HE Yuxuan, WEN Zhiyou, WEI Xuetuan. Effect of srfAC Gene Knockout on the Antibacterial Activity of Bacillus amyloliquefaciens[J]. Science and Technology of Food Industry, 2021, 42(5): 100-104. DOI: 10.13386/j.issn1002-0306.2020050339
Citation: HE Yuxuan, WEN Zhiyou, WEI Xuetuan. Effect of srfAC Gene Knockout on the Antibacterial Activity of Bacillus amyloliquefaciens[J]. Science and Technology of Food Industry, 2021, 42(5): 100-104. DOI: 10.13386/j.issn1002-0306.2020050339

Effect of srfAC Gene Knockout on the Antibacterial Activity of Bacillus amyloliquefaciens

More Information
  • Received Date: May 27, 2020
  • Available Online: March 02, 2021
  • To investigate the effect of surfactin on the inhibition activity of Bacillus amyloliquefaciens against Staphylococcus aureus,the key gene srfAC for surfactin synthesis was knocked out from B. amyloliquefaciens HZ-12. The results showed that the inhibitory activity of the mutant B. amyloliquefaciens HZ-12ΔsrfAC against S. aureus was significantly improved,and the relative inhibition rate was increased by 64%. Furthermore,the medium carbon and nitrogen sources of engineering strain B. amyloliquefaciens HZ-12ΔsrfAC were optimized. Under 30 g/L of corn starch and 40 g/L of soybean meal,the biomass of B. amyloliquefaciens HZ-12ΔsrfAC reached 3.3×1010 CFU/mL,2.23 times than that without optimization. This study confirmed that srfAC gene knockout could significantly improve the inhibitory activity of B. amyloliquefaciens against S. aureus for the first time,and the medium for efficient cell growth was obtained. The results had improtant theoretical significance and potential application value.
  • [1]
    Kuroda M,Ohta T,Uchiyama I,et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus[J]. Lancet,2001,357(9264):1225-1240.
    [2]
    CHEN W C,Juang R S,WEI Y H. Applications of a lipopeptide biosurfactant,surfactin,produced by microorganisms[J]. Biochemical Engineering Journal,2015(103):158-169.
    [3]
    Fetsch,Alexandra,Johler S. Staphylococcus aureus as a foodborne pathogen[J]. Current Clinical Microbiology Reports,2018,5(2):88-96.
    [4]
    Deleo F R,Otto M,Kreiswirth B N,et al. Community-associated meticillin-resistant Staphylococcus aureus Reply[J]. The Lancet,2010,375(9725):1557-1568.
    [5]
    叶晓婉,朱润琪,倪新程,等.明党参内生菌的分离鉴定及其对金黄色葡萄球菌的抑制作用[J].微生物学杂志,2019,39(3):35-43.
    [6]
    Piewngam P,Zheng Y,Nguyen T H,et al. Pathogen elimination by probiotic Bacillus via signalling interference[J]. Nature,2018,562(7728):532-550.
    [7]
    金伟伟,贾振华,宋水山.芽胞杆菌产生的脂肽类抗生素的结构和应用[J].微生物学志,2017,37(3):122-127.
    [8]
    Arima K,Kakinuma A,Tamura G. Surfactin,a crystalline peptidelipid surfactant produced by Bacillus subtilis:Isolation,characterization and its inhibition of fibrin clot formation[J]. Biochem Biophys Res Commun,1968,31(3):488-494.
    [9]
    Chen J,Gu S Y,Hao H H,et al. Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification[J]. Applied Microbiology & Biotechnology,2016,100(22):9787-9794.
    [10]
    Inès,Mnif,Dhouha G. Lipopeptide surfactants:Production,recovery and pore forming capacity[J]. Peptides,2015,71:100-112.
    [11]
    Rairakhwada D,Seo J W,Seo M Y,et al. Gene cloning,characterization,and heterologous expression of levansucrase from Bacillus amyloliquefaciens[J]. Journal of Industrial Microbiology & Biotechnology,2010,37(2):195-204.
    [12]
    Ma J J,Liu H,Wang C Q,et al. Complete genome sequence of Bacillus subtilis GQJK2,a plant growth-promoting rhizobacterium with antifungal activity[J]. Genome Announcements,2017,5(22):e00467-17.
    [13]
    杨欢.烟草青枯病生防菌株的筛选、鉴定与应用评价[D].武汉:华中农业大学,2013:1-63.
    [14]
    阮丽英,温志友,魏雪团.解淀粉芽孢杆菌mtnN基因对其生物合成S-腺苷甲硫氨酸的影响[J].食品科学,2020,41(6):193-200.
    [15]
    Ruan L,Li L,Zou D,et al. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle[J]. Biotechnology for Biofuels,2019,12(1):211.
    [16]
    谭才邓,朱美娟,杜淑霞,等.抑菌试验中抑菌圈法的比较研[J].食品工业,2016(11):122-125.
    [17]
    范海燕. 枯草芽胞杆菌9407生防机制研究[D].北京:中国农业大学,2017.
    [18]
    Kermasha S. Specific inhibition of group I Clostridium botulinum by the Bacillus subtilis antibiotic surfactin[J]. Journal of Biotechnology,2007(131S):S211-S241.
    [19]
    Maude T,Heiko T,Kiesewalter,et al. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis[J]. Biofilm,2020(2):21-28.
    [20]
    Paraszkiewicz K,Bernat Przemysław,Siewiera P,et al. Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production[J]. Scientia Horticulturae,2017(225):802-809.
    [21]
    Singh A K,Dhanjal S,Cameotra S S. Surfactin restores and enhances swarming motility under heavy metal stress[J]. Colloids & Surfaces B Biointerfaces,2014(116):26-31.
    [22]
    Sanchez S,Demain A L. Metabolic regulation of fermentation processes[J]. Enzyme & Microbial Technology,2002,31(7):895-906.
    [23]
    郑惠.杆菌肽发酵饼粕原料的高效利用[D].武汉:华中农业大学,2013.
    [24]
    Wang Q Y,Lin Q L,Peng K,et al. Surfactin variants from Bacillus subtilis natto CSUF5 and their antifungal properities against Aspergillus niger[J]. Journal of Biobased Materials and Bioenergy,2017,11(3):210-215.
    [25]
    Milene Z D V G,Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria[J]. Food Control,2012,25(2):441-447.
  • Related Articles

    [1]WANG Xiaoyu, WANG Zhenzhen, HU Mengya, DAI Jing, SHA Ruyi, MAO Jianwei. Metabolomics Analysis of Five Types of Wangdu Chili Peppers Based on HPLC and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(20): 14-22. DOI: 10.13386/j.issn1002-0306.2024010245
    [2]HUANG Chen, GUO Dejun, YOU Gang, QIN Ningjing. Effect of Different Baking Degrees of Oak on Lychee Brandy Volatility Flavor Based on Electronic Nose and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(2): 252-259. DOI: 10.13386/j.issn1002-0306.2023030239
    [3]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
    [4]BAI Xue, YANG Shuang, MENG Xin. Effect of Microbial Lipase on the Flavor of Dairy Products by GC-MS Combined with Electronic Nose[J]. Science and Technology of Food Industry, 2018, 39(14): 209-212,218. DOI: 10.13386/j.issn1002-0306.2018.14.039
    [5]YANG Shuang, BAI Xue, MENG Xin. Effect of Chicken Protease on Chicken Flavor by Electronic Nose Combined with GC-MS Detection[J]. Science and Technology of Food Industry, 2018, 39(13): 252-256. DOI: 10.13386/j.issn1002-0306.2018.13.046
    [6]ZHANG Di-ya, XIE Dan-ting, LI Ye. Comparison of volatile components in different parts of beef by electronic nose and GC-MS[J]. Science and Technology of Food Industry, 2017, (21): 241-246. DOI: 10.13386/j.issn1002-0306.2017.21.048
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]FUN Qin-bao, CAI Wei-rong, XIE Liang-liang, PAN Hui, CAO Xue, ZENG Heng. Characterisation of volatile components of Lotus leaves by HS-SPME and SDE coupled to GC-MS[J]. Science and Technology of Food Industry, 2017, (15): 253-258. DOI: 10.13386/j.issn1002-0306.2017.15.047
    [9]YANG Ying-chun, WANG Qiang, YANG Jie. Fatty acid composition of Portulaca oleracea seeds oil with GC-MS[J]. Science and Technology of Food Industry, 2014, (14): 147-150. DOI: 10.13386/j.issn1002-0306.2014.14.024
    [10]ZHAO Lin-min, QI Cheng-mei, LIU Xiao-wen, LUO Ying, YUAN Zhi-hui, ZHANG Zu-jiao, WANG Zong-cheng. Analysis of ginger oleoresin in Jiangyong fragrant-ginger by GC-MS[J]. Science and Technology of Food Industry, 2014, (06): 78-80. DOI: 10.13386/j.issn1002-0306.2014.06.005
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (486) PDF downloads (30) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return