ZHANG Qi, HE Guo-qing. Research Progress of Milk Protein Desensitization Based on Biological Enzymatic Method[J]. Science and Technology of Food Industry, 2021, 42(1): 373-377,386. DOI: 10.13386/j.issn1002-0306.2019110160
Citation: ZHANG Qi, HE Guo-qing. Research Progress of Milk Protein Desensitization Based on Biological Enzymatic Method[J]. Science and Technology of Food Industry, 2021, 42(1): 373-377,386. DOI: 10.13386/j.issn1002-0306.2019110160

Research Progress of Milk Protein Desensitization Based on Biological Enzymatic Method

More Information
  • Received Date: November 18, 2019
  • Available Online: January 07, 2021
  • Milk is the main food protein source for infants and young children,but it is also one of the eight major foods that cause food allergies. The research and production of hypoallergenic dairy products is of great significance to people with milk allergies. At present,biological enzymatic method is the main technical way to develop hypoallergenic dairy products. This article lists the cow milk allergic protein and its sensitizing epitopes which can be recognized,introduces the technology and effect of the application of biological enzymatic treatment to obtain low antigenic cow milk protein hydrolysate,and puts forward some thoughts on subsequent research. This paper provides a theoretical basis for the research of hypoallergenic dairy products and the realization of directed hydrolysis in the future.
  • [1]
    Wal J M. Structure and function of milk allergens[J]. Allergy,2010,56(s67):35-38.
    [2]
    Pecora V,Mennini M,Calandrelli V,et al. How to actively treat food allergy[J]. Curr Opin Allergy Cl,2018,18(3):248-257.
    [3]
    Fiocchi A,Brozek J,Schunemann H,et al. World Allergy Organization(WAO)diagnosis and rationale for action against cow's milk allergy(DRACMA)guidelines[J]. Pediat Allerg Imm-Uk,2010,21(4):125.
    [4]
    Raikos V. Effect of heat treatment on milk protein functionality at emulsion interfaces. A review[J]. Food Hydrocolloid,2010,24(4):259-265.
    [5]
    Costa J,Fernandes T J R,Villa C,et al. Advances in food allergen analysis[M]. Food safety:Innovative Analytical Tools for Safety Assessment,2017.
    [6]
    Martorell-Aragones A,Echeverria-Zudaire L,Alonso-Lebrero E,et al. Position document:IgE-mediated cow's milk allergy[J]. Allergol Immunopathol(Madr),2015,43(5):507-526.
    [7]
    徐正国,温晓红. 婴幼儿牛奶蛋白过敏诊治进展[J]. 安徽医药,2019,23(3):608-610.
    [8]
    Do A B,Williams K,Toomer O T. In vitro digestibility and immunoreactivity of bovine milk proteins[J]. Food Chemistry,2016,190:581-587.
    [9]
    Matsuo H,Yokooji T,Taogoshi T. Common food allergens and their IgE-binding epitopes[J]. Allergol Int,2015,64(4):332-343.
    [10]
    Ruiter B,Trégoat V,M'rabet L,et al. Characterization of T cell epitopes in alphas1-casein in cow's milk allergic,atopic and non-atopic children[J]. Clinical & Experimental Allergy,2010,36(3):303-310.
    [11]
    Cong Y J,Li L F. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes in β-lactoglobulin by alanine scanning analysis[J]. Journal of Dairy ence,2012,95(11):6307-6312.
    [12]
    范安妮,佘之蕴,梁宇斌,等. 牛奶中主要过敏原αs1-酪蛋白的生物信息学分析[J]. 食品安全质量检测学报,2016,7(12):4740-4744.
    [13]
    Villa C,Costa J,Oliveira M B P P,et al. Bovine milk allergens:A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):137-164.
    [14]
    Chatchatee P,Järvinen K M,Bardina L,et al. Identification of IgE and IgG binding epitopes on beta-and kappa-casein in cow's milk allergic patients[J]. Clinical & Experimental Allergy,2010,31(8):1256-1262.
    [15]
    刘法辉. 牛乳中β-酪蛋白构象性表位定位研究[D].南昌:南昌大学,2011.
    [16]
    El Mecherfi K E,Curet S,Lupi R,et al. Combined microwave processing and enzymatic proteolysis of bovine whey proteins:The impact on bovine beta-lactoglobulin allergenicity[J]. Journal of Food Science & Technology,2019,56(1):177-186.
    [17]
    兰欣怡,王加启,卜登攀,等. 牛奶β-乳球蛋白研究进展[J]. 中国畜牧兽医,2009,36(6):109-11.
    [18]
    Tsuji N M,Kurisaki J I,Mizumachi K,et al. Localization of T-cell determinants on bovine β-lactoglobulin[J]. Immunology Letters,1993,37(2-3):215-221.
    [19]
    Miller K,Meredith C,Selo I,et al. Allergy to bovine beta-lactoglobulin:Specificity of immunoglobulin E generated in the Brown Norway rat to tryptic and synthetic peptides[J]. Clinical & Experimental Allergy,2010,29(12):1696-1704.
    [20]
    Yanjun C,Hong Y,Yuting Q,et al. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes on αs1-casein by alanine scanning analysis[J]. Journal of Dairy Science,2012,95(11):6307-6312.
    [21]
    Jarvinen K M,Chatchatee P,Bardina L,et al. IgE and IgG binding epitopes on alpha-lactalbumin and beta-lactoglobulin in cow's milk allergy[J]. Int Arch Allergy Imm,2001,126(2):111-118.
    [22]
    Xin L I,Chen H,Ping T,et al. Epitope mapping of buffalo beta-lactoglobulin against rabbit polyclonal antibody following phage display technique[J]. Journal of Food Biochemistry,2012,36(1):56-65.
    [23]
    武涌. 牛乳β-乳球蛋白构象性表位定位及结构特征研究[D]. 南昌:南昌大学,2012.
    [24]
    Chen F M,Lee J H,Yang Y H,et al. Analysis of α-lactalbumin-,β-lactoglobulin-,and casein-specific IgE among children with atopic diseases in a tertiary medical center in northern Taiwan[J]. Journal of Microbiology,Immunology and Infection,2014,47(2):130-136.
    [25]
    Meulenbroek L A P M,Jager C F,Den Hartog,et al. Characterization of T cell epitopes in bovine α-lactalbumin[J]. Int Arch Allergy Imm,2014,163(4):292-296.
    [26]
    Adams S L,Barnett D,Walsh B J,et al. Human IgE-binding synthetic peptides of bovine beta-lactoglobulin and alpha-lactalbumin. In vitro cross-reactivity of the allergens[J]. Immunol Cell Biol,1991,69(3):191-197.
    [27]
    丛艳君,陈澍,李晔,等. 牛乳α-乳白蛋白IgE线性表位的关键氨基酸识别[J]. 食品科学,2017,38(11):1-5.
    [28]
    Golkar A,Milani J M,Vasiljevic T. Altering allergenicity of cow's milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science & Nutrition,2019,59(1):159-172.
    [29]
    Venter C,Brown T,Meyer R,et al. Better recognition,diagnosis and management of non-IgE-mediated cow's milk allergy in infancy:iMAP-an international interpretation of the MAP(Milk Allergy in Primary Care)guideline[J]. Clinical and Translational Allergy,2017,7(1):26-34.
    [30]
    Ahmad N,Imran M,Khan M K,et al. Degree of hydrolysis and antigenicity of buffalo alpha S1 casein and its hydrolysates in children with cow milk allergy[J]. Food Agr Immunol,2016,27(1):87-98.
    [31]
    林单,林峰,陆路,等. 水解牛乳酪蛋白的抗原性研究[J].食品与发酵工业,2013,39(11):1-5.
    [32]
    刘晓宇,李铮,张颖,等. 酶解对牛乳酪蛋白抗原性的影响[J]. 中国乳品工业,2011,39(2):27-30.
    [33]
    汝成业,张娟,堵国成,等. 包埋固定化酶降解牛奶αs1-酪蛋白过敏性研究[J]. 食品与生物技术学报,2016,35(4):387-392.
    [34]
    Kim S B,Ki K S,Khan M A,et al. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity[J]. J Dairy Sci,2007,90(9):4043-4050.
    [35]
    沈小琴,郑海,罗永康,等. 酶解对乳清蛋白抗原性影响的研究[J]. 中国乳品工业,2006,34(6):12-15.
    [36]
    Karen K,Esch B C A M,Van,Dijk I V,et al. Enzymatic treatment of whey proteins in cow's milk results in differential inhibition of IgE-mediated mast cell activation compared to T-cell activation[J]. Int Arch Allergy Imm,2012,159(3):263-270.
    [37]
    Wroblewska B,Karamac M,Amarowicz R,et al. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis[J]. International Journal of Food Science & Technology,2010,39(8):839-850.
    [38]
    付莉,岳喜庆,宋建新,等. 复合酶降低牛乳蛋白致敏性的研究[J]. 中国乳品工业,2013,41(5):22-25.
    [39]
    王麟艳. 牛乳β-酪蛋白消化产物的制备及其功能性评价[D]. 哈尔滨:东北农业大学,2018.
    [40]
    郑俊彦,张昊,郭慧媛,等. 利用蛋白质改性技术降低牛乳致敏性的研究进展[J]. 中国乳业,2011(12):46-49.
    [41]
    巫圆圆,李欣,陈红兵. 酶法降低牛乳蛋白致敏性的研究进展[J]. 食品科学,2012,33(23):340-345.
    [42]
    Ambrosi V,Polenta G,Gonzalez C,et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science Emerging Technologies,2016,38(PartB):294-301.
    [43]
    Chicón R,López-Expósito I,Belloque J,et al. Hydrolysis under high hydrostatic pressure as a means to reduce the potencial allergenicity of β-lactoglobulin[J]. Journal of Allergy and Clinical Immunology,2008,121(2):S249.
    [44]
    Lozano-Ojalvo D,Perez-Rodriguez L,Pablos-Tanarro A,et al. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates[J]. Innov Food Sci Emerg,2017,43:154-162.
    [45]
    Zeece M,Huppertz T,Kelly A J I F S,et al. Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin[J].Innovative Food Science and Emerging Technologies,2008,9(1):62-69.
    [46]
    Blayo C,Vidcoq O,Lazennec F,et al. Effects of high pressure processing(hydrostatic high pressure and ultra-high pressure homogenisation)on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure[J]. Food Res Int,2016,79:40-53.
    [47]
    Mecherfi K E E,Saidi D,Kheroua O,et al. Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity[J]. European Food Research and Technology,2011,233(5):859-867.
    [48]
    Abadia-Garcia L,Castano-Tostado E,Ozimek L,et al. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases[J]. Innov Food Sci Emerg,2016,37:84-90.
    [49]
    Madadlou A,Sheehan D,Emam-Djomeh Z,et al. Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease[J]. J Sci Food Agric,2011,91(11):2112-2116.
    [50]
    Sabadin I S,Villas-Boas M B,Zollner R D L,et al. Effect of combined treatment of hydrolysis and polymerization with transglutaminase on β-lactoglobulin antigenicity[J]. European Food Research & Technology,2012,235(5):801-809.
    [51]
    李欣,陈红兵. 过敏原在食品加工中的变化[J]. 食品工业,2005(1):50-52.
    [52]
    樊增禄,戴瑾瑾,朱泉. 蛋白酶对羊毛的作用机理研究[J]. 纺织学报,2002,23(1):19-21.
    [53]
    Babij K,Bajzert J,Dąbrowska A,et al. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein[J]. Amino Acids,2015,47(11):2335-2343.
    [54]
    胡长利,陈历俊,宋小红,等. 乳源过敏及低致敏乳制品的研究[J]. 中国乳品工业,2011,39(3):42-45.
  • Related Articles

    [1]WANG Xiaoyu, WANG Zhenzhen, HU Mengya, DAI Jing, SHA Ruyi, MAO Jianwei. Metabolomics Analysis of Five Types of Wangdu Chili Peppers Based on HPLC and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(20): 14-22. DOI: 10.13386/j.issn1002-0306.2024010245
    [2]HUANG Chen, GUO Dejun, YOU Gang, QIN Ningjing. Effect of Different Baking Degrees of Oak on Lychee Brandy Volatility Flavor Based on Electronic Nose and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(2): 252-259. DOI: 10.13386/j.issn1002-0306.2023030239
    [3]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
    [4]BAI Xue, YANG Shuang, MENG Xin. Effect of Microbial Lipase on the Flavor of Dairy Products by GC-MS Combined with Electronic Nose[J]. Science and Technology of Food Industry, 2018, 39(14): 209-212,218. DOI: 10.13386/j.issn1002-0306.2018.14.039
    [5]YANG Shuang, BAI Xue, MENG Xin. Effect of Chicken Protease on Chicken Flavor by Electronic Nose Combined with GC-MS Detection[J]. Science and Technology of Food Industry, 2018, 39(13): 252-256. DOI: 10.13386/j.issn1002-0306.2018.13.046
    [6]ZHANG Di-ya, XIE Dan-ting, LI Ye. Comparison of volatile components in different parts of beef by electronic nose and GC-MS[J]. Science and Technology of Food Industry, 2017, (21): 241-246. DOI: 10.13386/j.issn1002-0306.2017.21.048
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]FUN Qin-bao, CAI Wei-rong, XIE Liang-liang, PAN Hui, CAO Xue, ZENG Heng. Characterisation of volatile components of Lotus leaves by HS-SPME and SDE coupled to GC-MS[J]. Science and Technology of Food Industry, 2017, (15): 253-258. DOI: 10.13386/j.issn1002-0306.2017.15.047
    [9]YANG Ying-chun, WANG Qiang, YANG Jie. Fatty acid composition of Portulaca oleracea seeds oil with GC-MS[J]. Science and Technology of Food Industry, 2014, (14): 147-150. DOI: 10.13386/j.issn1002-0306.2014.14.024
    [10]ZHAO Lin-min, QI Cheng-mei, LIU Xiao-wen, LUO Ying, YUAN Zhi-hui, ZHANG Zu-jiao, WANG Zong-cheng. Analysis of ginger oleoresin in Jiangyong fragrant-ginger by GC-MS[J]. Science and Technology of Food Industry, 2014, (06): 78-80. DOI: 10.13386/j.issn1002-0306.2014.06.005
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (309) PDF downloads (31) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return