SUN Jianbo, ZHANG Hongyu, GONG Zhongkuo, et al. Isolation and Identification of Chlorpyrifos Degrading Strains and Optimization of Degradation Conditions [J]. Science and Technology of Food Industry, 2021, 42(10): 75−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070125.
Citation: SUN Jianbo, ZHANG Hongyu, GONG Zhongkuo, et al. Isolation and Identification of Chlorpyrifos Degrading Strains and Optimization of Degradation Conditions [J]. Science and Technology of Food Industry, 2021, 42(10): 75−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070125.

Isolation and Identification of Chlorpyrifos Degrading Strains and Optimization of Degradation Conditions

More Information
  • Received Date: July 12, 2020
  • Available Online: March 21, 2021
  • Objective: Isolating and screening the chlorpyrifos-degrading strains, and studying their growth characteristics and degradation characteristics, the location of the strain’s degrading enzymes and the broad-spectrum degradation studies. Methods: Taken from the farmland soil around Changbai Mountain, the inorganic salt medium with chlorpyrifos as carbon source was used to enrich the microorganisms in the soil, and the genus was determined by morphological observation, physiological and biochemical identification and 16SrRNA molecular sequencing. The location of the chlorpyrifos-degrading enzyme of the strain, the determination of the broad-spectrum degradation of the strain against dichlorvos, omethoate, methyl parathion, hydrocarbamate, acetochlor, and atrazine, and the degradation of the strain by single factor experiment and orthogonal test. The chlorpyrifos conditions are optimized. Results: A chlorpyrifos-degrading bacterium Pseudomonas aeruginosa AY-1 was screened and initially identified as Pseudomonas aeruginosa. Its chlorpyrifos-degrading enzyme was an intracellular enzyme. Phosphorus, acetochlor, and atrazine had good broad-spectrum degradation ability. After orthogonal test optimization, the optimal degradation conditions were 35 ℃, pH=8, and the substrate concentration was 100 mg/L, the degradation efficiency was 75.09%. Conclusion: The strain Pseudomonas aeruginosa AY-1 had a high ability to degrade chlorpyrifos, and had a certain broad-spectrum degradation effect on organophosphorus pesticides. It would have a great application potential in the remediation of organic phosphorus pesticides polluted environment and the removal of organophosphorus pesticide residues on the surface of food crops.
  • [1]
    Barron M G, Ashurova Z J, Kukaniev M A, et al. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan[J]. Environ Pollut,2017, 224:494−502.
    [2]
    Malinowska E, Jankowski K, Sosnowski J, et al. Pesticide residues in cereal crop grains in Poland in 2013[J]. Environ Monit Assess,2015,187(6):329.
    [3]
    Guo Z W, Chen S L, Xiao J H. Organochlorine pesticide residues in bamboo shoot[J]. J Sci Food Agric,2011,91(3):593−596. doi: 10.1002/jsfa.4233
    [4]
    Houbraken M, Spranghers T, De Clercq P, et al. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption[J]. Food Chem,2016,201:264−269. doi: 10.1016/j.foodchem.2016.01.097
    [5]
    姜书凯. 毒死蜱产业发展现状和前景[J]. 农药研究与应用,2008(3):1−3.
    [6]
    Subhasis Das, Tapan K Adhya. Degradation of chlorpyrifos in tropical rice soils[J]. Journal of Environmental Management,2015,152:36−42.
    [7]
    Rafique N, Tariq S R, Ahad K, et al. Cu2+ and Fe2+ mediated photodegradation studies of soil-incorporated chlorpyrifos[J]. Environmental Science and Pollution Research International,2016,23(5):4474−4480.
    [8]
    Chen F, Zeng S Y, Ma J, et al. Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter[J]. Environmental Science and Pollution Research International,2019,26(26):26721−26732. doi: 10.1007/s11356-019-05896-3
    [9]
    Affam A C, Chaudhuri M. Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis[J]. Journal of environmental management,2013,130(30):160−165.
    [10]
    Chowdhury M A, Jahan I, Karim N, et al. Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal[J]. Biomed Res Int,2014,2014:145159.
    [11]
    陈琳, 祁 静, 李祖明, 等. 白菜叶际细菌多样性与毒死蜱降解菌筛选及分离鉴定[J]. 食品工业科技,2018,39(22):107−112, 120.
    [12]
    Singh B K, Walker A, Morgan JA, et al. Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils[J]. Appl Environ Microbiol,2004,70(8):4855−4863. doi: 10.1128/AEM.70.8.4855-4863.2004
    [13]
    Yang L, Zhao Y H, Zhang B X, et al. Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiol Lett,2005,251(1):67−73. doi: 10.1016/j.femsle.2005.07.031
    [14]
    李怡, 武春媛, 李玮, 等. 2株毒死蜱降解菌的分离鉴定及其混合降解特性研究[J]. 热带作物学报,2017,38(8):1512−1518.
    [15]
    Wu S, Peng Y, Huang Z, et al. Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos[J]. J Basic Microbiol,2015,55(3):389−397. doi: 10.1002/jobm.201300501
    [16]
    戚玮真, 赵蕾. 一株生防木霉菌的农药降解特性[J]. 山东农业科学,2012,44(3):81−83.
    [17]
    Shah P C, Kumar V R, Dastager S G, Khire J M. Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides[J]. AMB Express,2017,7(1):66. doi: 10.1186/s13568-017-0370-9
    [18]
    Wang S, Yin Y, Wang J. Microbial degradation of triclosan by a novel strain of Dyella sp[J]. Appl Microbiol Biotechnol,2018,102(4):1997−2006. doi: 10.1007/s00253-018-8740-z
    [19]
    Arshad M, Hussain S, Saleem M. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa[J]. J Appl Microbiol,2008,104(2):3 64−370.
    [20]
    Badr K, Bahmania M, Jahanmiri A, et al. Biological removal of methanethiol from gas and water streams by using Thiobacillus thioparus: Investigation of biodegradability and optimization of sulphur production[J]. Environ Technol,2014,35(13-16):1729−1735.
    [21]
    庄荣玉, 赵洋甬, 沈青青, 等. 一株异养型细菌对无机硫化物的降解特性和培养条件优化[J]. 生物工程学报,2018,34(4):548−560.
    [22]
    农药制剂加工实验(第二版)[J]. 精细与专用化学品, 2014, 22(8): 15.
    [23]
    梁金钟, 梅剑秋, 王翼雪. 果蔬中残留有机磷农药降解菌的选育及鉴定[J]. 食品工业科技,2017,38(6):189−194.
    [24]
    段海明, 王开运, 乔康, 等. 两株毒死蜱降解细菌的分离鉴定及其降解特性[J]. 环境科学学报,2009,29(4):723−731.
    [25]
    何思颖, 柏丹, 夏伦, 等. 不同碳源对须糖多孢菌生长发育及丁烯基多杀菌素生物合成的影响[J]. 激光生物学报,2019,28(2):136−143.
    [26]
    宋瑛瑛, 黄丽, 唐明. 不同碳源和氮源对4种深色有隔内生真菌生长的影响[J]. 西北农林科技大学学报(自然科学版),2016,44(3):181−187.
    [27]
    蔡慧, 郑家传, 史广宇, 等. 一株多氯联苯降解菌的筛选鉴定及降解性能研究[J]. 环境科学学报,2016,36(4):1219−1225.
    [28]
    熊士昌, 尹华, 何宝燕, 等. 白腐菌对十溴联苯醚的酶促降解研究[J]. 环境化学,2012,31(5):615−619.
    [29]
    李梦雅, 李杰, 戴纯, 等. 一株高效精喹禾灵降解菌的筛选、鉴定及降解特性研究[J]. 基因组学与应用生物学,2017,36(2):686−692.
    [30]
    史延华, 曲杰, 李康, 等. CP1菌株的分离、筛选及其对毒死蜱的降解[J]. 微生物学通报,2011,38(9):1331−1338.
    [31]
    顾欣, 刘文辉, 杨环羽, 等. 有机磷农药广谱降解菌A1A18菌株(Brevundimonas sp.)的筛选、鉴定与降解特性分析[J]. 西北农业学报,2019,28(11):1896−1905.
    [32]
    张群, 马晨, 张月, 等. 一株可同时降解毒死蜱和联苯菊酯降解菌的筛选鉴定及其降解特性初探[J]. 农药,2017,56(10):733−738.
    [33]
    Zhao L, Wang F, Zhao J. Identification and functional characteristics of chlorpyrifos-degrading and plant growth promoting bacteriumAcinetobacter calcoaceticus[J]. J Basic Microbiol,2014,54(5):457−463. doi: 10.1002/jobm.201200639
    [34]
    段海明. 一株蜡状芽孢杆菌降解毒死蜱的影响因素研究[J]. 安全与环境学报,2015,15(2):174−177.
    [35]
    于婷, 董庆龙, 刘嘉芬, 等. 嗜铁细菌CAS17的分离鉴定及其对毒死蜱的降解特性研究[J]. 环境科学学报,2014,34(1):136−142.
    [36]
    李文华. 毒死蜱降解菌的分离、筛选及其降解条件的优化[D]. 泰安: 山东农业大学, 2013.
    [37]
    安霞. 生防细菌的农药降解特性及其降解机制的研究[D]. 济南: 山东师范大学, 2010.
    [38]
    金鑫, 冉雪琴, 王嘉福. 2株气单胞菌属毒死蜱降解菌的分离与鉴定[J]. 西南农业学报,2011,24(6):2238−2242.
    [39]
    王其进, 陶玉贵, 谷浩. 毒死蜱降解菌的筛选及其降解特性的研究[J]. 安徽工程科技学院学报(自然科学版),2010,25(4):17−20, 66.
    [40]
    李红梅, 魏艳丽, 任艳, 等. 一株毒死蜱降解菌的分离鉴定及降解特性[J]. 江苏农业学报,2010,26(2):443−445.
    [41]
    路薇, 罗娜, 董文, 等. 一株降解荧蒽的铜绿假单胞菌的筛选鉴定及其特性[J]. 环境科学学报,2015,35(11):3486−3492.
    [42]
    Song H H, Zhou Z R, Liu Y X, et al. Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. Strain JQ-41[J]. Current microbiology,2015,71(3):326−332. doi: 10.1007/s00284-015-0852-4
    [43]
    Hoskeri R S, Mulla S I, Shouche Y S, et al. Biodegradation of 4-chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC[J]. Biodegradation,2011,22(3):509−516. doi: 10.1007/s10532-010-9423-3
  • Cited by

    Periodical cited type(6)

    1. 吕素媛,商冰清,孙璐颜,刘国龙,赵发,梁秀清,吴秋,耿越. 微波辅助萃取油松松针精油的工艺优化及抗氧化活性研究. 食品工业科技. 2025(02): 184-191 . 本站查看
    2. 杨媛媛,唐语谦,杨继国. 亚临界萃取琥珀精油工艺优化及活性分析. 现代食品科技. 2024(04): 225-235 .
    3. 太美灵,江岭,李宛钊,韩萍,林丽,杜志云. 3D皮肤模型法评价五味子油对H_2O_2诱导的HaCaT细胞氧化损伤的保护作用. 广东工业大学学报. 2023(01): 130-136 .
    4. 刘庆璇,庄连玉,马文局,孙光辉,刘亚辉,李冠喜. 樟树叶片精油对微生物生长的抑制作用. 曲阜师范大学学报(自然科学版). 2023(02): 88-92 .
    5. 张家旭,董学凤,王信,叶倩女,郭玉儿,石晓峰. 不同品种6种松针中氨基酸含量测定及营养价值评价. 中国食品添加剂. 2023(05): 281-290 .
    6. 李成辉,董宏标,郑晓婷,桂福坤,曾祥兵,明俊超,陈飞,陈健,张家松. 春砂仁精油对尼罗罗非鱼幼鱼生长、消化、抗氧化能力和血清生化指标的影响. 南方水产科学. 2023(06): 51-59 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return