Citation: | GUO Pengyan, XU Zhenlin, CHEN Zijian, et al. Expression, Purification Strategy and Detection Method Establishment of Anti-Fenitrothion Nanobody[J]. Science and Technology of Food Industry, 2023, 44(23): 298−305. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030328. |
[1] |
HU H Y, YANG L Q. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection[J]. Journal of Environmental Science and Health, Part B,2021,56(2):168−180. doi: 10.1080/03601234.2020.1853460
|
[2] |
叶茂, 沈晓玲, 陈青舟, 等. 胶体金免疫层析法同时检测果蔬中四种农药残留[J]. 食品工业科技,2023,44(6):300−308. [YE Mao, SHEN Xiaoling, CHEN Qingzhou, et al. Simultaneous determination of four pesticide residues in fruits and vegetables by colloidal gold immunochromatography[J]. Science and Technology of Food Industry,2023,44(6):300−308.
|
[3] |
CANL A G, SÜRÜCÜ B, ULUSOY H İ, et al. Analytical methodology for trace determination of propoxur and fenitrothion pesticide residues by decanoic acid modified magnetic nanoparticles[J]. Molecules,2019,24(24):4621. doi: 10.3390/molecules24244621
|
[4] |
王艳, 赵宁, 李虹佳, 等. 电沉积法构建AChE/COD@AuNPs共固定化酶生物传感器差分脉冲伏安法快速检测有机磷农药[J]. 中国食品学报,2023,23(1):356−363. [WANG Yan, ZHAO Ning, LI Hongjia, et al. Rapid detection of organophosphorus pesticides by differential pulse voltammetry with AChE/COD@AuNPs co-immobilized enzyme biosensor constructed by electrodeposition[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(1):356−363.
|
[5] |
TRINH K H, KADAM U S, SONG J N, et al. Novel DNA aptameric sensors to detect the toxic insecticide fenitrothion[J]. International Journal of Molecular Sciences,2021,22(19):10846. doi: 10.3390/ijms221910846
|
[6] |
林珍珠. 泉州地区蔬菜有机磷农药残留检测分析[J]. 福建农业科技,2018(5):46−48. [LIN Zhenzhu. Detection on organophosphorus pesticide residue in vegetables from Quanzhou area[J]. Fujian Agricultural Science and Technology,2018(5):46−48.
|
[7] |
杨眉, 宋明雄, 业润泽. Spe-gcms/ms法测定粮食中的10种有机磷[J]. 粮食科技与经济,2020,45(5):84−89. [YANG Mei, SONG Mingxiong, YE Runze. Determination of 10 kinds of organic phosphorus in grain by SPE-GCMS/MS[J]. Grain Science and Technology and Economy,2020,45(5):84−89.
|
[8] |
魏茂琼, 兰珊珊, 王丽, 等. 环境中毒死蜱的酶联免疫分析方法研究[J]. 广东农业科学,2022,49(12):82−89. [WEI Maoqiong, LAN Shanshan, WANG Li, et al. Study on enzyme-linked immunosorbent assay for chlorpyrifos in environment[J]. Guangdong Agricultural Sciences,2022,49(12):82−89.
|
[9] |
赵志高, 骆骄阳, 付延伟, 等. 免疫分析技术在农药残留分析中的研究进展及在中药中的应用展望[J]. 分析测试学报,2021,40(1):149−158. [ZHAO Zhigao, LUO Jiaoyang, FU Yanwei, et al. Research progress on immunoassay in pesticide residue analysis and its application prospect in Chinese herbal medicine[J]. Journal of Instrumental Analysis,2021,40(1):149−158.
|
[10] |
QIE Zhiwei, HUANG Ziwei, GAO Zichen, et al. Pretreatment-integration for milk protein removal and device-facilitated immunochromatographic assay for 17 items[J]. Scientific Reports,2019,9(1):11630. doi: 10.1038/s41598-019-47692-6
|
[11] |
JIAO Shasha, LIU Pengyan, LIU Ying, et al. Binding properties of broad-specific monoclonal antibodies against three organophosphorus pesticides by a direct surface plasmon resonance immunosensor[J]. Analytical and Bioanalytical Chemistry,2018,410(28):7263−7273. doi: 10.1007/s00216-018-1337-7
|
[12] |
YU Jicheng, GUO Tingting, ZHANG Wei, et al. Simultaneous detection of 2, 4-dichlorophenoxyacetic acid and fenitrothion through lanthanide doped β-NaYF4 upconversion nanoparticles with different emitting light colors[J]. Materials Research Bulletin,2019,111:133−139. doi: 10.1016/j.materresbull.2018.11.016
|
[13] |
CHO Y A, SEOK J A, LEE H S, et al. Synthesis of haptens of organophosphorus pesticides and development of immunoassays for fenitrothion[J]. Analytica Chimica Acta,2004,522(2):215−222. doi: 10.1016/j.aca.2004.05.083
|
[14] |
ZOU Rubing, CHANG Yunyun, ZHANG Tianyi, et al. Up-converting nanoparticle-based immunochromatographic strip for multi-residue detection of three organophosphorus pesticides in food[J]. Frontiers in Chemistry,2019,7:18. doi: 10.3389/fchem.2019.00018
|
[15] |
CHEN Z J, ZHANG Y F, CHEN J L, et al. Production and characterization of biotinylated anti-fenitrothion nanobodies and development of sensitive fluoroimmunoassay[J]. Journal of Agricultural and Food Chemistry,2022,70(13):4102−4111. doi: 10.1021/acs.jafc.2c00826
|
[16] |
RODRÍGUEZ-CARMONA E, CANO-GARRIDO O, DRAGOSITS M, et al. Recombinant fab expression and secretion in Escherichia coli continuous culture at medium cell densities:Influence of temperature[J]. Process Biochemistry,2012,47(3):446−452. doi: 10.1016/j.procbio.2011.11.024
|
[17] |
OZAKI C Y, SILVEIRA C R, ANDRADE F B, et al. Single chain variable fragments produced in Escherichia coli against heat-labile and heat-stable toxins from enterotoxigenic E. coli[J]. PLoS One,2015,10(7):e131484.
|
[18] |
何晓婷, 董洁娴, 沈兴, 等. 纳米抗体的稳定性及其结构基础研究进展[J]. 生物化学与生物物理进展,2022,49(6):1004−1017. [HE Xiaoting, DONG Jiexian, SHEN Xing, et al. Advances on the relationship between stability and structure of nanobody:A review[J]. Progress in Biochemistry and Biophysics,2022,49(6):1004−1017.
|
[19] |
VALDÉS-TRESANCO M S, MOLINA-ZAPATA A, POSE A G, et al. Structural insights into the design of synthetic nanobody libraries[J]. Molecules,2022,27(7):2198. doi: 10.3390/molecules27072198
|
[20] |
SIMÕES B, GUEDENS W J, KEENE C, et al. Direct immobilization of engineered nanobodies on gold sensors[J]. ACS Applied Materials & Interfaces,2021,13(15):17353−17360.
|
[21] |
REZAEI L, SHOJAOSADATI S A, FARAHMAND L, et al. Enhancement of extracellular bispecific anti-MUC1 nanobody expression in E. coli BL21 (DE3) by optimization of temperature and carbon sources through an autoinduction condition[J]. Engineering in Life Sciences,2020,20(8):338−349. doi: 10.1002/elsc.201900158
|
[22] |
ADAMS A M, KAPLAN N A, WEI Z Y, et al. In vivo production of psilocybin in E. coli[J]. Metabolic Engineering,2019,56:111−119. doi: 10.1016/j.ymben.2019.09.009
|
[23] |
TAKAYAMA Y, AKUTSU H. Expression in periplasmic space of Shewanella oneidensis[J]. Protein Expression and Purification,2007,56(1):80−84. doi: 10.1016/j.pep.2007.06.005
|
[24] |
GOPHNA U, IDESES D, ROSEN R, et al. OmpA of a septicemic Escherichia coli O78--secretion and convergent evolution[J]. International Journal of Medical Microbiology, 2004, 294(6):373−381.
|
[25] |
ZHOU Hui, HE Cong, LI Zhenfeng, et al. Development of a rapid gold nanoparticle immunochromatographic strip based on the nanobody for detecting 2,4-dichlorophenoxyacetic acid[J]. Biosensors,2022,12(2):84. doi: 10.3390/bios12020084
|
[26] |
LUO Lin, LIN Shiqi, WU Zhuoyu, et al. Nanobody-based fluorescent immunoassay using carbon dots anchored cobalt oxyhydroxide composite for the sensitive detection of fenitrothion[J]. Journal of Hazardous Materials,2022,439:129701. doi: 10.1016/j.jhazmat.2022.129701
|
[27] |
王宇, 张译丰, 沈玉栋, 等. 抗杀螟硫磷生物素化纳米抗体的制备及其在免疫检测方法中的应用[J]. 现代食品科技,2021,37(8):286−294. [WANG Yu, ZHANG Yifeng, SHEN Yudong, et al. Production of anti-fenitrothion biotinylated nanobody and the application in the development of immunoassay[J]. Modern Food Science and Technology,2021,37(8):286−294.
|
[28] |
刘晓丽, 闫干干, 闫浩浩, 等. 登革病毒ns2b-ns3蛋白酶在大肠埃希菌中表达条件的优化及酶活性测定[J]. 中国生物制品学杂志, 2023:1−8. [LIU Xiaoli, YAN Gangan, YAN Haohao, et al. Optimization of expression conditions of dengue virus NS2B-NS3 protease in E.coli and determination of enzyme activity[J]. Chinese Journal of Biologicals, 2023:1−8.
LIU Xiaoli, YAN Gangan, YAN Haohao, et al. Optimization of expression conditions of dengue virus NS2B-NS3 protease in E.coli and determination of enzyme activity[J]. Chinese Journal of Biologicals, 2023: 1−8.
|
[29] |
赵烨清, 石莉, 欧阳臻, 等. 化学-渗透压法温和破碎处理下大肠杆菌细胞胞内蛋白质的释放率[J]. 江苏农业科学,2017,45(19):146−149. [ZHAO Yeqing, SHI Li, OU Yangzhen, et al. Intracellular protein release rate of Escherichia coli cells treated by chemical-osmotic pressure and mild crushing[J]. Jiangsu Agricultural Sciences,2017,45(19):146−149.
|
[30] |
GROTE A, HILLER K, SCHEER M, et al. JCat:A novel tool to adapt codon usage of a target gene to its potential expression host[J]. Nucleic Acids Research, 2005, 33:W526-W531.
|
[31] |
WEBSTER G R, TEH A Y, MA J K. Synthetic gene design-the rationale for codon optimization and implications for molecular pharming in plants[J]. Biotechnol Bioeng,2017,114(3):492−502. doi: 10.1002/bit.26183
|
[32] |
SADR V, SAFFAR B, EMAMZADEH R. Functional expression and purification of recombinant hepcidin25 production in Escherichia coli using SUMO fusion technology[J]. Gene,2017,610:112−117. doi: 10.1016/j.gene.2017.02.010
|
[33] |
HABIB I, SMOLAREK D, HATTAB C, et al. VHH (nanobody) directed against human glycophorin A:A tool for autologous red cell agglutination assays[J]. Analytical Biochemistry,2013,438(1):82−89. doi: 10.1016/j.ab.2013.03.020
|
[34] |
DVORAK P, CHRAST L, NIKEL P I, et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway[J]. Microbial Cell Factories,2015,14(1):201. doi: 10.1186/s12934-015-0393-3
|
[35] |
MALAKAR P, VENKATESH K V. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins[J]. Applied Microbiology and Biotechnology,2012,93(6):2543−2549. doi: 10.1007/s00253-011-3642-3
|
[36] |
ZHANG Z, KUIPERS G, NIEMIEC Ł, et al. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG[J]. Microbial Cell Factories,2015,14(1):142. doi: 10.1186/s12934-015-0328-z
|
[37] |
WANDREY G, BIER C, BINDER D, et al. Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system[J]. Microbial Cell Factories,2016,15(1):63. doi: 10.1186/s12934-016-0461-3
|
[38] |
JIN Weixin, XING Zizhuo, SONG Yuanli, et al. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification[J]. MAbs,2019,11(8):1479−1491. doi: 10.1080/19420862.2019.1658493
|
[39] |
史伟, 禹婷. 蛋白质的层析分离[J]. 内蒙古农业科技,2011(1):110−112. [SHI Wei, YU Ting. Protein chromatography separation[J]. Inner Mongolia Agricultural Science and Technology,2011(1):110−112.
|
[40] |
LIU Yihua, GUO Yirong, ZHU Guonian, et al. Enzyme-linked immunosorbent assay for the determination of five organophosphorus pesticides in camellia oil[J]. Journal of Food Protection,2014,77(7):1178−1183. doi: 10.4315/0362-028X.JFP-13-465
|
[41] |
LUO Yihui, XIA Yuxian. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display[J]. Analytical Biochemistry,2012,421(1):130−137. doi: 10.1016/j.ab.2011.10.044
|
1. |
黄潇漪,贾利蓉,孙玉鼎,曹月刚,冉旭. 天然香辛料对烘炒花生仁货架期品质的影响. 食品工业科技. 2024(12): 285-293 .
![]() | |
2. |
魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 .
![]() | |
3. |
邹林武,姜福全,戚智胜. 白冰糖提取玫瑰花风味的工艺研究. 现代食品. 2022(15): 94-96+117 .
![]() | |
4. |
宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
![]() |