 魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 . 本站查看
    3. 邹林武,姜福全,戚智胜. 白冰糖提取玫瑰花风味的工艺研究. 现代食品. 2022(15): 94-96+117 .
    4. 宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (341) PDF downloads (43) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return