FU Jin, YAO Qiu-ping, DENG Shui-xiu, TAN Cheng-jian. Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou[J]. Science and Technology of Food Industry, 2021, 42(1): 8-14. DOI: 10.13386/j.issn1002-0306.2020030017
Citation: FU Jin, YAO Qiu-ping, DENG Shui-xiu, TAN Cheng-jian. Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou[J]. Science and Technology of Food Industry, 2021, 42(1): 8-14. DOI: 10.13386/j.issn1002-0306.2020030017

Extraction Kinetics and Antioxidant Activities of Polysaccharides from Seeds of Gleditsia sinensis in Guizhou

More Information
  • Received Date: March 02, 2020
  • Available Online: January 07, 2021
  • Objective: To study the extraction kinetics and antioxidant activity of polysaccharides from seeds of Gleditsia sinensis. Methods: Based on Fick’s first law,the extraction kinetic model was established,and the structure of polysaccharides from seeds of Gleditsia sinensis was analyzed by infrared spectrum.The scavenging ability of polysaccharides from seeds of Gleditsia sinensis on ABTS free radical,hydroxyl autoradical,1,1-diphenyl-2-trinitrophenyl hydrazine(DPPH)free radical and superoxide anion radical was determined to evaluate its antioxidant activity. Results: The results showed that the calculated value of the kinetic model was in good agreement with the actual measured data,which was in accordance with the first-order extraction kinetic model,and the activation energy was 15.023 kJ/mol.The infrared spectrum showed that polysaccharides from seeds of Gleditsia sinensis contained mannose,which was β-type pyran polysaccharide. The antioxidant activity of polysaccharide increased with the increase of concentration. When the concentration was 5 mg/mL,the scavenging rates of ABTS,DPPH and superoxide anion were 71.82%,83.36%,84.00% and 86.11%,respectively. Conclusion: The kinetic model of the polysaccharide extraction was established,and polysaccharides from seeds of Gleditsia sinensis had good antioxidant activity.
  • [1]
    梁静谊,安鑫南,蒋建新,等. 皂荚化学组成的研究[J].中国野生植物资源,2003(3):44-46.
    [2]
    曾为林,尹加笔,高苹,等. 梁河县滇皂荚的皂角米营养成分分析[J].西南林业大学学报:自然科学,2017,37(5):203-207.
    [3]
    张泉荣,贺一铭,张文秀,等. 植物皂荚中皂荚多糖的研究进展[J].科学技术创新,2019(29):57-58.
    [4]
    杨向颖,张宏利,宋晓平,等. 皂荚中一种杀鼠活性成分的分离鉴定[J].西北植物学报,2009,29(3):618-621.
    [5]
    Dai Y,Chan Y P,Chu L M,et al. Antiallergic and anti-inflammatory properties of the ethanolic extract from Gleditsia sinensis[J]. Biological and Pharmaceutical Bulletin,2002,25(9):1179-1182.
    [6]
    Peng L,Jun Rong D,Meng Xue Z,et al. Aqueous extract of Gleditsia sinensis Lam. fruits improves serum and liver lipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet[J]. Journal of Ethnopharmacology,2011,137(3):1061-1066.
    [7]
    余铭,袁唯,梅为云,等. 皂角多糖涂膜保鲜甜柿的研究[J].食品与机械,2010,26(4):42-45.
    [8]
    Gao Z Y,Jiang J X,Yin N. Synthesis and characterizations of thermo-sensitive graft-polymer hydrogel from Gleditsia sinensis polysaccharide[J]. Journal of Biomimetics,Biomaterials and Tissue Engineering,2011,9:57-58.
    [9]
    Hou C,Wu S,Xia Y,et al. A novel emulsifier prepared from Acacia seyal polysaccharide through Maillard reaction with casein peptides[J]. Food Hydrocolloids,2017,69:236-241.
    [10]
    Pradeep K B,Randhir S. Antidiabetic activity of Acacia tortilis(Forsk.)Hayne ssp. raddiana polysaccharide on streptozotocin-nicotinamide induced diabetic rats[J]. BioMed Research International,2014,2014:572013.
    [11]
    Sun M,Sun Y,Li Y,et al. Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi[J]. Journal of Functional Foods,2018,46:546-555.
    [12]
    张敏,史劲松,孙达峰,等. 野皂荚多糖胶酶法制备半乳甘露低聚糖的研究[J].食品工业科技,2008,29(9):57-59

    ,62.
    [13]
    蒋建新,朱莉伟,安鑫南,等. NMR法研究我国主要植物胶资源的多糖化学结构[J].林产化学与工业,2006,26(1):41-44.
    [14]
    陈妍,王登宇,符少见,等. 皂荚植物胶提取工艺及其在鲜切果蔬中的应用[J].食品研究与开发,2019,40(20):80-85.
    [15]
    蒋建新,菅红磊,朱莉伟,等. 植物多糖胶研究应用新进展[J].林产化学与工业,2009,29(4):121-126.
    [16]
    高洁,董文宾,王勇,等. 皂荚多糖超声波提取工艺优化及体外抗氧化活性研究[J].食品工业科技,2019,40(21):124-129

    ,135.
    [17]
    Dubois M,Gilles K A,Hamilton J K,et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [18]
    李冬,李稳宏,廉媛媛,等. 化香树果序总黄酮提取动力学研究[J].天然产物研究与开发,2011,23(4):689-692

    ,708.
    [19]
    章凯,黄国林,陈中胜,等. 微波辅助萃取柠檬皮中果胶动力学及热力学研究[J].食品科学,2010,31(15):107-111.
    [20]
    储茂泉,古宏晨,刘国杰. 中草药浸提过程的动力学模型[J].中草药,2000(7):26-28.
    [21]
    程伟,秦俊哲,杜军国. 桑黄多糖提取过程模型的建立与动力学分析[J].现代食品科技,2013,29(3):513-518.
    [22]
    赵凯,牛会平,侯建平,等. 香菇多糖提取动力学模型研究[J].河北师范大学学报:自然科学版,2019,43(1):52-59.
    [23]
    赵思明,熊善柏,陈燕平,等. 双低油菜籽的油脂萃取动力学研究(Ⅰ)——油脂萃取过程内部扩散特性研究[J].中国油脂,2002,4:5-8.
    [24]
    徐也,刘晓风,王永刚,等. 临泽小枣粗多糖提取动力学模型建立及结构特征分析[J].食品科学,2019,40(3):1-8.
    [25]
    Durmaz G. Freeze-dried ABTS+ method:A ready-to-use radical powder to assess antioxidant capacity of vegetable oils[J]. Food Chemistry,2012,133(4):1658-1663.
    [26]
    李粉玲,林瑶. 蕉芋多糖抗氧化性及还原能力的研究[J].韩山师范学院学报,2016,37(6):29-33.
    [27]
    李亚辉,马艳弘,黄开红,等. 响应面法优化复合酶提取芦荟多糖工艺及其抗氧化活性分析[J].食品科学,2014,35(18):63-68.
    [28]
    罗敬文,司风玲,顾子玄,等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析[J].食品科学,2018,39(19):64-69.
    [29]
    刘敏. 玉竹水溶性多糖的提取动力学模型及一级结构鉴定研究[D].广州:广东药学院,2015.
    [30]
    黄静涵,艾斯卡尔·艾拉提,毛健. 灵芝多糖的分离纯化及结构鉴定[J].食品科学,2011,32(12):301-304.
    [31]
    杨大伟. 恩施高富硒植物碎米荠含硒多糖研究[D].长沙:湖南农业大学,2007.
    [32]
    李娟,钟平娟,万仁口,等. 荞麦蜂花粉多糖的分离纯化及结构鉴定[J].食品工业科技,2020,41(12):35-40.
    [33]
    Xie J H,Xie M Y,Nie S P,et al. Isolation,chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus(Batal.)Iljinskaja[J]. Food Chemistry,2009,119(4):1626-1632.
    [34]
    亓鑫,刘垚彤,赵卉,等. 提取方式对银杏果多糖的理化性质及抗氧化活性的影响[J].食品科技,2019,44(5):170-174.
    [35]
    孙思燕,江宁,戴竹青,等. 荷叶离褶伞多糖提取工艺优化及抗氧化活性研究[J].食品工业科技,2020,41(9):155-160

    ,167.
    [36]
    吴金松,张岩,陈晓培,等. 铁观音茶末多糖的分离纯化和抗氧化活性[J].食品工业科技,2020,41(11):66-71.
    [37]
    余腾飞,唐年初,刘诚毅. 忧遁草多糖提取工艺优化及抗氧化活性研究[J].食品与机械,2020,36(2):171-175.
  • Cited by

    Periodical cited type(6)

    1. 吕素媛,商冰清,孙璐颜,刘国龙,赵发,梁秀清,吴秋,耿越. 微波辅助萃取油松松针精油的工艺优化及抗氧化活性研究. 食品工业科技. 2025(02): 184-191 . 本站查看
    2. 杨媛媛,唐语谦,杨继国. 亚临界萃取琥珀精油工艺优化及活性分析. 现代食品科技. 2024(04): 225-235 .
    3. 太美灵,江岭,李宛钊,韩萍,林丽,杜志云. 3D皮肤模型法评价五味子油对H_2O_2诱导的HaCaT细胞氧化损伤的保护作用. 广东工业大学学报. 2023(01): 130-136 .
    4. 刘庆璇,庄连玉,马文局,孙光辉,刘亚辉,李冠喜. 樟树叶片精油对微生物生长的抑制作用. 曲阜师范大学学报(自然科学版). 2023(02): 88-92 .
    5. 张家旭,董学凤,王信,叶倩女,郭玉儿,石晓峰. 不同品种6种松针中氨基酸含量测定及营养价值评价. 中国食品添加剂. 2023(05): 281-290 .
    6. 李成辉,董宏标,郑晓婷,桂福坤,曾祥兵,明俊超,陈飞,陈健,张家松. 春砂仁精油对尼罗罗非鱼幼鱼生长、消化、抗氧化能力和血清生化指标的影响. 南方水产科学. 2023(06): 51-59 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (314) PDF downloads (47) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return