FU Jin, YAO Qiu-ping, DENG Shui-xiu, TAN Cheng-jian. Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou[J]. Science and Technology of Food Industry, 2021, 42(1): 8-14. DOI: 10.13386/j.issn1002-0306.2020030017
Citation: FU Jin, YAO Qiu-ping, DENG Shui-xiu, TAN Cheng-jian. Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou[J]. Science and Technology of Food Industry, 2021, 42(1): 8-14. DOI: 10.13386/j.issn1002-0306.2020030017

Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou

More Information
  • Received Date: March 02, 2020
  • Available Online: January 07, 2021
  • Objective: To study the extraction kinetics and antioxidant activity of polysaccharides from seeds of Gleditsia sinensis. Methods: Based on Fick’s first law,the extraction kinetic model was established,and the structure of polysaccharides from seeds of Gleditsia sinensis was analyzed by infrared spectrum.The scavenging ability of polysaccharides from seeds of Gleditsia sinensis on ABTS free radical,hydroxyl autoradical,1,1-diphenyl-2-trinitrophenyl hydrazine(DPPH)free radical and superoxide anion radical was determined to evaluate its antioxidant activity. Results: The results showed that the calculated value of the kinetic model was in good agreement with the actual measured data,which was in accordance with the first-order extraction kinetic model,and the activation energy was 15.023 kJ/mol.The infrared spectrum showed that polysaccharides from seeds of Gleditsia sinensis contained mannose,which was β-type pyran polysaccharide. The antioxidant activity of polysaccharide increased with the increase of concentration. When the concentration was 5 mg/mL,the scavenging rates of ABTS,DPPH and superoxide anion were 71.82%,83.36%,84.00% and 86.11%,respectively. Conclusion: The kinetic model of the polysaccharide extraction was established,and polysaccharides from seeds of Gleditsia sinensis had good antioxidant activity.
  • [1]
    梁静谊,安鑫南,蒋建新,等. 皂荚化学组成的研究[J].中国野生植物资源,2003(3):44-46.
    [2]
    曾为林,尹加笔,高苹,等. 梁河县滇皂荚的皂角米营养成分分析[J].西南林业大学学报:自然科学,2017,37(5):203-207.
    [3]
    张泉荣,贺一铭,张文秀,等. 植物皂荚中皂荚多糖的研究进展[J].科学技术创新,2019(29):57-58.
    [4]
    杨向颖,张宏利,宋晓平,等. 皂荚中一种杀鼠活性成分的分离鉴定[J].西北植物学报,2009,29(3):618-621.
    [5]
    Dai Y,Chan Y P,Chu L M,et al. Antiallergic and anti-inflammatory properties of the ethanolic extract from Gleditsia sinensis[J]. Biological and Pharmaceutical Bulletin,2002,25(9):1179-1182.
    [6]
    Peng L,Jun Rong D,Meng Xue Z,et al. Aqueous extract of Gleditsia sinensis Lam. fruits improves serum and liver lipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet[J]. Journal of Ethnopharmacology,2011,137(3):1061-1066.
    [7]
    余铭,袁唯,梅为云,等. 皂角多糖涂膜保鲜甜柿的研究[J].食品与机械,2010,26(4):42-45.
    [8]
    Gao Z Y,Jiang J X,Yin N. Synthesis and characterizations of thermo-sensitive graft-polymer hydrogel from Gleditsia sinensis polysaccharide[J]. Journal of Biomimetics,Biomaterials and Tissue Engineering,2011,9:57-58.
    [9]
    Hou C,Wu S,Xia Y,et al. A novel emulsifier prepared from Acacia seyal polysaccharide through Maillard reaction with casein peptides[J]. Food Hydrocolloids,2017,69:236-241.
    [10]
    Pradeep K B,Randhir S. Antidiabetic activity of Acacia tortilis(Forsk.)Hayne ssp. raddiana polysaccharide on streptozotocin-nicotinamide induced diabetic rats[J]. BioMed Research International,2014,2014:572013.
    [11]
    Sun M,Sun Y,Li Y,et al. Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi[J]. Journal of Functional Foods,2018,46:546-555.
    [12]
    张敏,史劲松,孙达峰,等. 野皂荚多糖胶酶法制备半乳甘露低聚糖的研究[J].食品工业科技,2008,29(9):57-59

    ,62.
    [13]
    蒋建新,朱莉伟,安鑫南,等. NMR法研究我国主要植物胶资源的多糖化学结构[J].林产化学与工业,2006,26(1):41-44.
    [14]
    陈妍,王登宇,符少见,等. 皂荚植物胶提取工艺及其在鲜切果蔬中的应用[J].食品研究与开发,2019,40(20):80-85.
    [15]
    蒋建新,菅红磊,朱莉伟,等. 植物多糖胶研究应用新进展[J].林产化学与工业,2009,29(4):121-126.
    [16]
    高洁,董文宾,王勇,等. 皂荚多糖超声波提取工艺优化及体外抗氧化活性研究[J].食品工业科技,2019,40(21):124-129

    ,135.
    [17]
    Dubois M,Gilles K A,Hamilton J K,et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [18]
    李冬,李稳宏,廉媛媛,等. 化香树果序总黄酮提取动力学研究[J].天然产物研究与开发,2011,23(4):689-692

    ,708.
    [19]
    章凯,黄国林,陈中胜,等. 微波辅助萃取柠檬皮中果胶动力学及热力学研究[J].食品科学,2010,31(15):107-111.
    [20]
    储茂泉,古宏晨,刘国杰. 中草药浸提过程的动力学模型[J].中草药,2000(7):26-28.
    [21]
    程伟,秦俊哲,杜军国. 桑黄多糖提取过程模型的建立与动力学分析[J].现代食品科技,2013,29(3):513-518.
    [22]
    赵凯,牛会平,侯建平,等. 香菇多糖提取动力学模型研究[J].河北师范大学学报:自然科学版,2019,43(1):52-59.
    [23]
    赵思明,熊善柏,陈燕平,等. 双低油菜籽的油脂萃取动力学研究(Ⅰ)——油脂萃取过程内部扩散特性研究[J].中国油脂,2002,4:5-8.
    [24]
    徐也,刘晓风,王永刚,等. 临泽小枣粗多糖提取动力学模型建立及结构特征分析[J].食品科学,2019,40(3):1-8.
    [25]
    Durmaz G. Freeze-dried ABTS+ method:A ready-to-use radical powder to assess antioxidant capacity of vegetable oils[J]. Food Chemistry,2012,133(4):1658-1663.
    [26]
    李粉玲,林瑶. 蕉芋多糖抗氧化性及还原能力的研究[J].韩山师范学院学报,2016,37(6):29-33.
    [27]
    李亚辉,马艳弘,黄开红,等. 响应面法优化复合酶提取芦荟多糖工艺及其抗氧化活性分析[J].食品科学,2014,35(18):63-68.
    [28]
    罗敬文,司风玲,顾子玄,等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析[J].食品科学,2018,39(19):64-69.
    [29]
    刘敏. 玉竹水溶性多糖的提取动力学模型及一级结构鉴定研究[D].广州:广东药学院,2015.
    [30]
    黄静涵,艾斯卡尔·艾拉提,毛健. 灵芝多糖的分离纯化及结构鉴定[J].食品科学,2011,32(12):301-304.
    [31]
    杨大伟. 恩施高富硒植物碎米荠含硒多糖研究[D].长沙:湖南农业大学,2007.
    [32]
    李娟,钟平娟,万仁口,等. 荞麦蜂花粉多糖的分离纯化及结构鉴定[J].食品工业科技,2020,41(12):35-40.
    [33]
    Xie J H,Xie M Y,Nie S P,et al. Isolation,chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus(Batal.)Iljinskaja[J]. Food Chemistry,2009,119(4):1626-1632.
    [34]
    亓鑫,刘垚彤,赵卉,等. 提取方式对银杏果多糖的理化性质及抗氧化活性的影响[J].食品科技,2019,44(5):170-174.
    [35]
    孙思燕,江宁,戴竹青,等. 荷叶离褶伞多糖提取工艺优化及抗氧化活性研究[J].食品工业科技,2020,41(9):155-160

    ,167.
    [36]
    吴金松,张岩,陈晓培,等. 铁观音茶末多糖的分离纯化和抗氧化活性[J].食品工业科技,2020,41(11):66-71.
    [37]
    余腾飞,唐年初,刘诚毅. 忧遁草多糖提取工艺优化及抗氧化活性研究[J].食品与机械,2020,36(2):171-175.
  • Related Articles

    [1]XIE Na, CHENG Junwen, XU Juan, WU Xueqian, LI Chunru, WANG Yuqin, XIONG Kehui, HE Liang. Process Optimization of Enzyme-Assisted Extraction of Polysaccharides from Artificially-Cultivated Cordyceps cicadae and Its Kinetic, Thermodynamic and Antioxidant Activities Analysis[J]. Science and Technology of Food Industry, 2024, 45(4): 151-160. DOI: 10.13386/j.issn1002-0306.2023040116
    [2]WEI Yuping, ZHAO Yan, SONG Lijun, PAN Leiqing, HOU Xujie. Optimization of Ultrasonic-Assisted DES Extraction Process, Kinetics and Antioxidant Activity of Cistanche tubulosa Polyphenols[J]. Science and Technology of Food Industry, 2023, 44(16): 246-254. DOI: 10.13386/j.issn1002-0306.2022100230
    [3]SHEN Xiaojing, HUANG Lulu, NIE Fanqiu, WANG Qing, YANG Juntao, YAN Chenghui, JIANG Weiwei. Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers[J]. Science and Technology of Food Industry, 2022, 43(4): 238-245. DOI: 10.13386/j.issn1002-0306.2021060237
    [4]LIU Yang, ZHANG Cuan, HE Xiao-ning, CHEN Zhi-hong, HE Xiao-wei, ZHAO Wei-ping, ZHU Guo-mei, ZHA Ming-fang. Optimization Extraction Process of Polysaccharide from the Pericarp Residues of Euryale ferox and Its Antioxidant Activity in Vitro[J]. Science and Technology of Food Industry, 2020, 41(22): 142-149. DOI: 10.13386/j.issn1002-0306.2020020291
    [5]CHEN Hong-hui, NIUNIAN La-mu. Ultrasonic Extraction and Antioxidant Activity of Polysaccharide from Dixu Tea[J]. Science and Technology of Food Industry, 2020, 41(21): 179-184. DOI: 10.13386/j.issn1002-0306.2020040275
    [6]CHEN Huai-qing, LIAO Xing-hong, ZHAO Hui, YANG Jun-qi, WANG Wen-jun, ZHANG Yan. Extraction of Tyrosinase from Potatoes and Activation of Tyrosinase by Plant Essential Oils and Its Kinetics[J]. Science and Technology of Food Industry, 2020, 41(7): 25-29,36. DOI: 10.13386/j.issn1002-0306.2020.07.005
    [7]DONG Yan-hui. Study on extraction and antioxidant activity of total flavonids from Polygonum chinense[J]. Science and Technology of Food Industry, 2015, (14): 299-302. DOI: 10.13386/j.issn1002-0306.2015.14.052
    [8]WANG Ya-ling, LI Wei-feng, GUO Fen, ZHANG Chuan-li, WU Rong-shu. Study on microwave- assisted extraction and the antioxidant activities of polysaccharide from Russula vesca[J]. Science and Technology of Food Industry, 2015, (09): 251-254. DOI: 10.13386/j.issn1002-0306.2015.09.046
    [9]SUN Jie, YIN Guo-you, DING Meng-meng, TAO Zhan-xia. Study on extraction and antioxidant activity of protein from Chinese chive seed[J]. Science and Technology of Food Industry, 2014, (12): 291-294. DOI: 10.13386/j.issn1002-0306.2014.12.055
    [10]FAN Qiao-ning, ZHANG Wei-gang, ZHAO Pei, LI Qing-yu, ZHANG Ying-na, TIAN Tian, DUAN Yu-feng. Extraction and antioxidant activity in vitro of polysaccharides from Pileus of Dictyophora echinovolvata[J]. Science and Technology of Food Industry, 2013, (23): 112-117. DOI: 10.13386/j.issn1002-0306.2013.23.026
  • Cited by

    Periodical cited type(11)

    1. 李娜,李姜维,徐鹏云,线承源,王杉. 预处理工艺对皂荚籽脱壳性能的影响. 农机化研究. 2025(03): 162-168 .
    2. 吴雯雯,蒲龙林,朱德全,邹大江,姚秋萍. H_2O_2制备皂角米多糖及其结构表征和抗氧化活性研究. 粮食与油脂. 2025(02): 139-145+151 .
    3. 张瑞刚,王超越. 沙棘叶茶多糖提取工艺优化及体外降脂活性研究. 北方园艺. 2024(01): 93-99 .
    4. 李萍,徐伟烨,彭喜春. 元蘑多糖的降糖降脂及其抗衰老活性研究初报. 江西农业学报. 2024(01): 63-68 .
    5. 何蕾,高元吉,赵丽娟,余永良. 液质联用技术用于皂角的有机分析. 四川师范大学学报(自然科学版). 2022(03): 382-386 .
    6. 钱燕芳,石晨莹,陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析. 食品工业科技. 2022(16): 201-210 . 本站查看
    7. 陈岩,张润阳,蔡小双,王祖斌,廖树强,刘华敏. 不同脱色方法对油莎豆多糖抗氧化与降血糖活性研究. 食品安全导刊. 2022(23): 91-97 .
    8. 刘硕,陈桂玲,谭霞,安松涛,李洪庆,卢文芸,陶文亮. 麻竹叶水溶性膳食纤维提取动力学及其理化特性研究. 中国食品添加剂. 2022(09): 26-33 .
    9. 王靓怡,胡海燕,李雪,姚博星,赵惠茹. 植物多糖提取方法和提取动力学研究进展. 化工科技. 2022(03): 65-68 .
    10. 刘学贵,张雪,迈德,高品一,李丹琦. 金樱子天然硒多糖的结构表征及其体外活性. 食品工业. 2021(10): 169-174 .
    11. 孙娅楠,赵杨,何可权,陆跃堂. 皂荚刺发育过程中形态与结构观察研究. 西北植物学报. 2021(12): 2080-2086 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (317) PDF downloads (47) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return