JIA Shuyu, ZHANG Bairu, LI Jie, et al. Effect of Heat Moisture Treatment on Physicochemical and Structural Properties of Yam Flour[J]. Science and Technology of Food Industry, 2021, 42(7): 22−26. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050238.
Citation: JIA Shuyu, ZHANG Bairu, LI Jie, et al. Effect of Heat Moisture Treatment on Physicochemical and Structural Properties of Yam Flour[J]. Science and Technology of Food Industry, 2021, 42(7): 22−26. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050238.

Effect of Heat Moisture Treatment on Physicochemical and Structural Properties of Yam Flour

More Information
  • Received Date: May 21, 2020
  • Available Online: January 27, 2021
  • In order to study the effect of heat moisture treatment on the physicochemical and structural properties of yam flour, the samples with moisture content of 15%, 25% and 35% were subjected to 9 h heat moisture treatment under 90 and 110 ℃ conditions, respectively. The swell ability, gelatinization characteristics, thermodynamic properties, crystallization degree and infrared spectrum of the yam flour after treatment were measured. The results showed that heat moisture treatment increased the solubility of yam flour. When the processing conditions were 90 °C and 25% moisture content, the solubility increased to 9.88%, and the swelling power decreased from 3.90 g/g to 3.12 g/g. The gelatinization temperature of the heat moisture treatment yam flour increased significantly (P<0.05), but its peak viscosity, trough viscosity, breakdown and setback were all significantly (P<0.05) lower than those of the native yam flour, and the gelatinization enthalpy value showed an upward trend. The heat moisture treatment increased the crystallinity of yam flour from 23.5% to 27.22%, while the crystal form was still C-type. Infrared spectra showed that the short-range ordered structure of yam starch was slightly changed by heat moisture treatment. Heat moisture treatment is an effective method to improve the physicochemical properties of yam powder.
  • [1]
    黄玉仙. 山药(Rhizoma Dioscorea)种质资源研究[D]. 福州: 福建农林大学, 2012.
    [2]
    张娟. 山药营养保健挂面的研制[D]. 杨凌: 西北农林科技大学, 2008: 11−12.
    [3]
    刘霞. 紫山药粉对小麦面包体外淀粉酶消化性的影响[C]. 中国食品科学技术学会 (Chinese Institute of Food Science and Technology). 中国食品科学技术学会第十五届年会论文摘要集. 中国食品科学技术学会(Chinese Institute of Food Science and Technology): 中国食品科学技术学会, 2018: 806−807.
    [4]
    鲁玉凤, 屈慧如, 罗博文, 等. 山药-小麦粉质构特性及挂面品质研究[J]. 农产品加工,2019(17):24−26, 29.
    [5]
    Vu T H, Bean S, Hsieh C F, et al. Changes in protein and starch digestibility in Sorghum flour during heat-moisture treatments[J]. Journal of the Science of Food and Agriculture,2017,97(14):4770−4779. doi: 10.1002/jsfa.8346
    [6]
    Zhang F, Zhang Y Y, Thakur K, et al. Structural and physicochemical characteristics of Lycoris starch treated with different physical methods[J]. Food Chemistry,2019,275:8−14. doi: 10.1016/j.foodchem.2018.09.079
    [7]
    Molavi H, Razavi S M A, Farhoosh R. Impact of hydrothermal modifications on the physicochemical, morphology, crystallinity, pasting and thermal properties of acorn starch[J]. Food Chemistry,2018,245:385−393. doi: 10.1016/j.foodchem.2017.10.117
    [8]
    刘琳. 球磨和湿热处理对淀粉结构和理化性质的影响[D]. 郑州: 河南工业大学, 2015.
    [9]
    Xiao Y, Liu H, Wei T, et al. Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment[J]. LWT,2017,86:285−292. doi: 10.1016/j.lwt.2017.08.001
    [10]
    Dwi Rukmi Putri W, Zubaidah E, Widya Ningtyas D. Effect of heat moisture treatment on functional properties and microstuctural profiles of sweet potato flour[J]. Advance Journal of Food Science and Technology,2014,6(5):655−659. doi: 10.19026/ajfst.6.90
    [11]
    林志荣, 高群玉. 淀粉的湿热处理及其发展前景[J]. 粮食与饲料工业,2005(8):22−23. doi: 10.3969/j.issn.1003-6202.2005.08.010
    [12]
    李明菲. 不同热处理方式对小麦粉特性影响研究[D]. 郑州: 河南工业大学, 2016.
    [13]
    闫巧珍, 高瑞雄, 张正茂, 等. 湿热处理对马铃薯全粉品质的影响[J]. 现代食品科技,2017,33(4):264−270, 294.
    [14]
    金金. 山药制粉加工技术研究[D]. 无锡: 江南大学, 2011.
    [15]
    Cahyana Y, Wijaya E, Halimah T S, et al. The effect of different thermal modifications on slowly digestible starch and physicochemical properties of green banana flour (Musa acuminata Colla)[J]. Food Chemistry,2019,274:274−280. doi: 10.1016/j.foodchem.2018.09.004
    [16]
    Ahn J H, Baek H R, Kim K M, et al. Slowly digestible sweetpotato flour: Preparation by heat-moisture treatment and characterization of physicochemical properties[J]. Food Science and Biotechnology,2013,22(2):383−391. doi: 10.1007/s10068-013-0091-z
    [17]
    张丽芳, 宋洪波, 安凤平, 等. 淮山药淀粉及其抗性淀粉理化性质的比较[J]. 中国粮油学报,2014,29(3):24−29.
    [18]
    Silva W M F, Biduski B, Lima K O, et al. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment[J]. Food Chemistry,2017,219:260−267. doi: 10.1016/j.foodchem.2016.09.134
    [19]
    李涛, 安凤平, 宋洪波, 等. 热处理对紫山药淀粉理化和消化特性的影响[J]. 福建农林大学学报(自然科学版),2018,47(2):250−256.
    [20]
    闫巧珍. 马铃薯全粉理化性质和消化特性的研究[D]. 杨凌: 西北农林科技大学, 2017.
    [21]
    Puncha-Arnon S, Uttapap D. Rice starch vs. rice flour: Differences in their properties when modified by heat-moisture treatment[J]. Carbohydrate Polymers,2013,91(1):85−91. doi: 10.1016/j.carbpol.2012.08.006
    [22]
    Chen X, He X W, Fu X, et al. In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment[J]. Journal of Cereal Science,2015,63:109−115. doi: 10.1016/j.jcs.2015.03.003
    [23]
    Lu Z H, Donner E, Yada R Y, et al. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends[J]. Carbohydrate Polymers,2016,154:214−222. doi: 10.1016/j.carbpol.2016.08.055
    [24]
    陈佩, 张晓, 赵冰, 等. 湿热处理对糯小麦淀粉理化性质的影响[J]. 华南农业大学学报,2015,36(2):85−89. doi: 10.7671/j.issn.1001-411X.2015.02.015
    [25]
    刘星, 范楷, 司文帅, 等. 谷粒湿热处理对薏仁米淀粉形态、结构与热特性的影响[J]. 食品科学,2018,39(19):128−133. doi: 10.7506/spkx1002-6630-201819020
    [26]
    姚映西, 吴卫国. 湿热改性处理对大米粉性质影响[J]. 粮食与油脂,2016,29(2):60−64. doi: 10.3969/j.issn.1008-9578.2016.02.015
    [27]
    Yang C H, Zhong F, Douglas Goff H, et al. Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends[J]. Food Chemistry,2019,280:51−58. doi: 10.1016/j.foodchem.2018.12.028
    [28]
    李照茜. 湿热处理对板栗淀粉结构及理化性质的影响[D]. 北京: 北京工业大学, 2016.
  • Related Articles

    [1]XIE Na, CHENG Junwen, XU Juan, WU Xueqian, LI Chunru, WANG Yuqin, XIONG Kehui, HE Liang. Process Optimization of Enzyme-Assisted Extraction of Polysaccharides from Artificially-Cultivated Cordyceps cicadae and Its Kinetic, Thermodynamic and Antioxidant Activities Analysis[J]. Science and Technology of Food Industry, 2024, 45(4): 151-160. DOI: 10.13386/j.issn1002-0306.2023040116
    [2]WEI Yuping, ZHAO Yan, SONG Lijun, PAN Leiqing, HOU Xujie. Optimization of Ultrasonic-Assisted DES Extraction Process, Kinetics and Antioxidant Activity of Cistanche tubulosa Polyphenols[J]. Science and Technology of Food Industry, 2023, 44(16): 246-254. DOI: 10.13386/j.issn1002-0306.2022100230
    [3]SHEN Xiaojing, HUANG Lulu, NIE Fanqiu, WANG Qing, YANG Juntao, YAN Chenghui, JIANG Weiwei. Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers[J]. Science and Technology of Food Industry, 2022, 43(4): 238-245. DOI: 10.13386/j.issn1002-0306.2021060237
    [4]LIU Yang, ZHANG Cuan, HE Xiao-ning, CHEN Zhi-hong, HE Xiao-wei, ZHAO Wei-ping, ZHU Guo-mei, ZHA Ming-fang. Optimization Extraction Process of Polysaccharide from the Pericarp Residues of Euryale ferox and Its Antioxidant Activity in Vitro[J]. Science and Technology of Food Industry, 2020, 41(22): 142-149. DOI: 10.13386/j.issn1002-0306.2020020291
    [5]CHEN Hong-hui, NIUNIAN La-mu. Ultrasonic Extraction and Antioxidant Activity of Polysaccharide from Dixu Tea[J]. Science and Technology of Food Industry, 2020, 41(21): 179-184. DOI: 10.13386/j.issn1002-0306.2020040275
    [6]CHEN Huai-qing, LIAO Xing-hong, ZHAO Hui, YANG Jun-qi, WANG Wen-jun, ZHANG Yan. Extraction of Tyrosinase from Potatoes and Activation of Tyrosinase by Plant Essential Oils and Its Kinetics[J]. Science and Technology of Food Industry, 2020, 41(7): 25-29,36. DOI: 10.13386/j.issn1002-0306.2020.07.005
    [7]DONG Yan-hui. Study on extraction and antioxidant activity of total flavonids from Polygonum chinense[J]. Science and Technology of Food Industry, 2015, (14): 299-302. DOI: 10.13386/j.issn1002-0306.2015.14.052
    [8]WANG Ya-ling, LI Wei-feng, GUO Fen, ZHANG Chuan-li, WU Rong-shu. Study on microwave- assisted extraction and the antioxidant activities of polysaccharide from Russula vesca[J]. Science and Technology of Food Industry, 2015, (09): 251-254. DOI: 10.13386/j.issn1002-0306.2015.09.046
    [9]SUN Jie, YIN Guo-you, DING Meng-meng, TAO Zhan-xia. Study on extraction and antioxidant activity of protein from Chinese chive seed[J]. Science and Technology of Food Industry, 2014, (12): 291-294. DOI: 10.13386/j.issn1002-0306.2014.12.055
    [10]FAN Qiao-ning, ZHANG Wei-gang, ZHAO Pei, LI Qing-yu, ZHANG Ying-na, TIAN Tian, DUAN Yu-feng. Extraction and antioxidant activity in vitro of polysaccharides from Pileus of Dictyophora echinovolvata[J]. Science and Technology of Food Industry, 2013, (23): 112-117. DOI: 10.13386/j.issn1002-0306.2013.23.026
  • Cited by

    Periodical cited type(7)

    1. 夏明杰,杨立娜,余科金,王胜男,何余堂,刘贺. 天然多糖基纳米递送载体在功能性食品中的应用. 中国食品学报. 2025(01): 442-454 .
    2. 王健霞,余元善,吴继军,温靖,邹波,胡腾根,徐玉娟. 花青素降解机制与稳态化研究进展. 食品安全质量检测学报. 2024(11): 244-253 .
    3. 张胜梦,陈雨晴,游益,谢世英,于靖薇,李岳豪,孙雨婷,王雪琴,赵英源,续晓琪. 多糖-蛋白质纳米载体研究进展. 河南工业大学学报(自然科学版). 2024(06): 137-149 .
    4. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    5. 姚家钰,曹可轩,邹云帆,单媛媛. 蛋清蛋白/壳聚糖复合物和微凝胶理化性质的比较研究. 食品与发酵工业. 2022(08): 120-127 .
    6. 唐月婷,孟凯,张克勤,赵荟菁. 瞬时纳米沉淀法制备pH变色微胶囊及其性能. 染整技术. 2022(07): 14-21 .
    7. 刘琨毅,王琪,李秀萍,彭春芳,郭云霞,吴霞. D-最优混料设计优化富含花青素的复合果蔬酒主料配比. 中国食品添加剂. 2021(09): 105-112 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (288) PDF downloads (23) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return