ZHOU Feng, YAN Yangli, HUANG Kai, et al. Evaluation of in Vitro Anti-inflammatory and Antioxidant Activities and Analysis of Chemical Components in Different Extraction Parts of Lonicerae Flos[J]. Science and Technology of Food Industry, 2021, 42(8): 81−87. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080208.
Citation: ZHOU Feng, YAN Yangli, HUANG Kai, et al. Evaluation of in Vitro Anti-inflammatory and Antioxidant Activities and Analysis of Chemical Components in Different Extraction Parts of Lonicerae Flos[J]. Science and Technology of Food Industry, 2021, 42(8): 81−87. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080208.

Evaluation of in Vitro Anti-inflammatory and Antioxidant Activities and Analysis of Chemical Components in Different Extraction Parts of Lonicerae Flos

More Information
  • Received Date: August 20, 2020
  • Available Online: January 31, 2021
  • The aim of this study is to elucidate the material basis of Lonicerae Flos biological activity and provide a theoretical basis for its development and utilization, lipopolysaccharide (LPS)-induced cell inflammation model and H2O2-induced oxidative stress model were used to evaluate the anti-inflammatory and antioxidant activities of different extraction parts of Lonicerae Flos. The chemical constituents of the extractions with significant activities were analyzed by ultra-high pressure liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The results showed that the methanol extracts of Lonicerae Flos(50 μg/mL) have different levels of anti-oxidation and anti-inflammatory effects. The extraction site of saturated n-butanol effectively inhibited the inflammatory factors (NO、TNF-α and IL-6) of RAW264.7 cells, suggesting it has the strongest anti-inflammatory activity. The inhibition rates of inflammatory factors of NO, TNF-α and IL-6 were 66.40%, 13.14% and 79.66% respectively. 16 compounds in the water-saturated n-butanol extractive site were identified, and which mainly consisted of organic acids.The ethyl acetate extractive site has the strongest antioxidant ability. The antioxidant enzyme activity in RIN cells had increased about 2.51(SOD), 4.40(GSH), 8.89(CAT) times respectively. After preliminary identification, 12 compounds, including organic acids and saponins in the ethyl acetate site, were the main compound. Therefore, organic acids and saponins were the main chemical components of Lonicerae Flos, which had the antioxidant and anti-inflammatory activities.This article provides data support for further elucidating the material basis and development and utilization of Lonicerae Flos.
  • [1]
    国家药典委员会, 中华人民共和国药典(一部)[S]. 北京: 中国医药科技出版社, 2020: 32.
    [2]
    王志萍, 邓家刚, 王勤, 等. 山银花研究的最新进展[J]. 广西中医学院学报,2008,11(4):59−61.
    [3]
    李冲, 文翔昊, 郭露, 等. 山银花黄酮粗提物对急性心肌缺血氧化损伤大鼠的保护作用[J]. 中国动脉硬化杂志,2018,26(8):779−783, 835. doi: 10.3969/j.issn.1007-3949.2018.08.005
    [4]
    Han M H, Lee W S, Nagappan A, et al. Flavonoids isolated from flowers of Lonicera japonica Thunb. Inhibit inflammatory responses in BV2 microglial cells by suppressing TNF-alpha and IL-beta through PI3K/Akt/NF-kb signaling pathways[J]. Phytotherapy Research: PTR,2016,30(11):1824−1832. doi: 10.1002/ptr.5688
    [5]
    Hu X, Chen L, Shi S, et al. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,124:254−260. doi: 10.1016/j.jpba.2016.03.008
    [6]
    杨兰, 刘东波, 舒利, 等. 不同基源“金银花”的功能和应用研究进展[J]. 食品与机械,2020,36(1):10−19.
    [7]
    Hou Y, Jiang J G. Origin and concept of medicine fo od homology and its application in modern functional foods[J]. Food & Function,2013,4(12):1727−1741.
    [8]
    李泮霖, 李楚源, 刘孟华, 等. 基于UFLC-Triple-Q-TOF-MS/MS技术的金银花、山银花化学成分比较[J]. 中南药学,2016,14(4):363−369. doi: 10.7539/j.issn.1672-2981.2016.04.007
    [9]
    Deniz B, Zulfiye G, Julie A M, et al. Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and inflammation[J]. Current Neuropharmacology,2020,18(3):216−228. doi: 10.2174/1570159X17666191021111809
    [10]
    Naveedv M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2018,97:67−74.
    [11]
    肖作为, 谢梦洲, 甘龙, 等. 山银花、金银花中绿原酸和总黄酮含量及抗氧化活性测定[J]. 中草药,2019,50(1):210−216. doi: 10.7501/j.issn.0253-2670.2019.01.031
    [12]
    陈晓白, 蒋夏荣, 杨秋元, 等. 山银花多糖提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂,2018,11:155−161. doi: 10.3969/j.issn.1006-2513.2018.11.019
    [13]
    李泮霖, 贺利利, 李楚源, 等. 金银花和山银花抗急性口腔炎症作用比较[J]. 中山大学学报(自然科学版),2016,55(4):118−122.
    [14]
    邹璐. 山银花抗炎抗菌谱效关系研究[D]. 贵阳: 贵州大学, 2019.
    [15]
    张贤, 郭泽, 张冲, 等. 黄芪总黄酮对脂多糖体外诱导的RAW264.7细胞的细胞因子和NO分泌水平的影响[J]. 中国兽医科学,2015,45(3):321−324.
    [16]
    于笛, 周伟, 郭增旺, 等. 绿豆寡肽对脂多糖诱导巨噬细胞RAW264.7的抗炎作用[J]. 中国食品学报,2020,20(8):41−48.
    [17]
    裴晋红, 宋英达, 武翠玲. 硒化牡丹籽粕多糖的抗氧化研究[J]. 食品与发酵工业,2020,46(17):174−179.
    [18]
    Oi L W, Chen C Y, Li P. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in flos Lonicerae japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry: RCM,2009,23(19):3227−3242. doi: 10.1002/rcm.4245
    [19]
    朱姮, 崔莉, 刘倩, 等. HPLC-DAD-ESI-Q-TOF/MS法测定金银忍冬花中的化学成分[J]. 中草药,2017,48(11):2300−2305.
    [20]
    Song Y, LI S L, Wu M H, et al. Qualitative and quantitative analysis of iridoid glycosides in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector[J]. Analytica Chimica Acta,2006,564(2):211−218. doi: 10.1016/j.aca.2006.01.068
    [21]
    Iwahashi H, Negoro Y, Ikeda A, et al. Inhibition by chlorogenic acid of haematin-catalysed retinoic acid 5, 6-epoxidation[J]. Biochem J,1986,239(3):641−646. doi: 10.1042/bj2390641
    [22]
    Seo O N, Kim G-S, Park S, et al. Determination of polyphenol components of Lonicera japonica Thunb. using liquid chromatography–tandem mass spectrometry: Contribution to the overall antioxidant activity[J]. Food Chemistry,2012,134(1):572−577. doi: 10.1016/j.foodchem.2012.02.124
    [23]
    Lee E J, Kim J S, Kim H P, et al. Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities[J]. Food Chemistry,2009,120(1):134−139.
    [24]
    Ren M T, Chen J, Song Y, et al. Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,48(5):1351−1360. doi: 10.1016/j.jpba.2008.09.037
    [25]
    Liu J, Zhang J, Wang F, et al. Isolation and characterization of new minor triterpenoid saponins from the buds of Lonicera macranthoides[J]. Carbohydrate Research,2013,370:76−81. doi: 10.1016/j.carres.2013.01.019
    [26]
    Kakuda R, Imai M, Yaoita Y, et al. Secoiridoid glycosides from the flower buds of Lonicera japonica[J]. Phytochemistry,2000,55(8):879−881. doi: 10.1016/S0031-9422(00)00279-X
    [27]
    Chen Y, Feng X, Jia X, et al. Triterpene glycosides from Lonicera. Isolation and structural determination of seven glycosides from flower buds of Lonicera macranthoides[J]. Chemistry of Natural Compounds,2008,44(1):39−43. doi: 10.1007/s10600-008-0011-2
    [28]
    Chen C X, Wang W W, Wei N I, et al. Triterpenoid glycosides from the Lonicera japonica[J]. Acta Botanica Yunnanica,2000,22(2):201−208.
    [29]
    Lee S J, Shin E J, Son K H, et al. Anti-inflammatory activity of the major constituents of Lonicera japonica[J]. Archives of Pharmacal Research,1995,18(2):133−135. doi: 10.1007/BF02979147
    [30]
    张伟敏, 魏静, 胡振, 等. 灰毡毛忍冬提取纯化物抗氧化性研究[J]. 食品科学,2008(3):109−112. doi: 10.3321/j.issn:1002-6630.2008.03.016
    [31]
    Song W X, Yang Y C, Shi J G. Two new β -hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: Isolation, structure elucidation, semisynthesis, and biological activities[J]. Chinese Chemical Letters,2014,25(9):1215−1219. doi: 10.1016/j.cclet.2014.05.037
    [32]
    Zhou Y F, Li L, Sun L, et al. In comparison with vitamin C and butylated hydroxytoluene, the antioxidant capacity of aqueous extracts from buds and flowers of Lonicera japonica Thunb[J]. Journal of Traditional Chinese Medicine,2018,38(3):373−379. doi: 10.1016/S0254-6272(18)30627-7
    [33]
    张明. 几种体外抗氧化检测方法的评价研究[D]. 西安: 陕西师范大学, 2010.
    [34]
    曾安琪, 华桦, 陈朝荣, 等. 金银花、山银花抗炎药理作用研究[J]. 中国中药杂志,2020,45(16):3938−3944.
  • Related Articles

    [1]MA Xiangjie, ZHAO Jiansheng, HUANG Qirui, WANG Qifan, CHEN Jie, ZENG Maomao. Effects of Thermal Reaction Conditions on Dicarbonyl Compounds and Flavor Substances in Glucose-Alanine Sweet-flavored Maillard Reaction Model System[J]. Science and Technology of Food Industry, 2024, 45(16): 114-120. DOI: 10.13386/j.issn1002-0306.2023100219
    [2]SUN Bingyu, ZHENG Xinru, LIU Linlin, LÜ Mingshou, HUANG Yuyang, ZHU Ying, QU Min, ZHU Xiuqing, SHI Yanguo. Research Progress on the Influence of Coagulants and Processing Conditions on the Formation and Quality of Tofu Gel[J]. Science and Technology of Food Industry, 2024, 45(3): 388-396. DOI: 10.13386/j.issn1002-0306.2023030178
    [3]CHEN Yang, LIAO Ziwei, TAO Juanjuan, JIANG Dan, SUN Daihua, CHEN Zhiyuan. Optimization of Ultrasonic Combined with Enzymatic Extraction Process of Total Alkaloids from Artemisia argyi Leaves and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 197-205. DOI: 10.13386/j.issn1002-0306.2021090016
    [4]GONG Pin, HAN Yewen, ZHAI Pengtao, CHEN Xuefeng, ZHAI Wenjun, ZHENG Benzhong, CHEN Fuxin. Active Components, Pharmacological Action and Application in Food Processing of Eucommia ulmoides Leaves[J]. Science and Technology of Food Industry, 2022, 43(10): 395-404. DOI: 10.13386/j.issn1002-0306.2021050082
    [5]SUN Xiyun, WANG Jingwen, TIAN Sihui, XU Zihan, LI Bin. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407. DOI: 10.13386/j.issn1002-0306.2020080268
    [6]HUANG Zhiyu, SHEN Xueyu, CHEN Xunlin, GUO Zhuozhao, HUANG Wei. Isolation and Identification of Spoilage Fungi in the Fermentation Broth of Sanhua Plum, Evaluation of the Potency of Related Antibacterial Agents and Optimization of Fermentation Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 113-120. DOI: 10.13386/j.issn1002-0306.2020110278
    [7]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [8]LIU Ye, SU Hang, SONG Huan- lu, SU Ke- ran. Optimization of natto processing conditions based on nattokinase activity[J]. Science and Technology of Food Industry, 2016, (07): 170-175. DOI: 10.13386/j.issn1002-0306.2016.07.025
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]CHEN Xue-hong, QIN Wei-dong, MA Li-hua, DAI Xiao-juan. Effect of processing conditions on quality of fruit and vegetable juices[J]. Science and Technology of Food Industry, 2014, (01): 355-362. DOI: 10.13386/j.issn1002-0306.2014.01.046
  • Cited by

    Periodical cited type(18)

    1. 张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
    2. 王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
    3. 赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
    4. 肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
    5. 陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
    6. 林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
    7. 张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
    8. 申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
    9. 董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
    10. 宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
    11. 刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
    12. 张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
    13. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
    14. 田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 . 本站查看
    15. 赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
    16. 郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
    17. 吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 . 本站查看
    18. 张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (502) PDF downloads (70) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return