FAN Yongkang, LIU Jianhua, LIU Yao, et al. Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(8): 49−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060297.
Citation: FAN Yongkang, LIU Jianhua, LIU Yao, et al. Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(8): 49−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060297.

Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles

More Information
  • Received Date: June 23, 2020
  • Available Online: January 31, 2021
  • In this study, glycosylated composite nanoparticles were prepared by transglutaminase glycosylation to modify casein (Cas), and quercetin (Que) was embedded with nanoparticles to investigate its stabilization effect on Que. Enzymatic glycosylation was used to conjugate Chito-oligosaccharides (Cos) into Cas, and casein-chito-oligosaccharides composite nanoparticles (n-Cas-Cos) were constructed by ultrasonic self-assembly method. Que was embedded with Cas and casein-chito-oligosaccharides to form quercetin nanoparticles (n-Cas-Que and n-Cas-Cos-Que).The appearance, micro morphology and binding mechanism of the quercetin nanoparticles were analyzed by Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FITR) and X-ray diffractometer (XRD). The thermal stability of quercetin nanoparticles was investigated at 37, 60 (pasteurized) and 99 ℃ (boiling) conditions. The results showed that when the pH was 5.8, the ultrasonic power was 200 W, and the concentration of glycosylated products was 4 g/L, the average particle size (Dz) of n-Cas-Cos was the smallest, which was 125.6 nm. After loading with Que, the encapsulation efficiency (EE) of n-Cas-Que and n-Cas-Cos-Que were 74.14% and 85.21% respectively. Besides, the quercetin nanoparticles were spherical under transmission electron microscopy, and there was no significant difference between the nanoparticles before and after embedding Que. At 37, 60 and 99 ℃, the casein-chito-oligosaccharide composite nanoparticles loaded with Que showed better thermal stability, the retention rates of Que were 87.6%, 63.5% and 5.13% respectively.
  • [1]
    张伊宁. 酪蛋白或大豆蛋白与明胶的酶促交联及产物功能性质[D]. 哈尔滨: 东北农业大学, 2011.
    [2]
    Fox P F. Milk proteins: General chemistry-1: Proteins. Springer US and historical aspects[M]. Advanced dairy, 2003: 1−48.
    [3]
    Cho S Y, Kim M K, Mok H, et al. Separation of quercetin's biological activity from its oxidative property through bioisosteric replacement of the catecholic hydroxyl groups with fluorine atoms[J]. Journal of Agricultural & Food Chemistry,2012,60(26):6499−6506.
    [4]
    Kakkar A, Choi J, Moquin A, et al. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics[J]. Mol Pharm,2017,14(8):2607−2615. doi: 10.1021/acs.molpharmaceut.7b00019
    [5]
    Stevenson D E, Hurst R D. Polyphenolic phytochemicals-just antioxidants or much more[J]. Cellular and molecular life sciences,2007,64(22):2900−2916. doi: 10.1007/s00018-007-7237-1
    [6]
    Moore J P, Farrant J M, Lindsey G G, et al. The south african and namibian populations of the resurrection plant myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition[J]. Journal of chemical ecology,2005,31(12):2823−2834. doi: 10.1007/s10886-005-8396-x
    [7]
    Ken G R, Ewald E S, Kenneth R M, et al. Flavonoid gene expression and uv photoprotection in transgenic and mutant petunia leaves[J]. Phytochemistry,2002,59(1):23−32. doi: 10.1016/S0031-9422(01)00404-6
    [8]
    郝建鹏. 槲皮素纳米微胶囊的制备及其性能研究[D]. 杨凌: 西北农林科技大学, 2016.
    [9]
    Li H, Wang D F, Liu C F, et al. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin[J]. Food Hydrocolloids,2019,87:342−351. doi: 10.1016/j.foodhyd.2018.08.002
    [10]
    Nazanin G, Sara A, Mohsen T, et al. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems[J]. Food Hydrocolloids,2019,87:394−403. doi: 10.1016/j.foodhyd.2018.08.031
    [11]
    王晓杰, 刘晓兰, 丛万锁, 等. 壳寡糖酶法糖基化修饰对玉米醇溶蛋白功能性质的影响[J]. 食品科学,2018,39(8):13−20. doi: 10.7506/spkx1002-6630-201808003
    [12]
    宋春丽, 陈佳鹏, 任健. 糖基化酪蛋白乳液的流变性质及稳定性研究[J]. 中国油脂,2016,41(9):28−30. doi: 10.3969/j.issn.1003-7969.2016.09.006
    [13]
    闵敏. 糖基化酪蛋白的制备、及其性能和应用研究[D]. 杭州: 浙江工商大学, 2017.
    [14]
    于钰. 酪蛋白自组装纳米粒的超声制备及其应用[D]. 青岛: 中国海洋大学, 2012.
    [15]
    刘敏. 载荷槲皮素的酪蛋白自组装纳米粒子输送载体的构建与特性研究[D]. 广州: 华南理工大学, 2016.
    [16]
    Sun C, Dai L, Gao Y. Binary complex based on zein and propylene glycol alginate for delivery of quercetagetin[J]. Biomacromolecules,2016,17(12):3973−3985. doi: 10.1021/acs.biomac.6b01362
    [17]
    Sheng L, Sun P, Han K, et al. Synthesis and structural characterization of lysozyme-pullulan conjugates obtained by the maillard reaction[J]. Food Hydrocolloids,2017,71:1−7. doi: 10.1016/j.foodhyd.2017.04.026
    [18]
    Guo X B, Guo X M, Yu S J, et al. Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate[J]. Food Hydrocolloids,2018,82:1−10. doi: 10.1016/j.foodhyd.2018.03.032
    [19]
    Jaspe J, Hagen S J. Do protein molecules unfold in a simple shear flow[J]. Biophysical Journal,2006,91(9):3415−3424. doi: 10.1529/biophysj.106.089367
    [20]
    Gracia-Julia A, Rene M, Corts-Munoz M, et al. Effect of dynamic high pressure on whey protein ation: a comparison with the effect of continuous short-time thermal treatments[J]. Food Hydrocolloids,2008,22(6):1014−1032. doi: 10.1016/j.foodhyd.2007.05.017
    [21]
    刘燕. 酪蛋白胶束结构与功能特性的研究[D]. 扬州: 扬州大学, 2007.
    [22]
    Ihsan Ç, Hasan K, Heinz R, et al. Phenylethanoid glycosides from globularia trichosantha[J]. Journal of Natural Products,1999,62(8):1165−1168. doi: 10.1021/np9900526
    [23]
    Ren L L, Yan X X, Zhou J, et al. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films[J]. International Journal of Biological Macromolecules,2017,105:1636−1643. doi: 10.1016/j.ijbiomac.2017.02.008
    [24]
    Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate[J]. Food Hydrocolloids,2016,59:17−25. doi: 10.1016/j.foodhyd.2015.11.031
    [25]
    Madadlou A, Mousavi M E, Emam-Djomeh Z, et al. Sonodisruption of re-assembled casein micelles at different ph values[J]. Ultrasonics Sonochemistry,2009,16(5):644−648. doi: 10.1016/j.ultsonch.2008.12.018
    [26]
    Yang R, Zuo P, Zhang M, et al. Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules[J]. Food Hydrocolloids,2019,94:500−509. doi: 10.1016/j.foodhyd.2019.03.049
  • Related Articles

    [1]MA Xiangjie, ZHAO Jiansheng, HUANG Qirui, WANG Qifan, CHEN Jie, ZENG Maomao. Effects of Thermal Reaction Conditions on Dicarbonyl Compounds and Flavor Substances in Glucose-Alanine Sweet-flavored Maillard Reaction Model System[J]. Science and Technology of Food Industry, 2024, 45(16): 114-120. DOI: 10.13386/j.issn1002-0306.2023100219
    [2]SUN Bingyu, ZHENG Xinru, LIU Linlin, LÜ Mingshou, HUANG Yuyang, ZHU Ying, QU Min, ZHU Xiuqing, SHI Yanguo. Research Progress on the Influence of Coagulants and Processing Conditions on the Formation and Quality of Tofu Gel[J]. Science and Technology of Food Industry, 2024, 45(3): 388-396. DOI: 10.13386/j.issn1002-0306.2023030178
    [3]CHEN Yang, LIAO Ziwei, TAO Juanjuan, JIANG Dan, SUN Daihua, CHEN Zhiyuan. Optimization of Ultrasonic Combined with Enzymatic Extraction Process of Total Alkaloids from Artemisia argyi Leaves and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 197-205. DOI: 10.13386/j.issn1002-0306.2021090016
    [4]GONG Pin, HAN Yewen, ZHAI Pengtao, CHEN Xuefeng, ZHAI Wenjun, ZHENG Benzhong, CHEN Fuxin. Active Components, Pharmacological Action and Application in Food Processing of Eucommia ulmoides Leaves[J]. Science and Technology of Food Industry, 2022, 43(10): 395-404. DOI: 10.13386/j.issn1002-0306.2021050082
    [5]SUN Xiyun, WANG Jingwen, TIAN Sihui, XU Zihan, LI Bin. Research Progress of the Effects of Food Matrix and Processing on Bioaccessibility of Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407. DOI: 10.13386/j.issn1002-0306.2020080268
    [6]HUANG Zhiyu, SHEN Xueyu, CHEN Xunlin, GUO Zhuozhao, HUANG Wei. Isolation and Identification of Spoilage Fungi in the Fermentation Broth of Sanhua Plum, Evaluation of the Potency of Related Antibacterial Agents and Optimization of Fermentation Technology[J]. Science and Technology of Food Industry, 2021, 42(14): 113-120. DOI: 10.13386/j.issn1002-0306.2020110278
    [7]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [8]LIU Ye, SU Hang, SONG Huan- lu, SU Ke- ran. Optimization of natto processing conditions based on nattokinase activity[J]. Science and Technology of Food Industry, 2016, (07): 170-175. DOI: 10.13386/j.issn1002-0306.2016.07.025
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]CHEN Xue-hong, QIN Wei-dong, MA Li-hua, DAI Xiao-juan. Effect of processing conditions on quality of fruit and vegetable juices[J]. Science and Technology of Food Industry, 2014, (01): 355-362. DOI: 10.13386/j.issn1002-0306.2014.01.046
  • Cited by

    Periodical cited type(18)

    1. 张帅奇,徐冉冉,王宝刚,周家华,王云香,梁丽雅. 四氢嘧啶对甜樱桃果实采后贮藏品质的影响. 保鲜与加工. 2025(02): 62-69 .
    2. 王天菊,沈庆庆,况世雪. 外源褪黑素对“红地球”葡萄采后贮藏品质的影响. 中国南方果树. 2024(01): 207-215 .
    3. 赵士粤,刘露露,崔克强,任瑞,何美美,杨明霞. 外源褪黑素对采后果实品质影响的研究进展. 中国果树. 2024(04): 17-22 .
    4. 肖鑫鑫,李佩艳,苏娇,马金金,罗登林. 褪黑素处理对金针菇贮藏品质和褐变的影响. 食品与发酵工业. 2024(07): 242-249 .
    5. 陈强,黄馨慧,张峥,张冲,柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响. 生物技术通报. 2024(04): 139-147 .
    6. 林育钊,冯梦棐,陈洪彬,蒋璇靓,郑金水,吴锦雯. 氧化白藜芦醇处理对黄皮果实贮藏特性和采后品质的影响. 热带作物学报. 2024(04): 804-812 .
    7. 张家铭,石浩,苏慧,钱鑫,赵野,马妍,周文化. 褪黑素及2, 4-表油菜素内酯复合处理对阳光玫瑰葡萄贮藏品质的影响. 食品与发酵工业. 2024(10): 141-148 .
    8. 申雪,陈娇,吕伟伟,司成伟,王纪忠. 外源褪黑素对常温货架期不同品种草莓果实贮藏品质的影响. 淮阴工学院学报. 2024(02): 40-49 .
    9. 董小盼,汤静,丁娇,金鹏,郑永华. 褪黑素处理对桃果实采后软腐病的影响及其机理. 食品科学. 2024(11): 243-249 .
    10. 宁娜,王懿,王晓茜,陈华红,南立军. 褪黑素结合PE包装对葡萄果梗褐变调控的研究. 北方园艺. 2024(17): 93-103 .
    11. 刘祯,陈贤柔,缪承杜,蓝碧锋,范智蕾,莫晓晴,王春越,刘袆帆,肖更生,王琴,刘东杰,马路凯. 褪黑素在果蔬采后品质劣变中的调控作用. 食品安全质量检测学报. 2023(02): 146-153 .
    12. 张海燕,康三江,曾朝珍,袁晶. 碱性钙对‘秦冠’苹果块贮藏品质及生理特性的影响. 食品安全质量检测学报. 2023(04): 41-49 .
    13. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 .
    14. 田甜,赵雅琦,王清,秦占军,潘媛,时文林,左进华,袁树枝,岳晓珍,封碧红. 不同贮藏期对鲜切菜山药和铁棍山药货架期品质的影响. 食品工业科技. 2023(18): 387-397 . 本站查看
    15. 赵朋飞,骆世超,许佩轩,孙晓峰,徐伟敏,马辉,许建锋,张海霞. 褪黑素处理对采后梨果实品质及相关生理指标的影响. 华北农学报. 2023(S1): 211-218 .
    16. 郜栀萍,田云芳,姜淑宁,尚泓奎,王银宵,杨秋梅. 外源褪黑素在果蔬保鲜中的作用研究进展. 现代农业科技. 2022(14): 171-174 .
    17. 吴敏,杜鹃,王曼,张健,阿塔吾拉·铁木尔,吴斌,吴忠红. 一氧化氮对无核白葡萄果梗贮藏品质和微观结构的影响. 食品工业科技. 2022(21): 350-359 . 本站查看
    18. 张妮,陶秋运,普莹莹,曹森,王瑞,吉宁. 不同地区玛瑙红樱桃品质差异分析. 食品工业科技. 2022(23): 95-102 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (409) PDF downloads (23) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return