FAN Yongkang, LIU Jianhua, LIU Yao, et al. Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(8): 49−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060297.
Citation: FAN Yongkang, LIU Jianhua, LIU Yao, et al. Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(8): 49−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060297.

Construction and Characterization of Quercetin-loaded Enzymatic Glycosylated Casein Composite Nanoparticles

More Information
  • Received Date: June 23, 2020
  • Available Online: January 31, 2021
  • In this study, glycosylated composite nanoparticles were prepared by transglutaminase glycosylation to modify casein (Cas), and quercetin (Que) was embedded with nanoparticles to investigate its stabilization effect on Que. Enzymatic glycosylation was used to conjugate Chito-oligosaccharides (Cos) into Cas, and casein-chito-oligosaccharides composite nanoparticles (n-Cas-Cos) were constructed by ultrasonic self-assembly method. Que was embedded with Cas and casein-chito-oligosaccharides to form quercetin nanoparticles (n-Cas-Que and n-Cas-Cos-Que).The appearance, micro morphology and binding mechanism of the quercetin nanoparticles were analyzed by Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FITR) and X-ray diffractometer (XRD). The thermal stability of quercetin nanoparticles was investigated at 37, 60 (pasteurized) and 99 ℃ (boiling) conditions. The results showed that when the pH was 5.8, the ultrasonic power was 200 W, and the concentration of glycosylated products was 4 g/L, the average particle size (Dz) of n-Cas-Cos was the smallest, which was 125.6 nm. After loading with Que, the encapsulation efficiency (EE) of n-Cas-Que and n-Cas-Cos-Que were 74.14% and 85.21% respectively. Besides, the quercetin nanoparticles were spherical under transmission electron microscopy, and there was no significant difference between the nanoparticles before and after embedding Que. At 37, 60 and 99 ℃, the casein-chito-oligosaccharide composite nanoparticles loaded with Que showed better thermal stability, the retention rates of Que were 87.6%, 63.5% and 5.13% respectively.
  • [1]
    张伊宁. 酪蛋白或大豆蛋白与明胶的酶促交联及产物功能性质[D]. 哈尔滨: 东北农业大学, 2011.
    [2]
    Fox P F. Milk proteins: General chemistry-1: Proteins. Springer US and historical aspects[M]. Advanced dairy, 2003: 1−48.
    [3]
    Cho S Y, Kim M K, Mok H, et al. Separation of quercetin's biological activity from its oxidative property through bioisosteric replacement of the catecholic hydroxyl groups with fluorine atoms[J]. Journal of Agricultural & Food Chemistry,2012,60(26):6499−6506.
    [4]
    Kakkar A, Choi J, Moquin A, et al. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics[J]. Mol Pharm,2017,14(8):2607−2615. doi: 10.1021/acs.molpharmaceut.7b00019
    [5]
    Stevenson D E, Hurst R D. Polyphenolic phytochemicals-just antioxidants or much more[J]. Cellular and molecular life sciences,2007,64(22):2900−2916. doi: 10.1007/s00018-007-7237-1
    [6]
    Moore J P, Farrant J M, Lindsey G G, et al. The south african and namibian populations of the resurrection plant myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition[J]. Journal of chemical ecology,2005,31(12):2823−2834. doi: 10.1007/s10886-005-8396-x
    [7]
    Ken G R, Ewald E S, Kenneth R M, et al. Flavonoid gene expression and uv photoprotection in transgenic and mutant petunia leaves[J]. Phytochemistry,2002,59(1):23−32. doi: 10.1016/S0031-9422(01)00404-6
    [8]
    郝建鹏. 槲皮素纳米微胶囊的制备及其性能研究[D]. 杨凌: 西北农林科技大学, 2016.
    [9]
    Li H, Wang D F, Liu C F, et al. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin[J]. Food Hydrocolloids,2019,87:342−351. doi: 10.1016/j.foodhyd.2018.08.002
    [10]
    Nazanin G, Sara A, Mohsen T, et al. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems[J]. Food Hydrocolloids,2019,87:394−403. doi: 10.1016/j.foodhyd.2018.08.031
    [11]
    王晓杰, 刘晓兰, 丛万锁, 等. 壳寡糖酶法糖基化修饰对玉米醇溶蛋白功能性质的影响[J]. 食品科学,2018,39(8):13−20. doi: 10.7506/spkx1002-6630-201808003
    [12]
    宋春丽, 陈佳鹏, 任健. 糖基化酪蛋白乳液的流变性质及稳定性研究[J]. 中国油脂,2016,41(9):28−30. doi: 10.3969/j.issn.1003-7969.2016.09.006
    [13]
    闵敏. 糖基化酪蛋白的制备、及其性能和应用研究[D]. 杭州: 浙江工商大学, 2017.
    [14]
    于钰. 酪蛋白自组装纳米粒的超声制备及其应用[D]. 青岛: 中国海洋大学, 2012.
    [15]
    刘敏. 载荷槲皮素的酪蛋白自组装纳米粒子输送载体的构建与特性研究[D]. 广州: 华南理工大学, 2016.
    [16]
    Sun C, Dai L, Gao Y. Binary complex based on zein and propylene glycol alginate for delivery of quercetagetin[J]. Biomacromolecules,2016,17(12):3973−3985. doi: 10.1021/acs.biomac.6b01362
    [17]
    Sheng L, Sun P, Han K, et al. Synthesis and structural characterization of lysozyme-pullulan conjugates obtained by the maillard reaction[J]. Food Hydrocolloids,2017,71:1−7. doi: 10.1016/j.foodhyd.2017.04.026
    [18]
    Guo X B, Guo X M, Yu S J, et al. Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate[J]. Food Hydrocolloids,2018,82:1−10. doi: 10.1016/j.foodhyd.2018.03.032
    [19]
    Jaspe J, Hagen S J. Do protein molecules unfold in a simple shear flow[J]. Biophysical Journal,2006,91(9):3415−3424. doi: 10.1529/biophysj.106.089367
    [20]
    Gracia-Julia A, Rene M, Corts-Munoz M, et al. Effect of dynamic high pressure on whey protein ation: a comparison with the effect of continuous short-time thermal treatments[J]. Food Hydrocolloids,2008,22(6):1014−1032. doi: 10.1016/j.foodhyd.2007.05.017
    [21]
    刘燕. 酪蛋白胶束结构与功能特性的研究[D]. 扬州: 扬州大学, 2007.
    [22]
    Ihsan Ç, Hasan K, Heinz R, et al. Phenylethanoid glycosides from globularia trichosantha[J]. Journal of Natural Products,1999,62(8):1165−1168. doi: 10.1021/np9900526
    [23]
    Ren L L, Yan X X, Zhou J, et al. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films[J]. International Journal of Biological Macromolecules,2017,105:1636−1643. doi: 10.1016/j.ijbiomac.2017.02.008
    [24]
    Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate[J]. Food Hydrocolloids,2016,59:17−25. doi: 10.1016/j.foodhyd.2015.11.031
    [25]
    Madadlou A, Mousavi M E, Emam-Djomeh Z, et al. Sonodisruption of re-assembled casein micelles at different ph values[J]. Ultrasonics Sonochemistry,2009,16(5):644−648. doi: 10.1016/j.ultsonch.2008.12.018
    [26]
    Yang R, Zuo P, Zhang M, et al. Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules[J]. Food Hydrocolloids,2019,94:500−509. doi: 10.1016/j.foodhyd.2019.03.049
  • Cited by

    Periodical cited type(18)

    1. 周水清,周政. 在饲粮中添加艾草粉对散养鸡的生产性能和抗病能力的影响. 青海畜牧兽医杂志. 2025(01): 13-15+35 .
    2. 雷娇,邵起菊,肖欣,李志荣,洪金伶,王森,陈荣祥. 基于HPLC-ECD测定鱼腥草叶多酚含量及抗氧化活性. 食品工业科技. 2024(04): 221-228 . 本站查看
    3. 孙立秋,王丹,赵英楠,时志春,李军,王金兰,赵明,张树军. 一测多评法测定艾叶中7个黄酮类成分的含量. 药物分析杂志. 2024(05): 806-815 .
    4. 郑文涛,刘元会,魏光强,赵兴文,黄艾祥. 蜂蜜桑茶复合饮料的工艺优化及其抗氧化活性研究. 食品科技. 2024(04): 100-107 .
    5. 崔英才,蒋梦宇,刘梦茹,来金良,姚型文,王正国,燕磊,刘永学. 艾草粉对蛋鸡生产性能、蛋品质、抗氧化功能及粪便评分的影响. 饲料研究. 2024(12): 39-43 .
    6. 纪德佳,苏慧,刘少雄,廖小兰,侯春久. 黎川县艾叶不同采收期总黄酮及山奈酚、异泽兰黄素的测定. 山东化工. 2024(24): 118-120+124 .
    7. 王文哲,梁芳,类成通,孔祥青,王裕玉. 艾蒿及其提取物在动物生产中的应用研究进展. 饲料研究. 2024(24): 158-162 .
    8. 廖富友,姚炳浓,杨娇一,王姣,祝保国,杨胜林. 饲粮添加艾叶粉对青年期蛋鸭生长性能、抗氧化功能及免疫性能的影响. 中国家禽. 2023(01): 76-81 .
    9. 李胜有,荣冬芸,潘卫东,郑志昌. 艾叶的活性成分、功效及其在动物饲养中的应用研究进展. 饲料研究. 2023(01): 137-141 .
    10. 程银水,张勇,秦志旺,董阳,李志浩,郝新才. 超高效液相色谱指纹图谱结合化学模式识别分析艾叶质量. 理化检验-化学分册. 2023(07): 837-843 .
    11. 孙君燕,孙敏,宋诗清,王化田,冯涛,姚凌云,俞文华. 香榧纯露的挥发性成分及抗氧化活性研究. 食品工业科技. 2022(03): 40-47 . 本站查看
    12. 周永强,赵春丽,殷鑫,周涛,韩伟,张永萍. 小花清风藤醇提物的化学成分及体外抗氧化活性研究. 中国药房. 2022(05): 530-534 .
    13. 陈誉华,马钱波,魏元浩,黄倩倩. 艾叶不同极性溶剂提取物的抗氧化能力的研究. 饲料研究. 2022(14): 64-68 .
    14. 赵永恒,张勇,秦志旺,董阳,汤哲伟,陈富超,罗雪,郝新才. 气相色谱-质谱指纹图谱结合化学计量学方法分析不同产地艾叶挥发油的差异. 理化检验-化学分册. 2022(11): 1277-1282 .
    15. 朱平平,覃智恒,彭慧倩,刘育文,刘静,陈锦涛,彭颖. 艾叶中多糖和黄酮联合提取工艺及抗氧化性研究. 广州化工. 2022(23): 66-69+98 .
    16. 王美英,李化强,吴菲菲. 超声波辅助提取竹叶鸡爪茶总黄酮的工艺优化及抗氧化、抑菌活性研究. 粮食与油脂. 2021(06): 105-111 .
    17. 王举翠,李明芝. 鲜芦根荷叶复合饮料研制及对运动耐力的影响研究. 食品安全质量检测学报. 2021(17): 7021-7029 .
    18. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return