LI Yunliang, XIE Pengfei, LIU Xiaoshuang, et al. Source, Modification, Heterologous Expression of β-Galactosidase and Its Application in Food[J]. Science and Technology of Food Industry, 2023, 44(23): 387−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030097.
Citation: LI Yunliang, XIE Pengfei, LIU Xiaoshuang, et al. Source, Modification, Heterologous Expression of β-Galactosidase and Its Application in Food[J]. Science and Technology of Food Industry, 2023, 44(23): 387−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030097.

Source, Modification, Heterologous Expression of β-Galactosidase and Its Application in Food

More Information
  • Received Date: March 08, 2023
  • Available Online: September 25, 2023
  • β-galactosidase, as a safe and nontoxic enzyme preparation, has been not only widely used in food industry and medical fields, but also has great application potential in biotechnology fields, such as enzyme engineering and protein engineering. Microbial fermentation, as a mainstream production method of β-galactosidase, still has some problems including long fermentation time and low extraction rate. While using the heterologous expression system of engineering bacteria to produce β-galactosidase shows the advantages of high expression quantity and low cost. This paper focuses on the gene source, expression host bacteria, expression methods of β-galactosidase heterologous expression system and its application value, to be aimed at providing scientific basis and theoretical reference for the development and utilization of novel β-galactosidase products.
  • [1]
    ZAMAN U, REHMAN K U, KHAN S U, et al. Identification, kinetics and thermodynamic analysis of novel β-galactosidase from Convolvulus arvensis seeds:An efficient agent for delactosed milk activity[J]. International Journal of Biological Macromolecules,2022(220):1545−1555.
    [2]
    侯瑾, 杨凯, 薛冰, 等. 乳糖酶的性质及其在低乳糖乳制品中的应用[J]. 食品安全导刊,2022,15(19):172−177. [HOU Jin, YANG Kai, XUE Bing, et al. Properties of lactase and its application in low lactose dairy products[J]. Food Safety Guide,2022,15(19):172−177. doi: 10.3969/j.issn.1674-0270.2022.19.spaqdk202219060

    HOU Jin, YANG Kai, XUE Bing, et al. Properties of lactase and its application in low lactose dairy products[J]. Food Safety Guide, 2022, 1519): 172177. doi: 10.3969/j.issn.1674-0270.2022.19.spaqdk202219060
    [3]
    何云山, 吴仪, 谭周进. 猪肠道乳糖酶研究进展[J]. 现代农业科技,2020,48(9):208−214. [HE Yunshan, WU Yi, TAN Zhoujin. Research progress of intestinal lactase in pigs[J]. Modern Agricultural Science and Technology,2020,48(9):208−214. doi: 10.3969/j.issn.1007-5739.2020.09.125

    HE Yunshan, WU Yi, TAN Zhoujin. Research progress of intestinal lactase in pigs[J]. Modern Agricultural Science and Technology, 2020, 489): 208214. doi: 10.3969/j.issn.1007-5739.2020.09.125
    [4]
    SONI N K, TRIVEDI H H, KUMAR S, et al. A review of digestive enzyme and probiotic supplementation for functional gastrointestinal disorders[J]. Nutrients,2020,73(3):35−37.
    [5]
    BAN Q, YE H, HE Y, et al. Functional characterization of persimmon β-galactosidase gene DkGAL1 in tomato reveals cell wall modification related to fruit ripening and radicle elongation[J]. Plant Science,2018,274:109−120.
    [6]
    ZHAN B A, D W A, YLA C, et al. Analysis of populus glycosyl hydrolase family I members and their potential role in the ABA treatment and drought stress response[J]. Plant Physiology and Biochemistry,2021,163:178−188.
    [7]
    MARÍA, MONEO-SÁNCHEZ, ALEJANDRO, et al. β-(1, 4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation[J]. Planta,2018,249(2):33−34.
    [8]
    HUIJUAN Y, JUNLING L, MEILE D, et al. Analysis of β-galactosidase during fruit development and ripening in two different texture types of apple cultivars[J]. Frontiers in Plant Science,2018,9(5):539−552.
    [9]
    艾尔·毛利, 亚伦·盖伦提, 克里斯蒂娜·皮诺奇, 等. 增加从咖啡豆中提取固体的可提取性的组成物及方法:中国, 111164216A[P]. 2020-05-15. [AL M, AARON G, CHRISTINA P, et al. A component and a method for increasing the extractability of solids from coffee beans:China, 111164216A[P]. 2020-05-15.

    AL M, AARON G, CHRISTINA P, et al. A component and a method for increasing the extractability of solids from coffee beans: China, 111164216A[P]. 2020-05-15.
    [10]
    SINGH R V, SAMBYAL K. β-Galactosidase as an industrial enzyme:Production and potential[J]. Chemical Papers,2022,77(1):1−31.
    [11]
    GAMIZ-ARCO G, RISSO V A, GAUCHER E A, et al. Combining ancestral reconstruction with folding-landscape simulations to engineer heterologous protein expression[J]. Journal of Molecular Biology,2021,433(24):167321.
    [12]
    KAIRAMKONDA M, SHARMA M, GUPTA P, et al. Overexpression of bacteriophage T4 and T7 endolysins differentially regulate the metabolic fingerprint of host Escherichia coli[J]. International Journal of Biological Macromolecules,2022,221:212−223. doi: 10.1016/j.ijbiomac.2022.09.012
    [13]
    贺璐, 龙承星, 刘又嘉, 等. 微生物乳糖酶研究进展[J]. 食品与发酵工业,2017,43(6):268−273. [HE Lu, LONG Chengxing, LIU Youjia, et al. Research progress on microorganism lactase[J]. Food and Fermentation Industry,2017,43(6):268−273. doi: 10.13995/j.cnki.11-1802/ts.201706046

    HE Lu, LONG Chengxing, LIU Youjia, et al. Research progress on microorganism lactase[J]. Food and Fermentation Industry, 2017, 436): 268273. doi: 10.13995/j.cnki.11-1802/ts.201706046
    [14]
    岳寿松, 边斐, 张燕, 等. 马克斯克鲁维酵母菌的分离鉴定与所产乳糖酶酶学性能研究[J]. 山东农业科学,2018,50(11):66−70. [YUE Shusong, BIAN Fei, ZHANG Yan, et al. Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase[J]. Shandong Agricultural Sciences,2018,50(11):66−70. doi: 10.14083/j.issn.1001-4942.2018.11.013

    YUE Shusong, BIAN Fei, ZHANG Yan, et al. Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase[J]. Shandong Agricultural Sciences, 2018, 5011): 6670. doi: 10.14083/j.issn.1001-4942.2018.11.013
    [15]
    蔡可. 黑曲霉β-半乳聚糖酶AghA的分子克隆与特征解析[D]. 天津:天津科技大学, 2019. [CAI Ke. Molecular cloning and biochemical charaterization of β-galactanase AghA from Aspergillus niger[D]. Tianjin:Tianjin University of Science and Technology, 2019.

    CAI Ke. Molecular cloning and biochemical charaterization of β-galactanase AghA from Aspergillus niger[D]. Tianjin: Tianjin University of Science and Technology, 2019.
    [16]
    关波, 胡有贞, 韩明明. 产转糖基活性β-半乳糖苷酶的开菲尔乳杆菌及制备的β-半乳糖苷酶生产低聚半乳糖的方法:中国, 202011173142. X[P]. 2020-10-28. [GUANG Bo, HU Youzhen, HAN Mingming. Lactobacillus kefir producing glycosyl-active β-galactosidase and the preparation of β-galactosidase for the production of oligo-galactose:China, 202011173142. X[P]. 2020-10-28.

    GUANG Bo, HU Youzhen, HAN Mingming. Lactobacillus kefir producing glycosyl-active β-galactosidase and the preparation of β-galactosidase for the production of oligo-galactose: China, 202011173142. X[P]. 2020-10-28.
    [17]
    何乃莹, 竺胜权, 黄金. 生物催化法制备低聚半乳糖的研究进展[J]. 发酵科技通讯,2021,50(1):20−27. [HE Naiying, ZHU Shengquan, HUANG Jin. Recent research progress on biocatalytic production of galactooligosaccharides[J]. Fermentation Science and Technology Bulletin,2021,50(1):20−27. doi: 10.16774/j.cnki.issn.1674-2214.2021.01.004

    HE Naiying, ZHU Shengquan, HUANG Jin. Recent research progress on biocatalytic production of galactooligosaccharides[J]. Fermentation Science and Technology Bulletin, 2021, 501): 2027. doi: 10.16774/j.cnki.issn.1674-2214.2021.01.004
    [18]
    高秀容. 乳糖酶的基因克隆[D]. 成都:西华大学, 2006. [GAO Xiurong. Gene cloning of lactase[D]. Chengdu:Xihua University, 2006.

    GAO Xiurong. Gene cloning of lactase[D]. Chengdu: Xihua University, 2006.
    [19]
    董艺凝, 陈海琴, 张灏, 等. β-半乳糖苷酶的研究现状与进展[J]. 食品与生物技术学报,2018,37(4):337−343. [DONG Yining, CHEN Haiqin, ZHANG Hao, et al. Research status and progress on β-galactosidase[J]. Journal of Food and Biotechnology,2018,37(4):337−343.

    DONG Yining, CHEN Haiqin, ZHANG Hao, et al. Research status and progress on β-galactosidase[J]. Journal of Food and Biotechnology, 2018, 374): 337343.
    [20]
    剧淑君. β-D-半乳糖苷酶的发酵生产、分离纯化和性质研究[D]. 无锡:江南大学, 2011. [JU Shujun. Study on fermentation, separation, and characteristics of β-D-galactosidase[D]. Wuxi:Jiangnan University, 2011.

    JU Shujun. Study on fermentation, separation, and characteristics of β-D-galactosidase[D]. Wuxi: Jiangnan University, 2011.
    [21]
    成静, 朱智睿, 杨江科. 乳酸克鲁维酵母乳糖酶的可溶性表达及优化[J]. 生物技术,2020,30(1):17−24. [CHENG Jing, ZHU Zhirui, YANG Jiangke. Soluble expression and optimization of lactase from Kluyveromyces lactis[J]. Biotechnology,2020,30(1):17−24. doi: 10.16519/j.cnki.1004-311x.2020.01.0004

    CHENG Jing, ZHU Zhirui, YANG Jiangke. Soluble expression and optimization of lactase from Kluyveromyces lactis[J]. Biotechnology, 2020, 301): 1724. doi: 10.16519/j.cnki.1004-311x.2020.01.0004
    [22]
    谭树华, MAJID H A A, 高向东, 等. 脆壁克鲁维酵母乳糖酶提取物性质研究[J]. 药物生物技术,2000,7(3):153−156. [TAN Shuhua, MAJID H A A, GAO Xiangdong, et al. Properties of an inducible lactase isolated from the yeast Kluyveromyces fragilis[J]. Pharmaceutical Biotechnology,2000,7(3):153−156. doi: 10.19526/j.cnki.1005-8915.2000.03.007

    TAN Shuhua, MAJID H A A, GAO Xiangdong, et al. Properties of an inducible lactase isolated from the yeast Kluyveromyces fragilis[J]. Pharmaceutical Biotechnology, 2000, 73): 153156. doi: 10.19526/j.cnki.1005-8915.2000.03.007
    [23]
    牛丹丹, 贾超, 田晓靓, 等. 黑曲霉F0215中 β-半乳糖苷酶系的生化特征[J]. 中国食品学报,2017,17(11):198−207. [NIU Dandan, JIA Chao, TIAN Xiaoliang, et al. Biochemical characterization of β-galactosidases from Aspergillus niger strain F0215[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(11):198−207. doi: 10.16429/j.1009-7848.2017.11.026

    NIU Dandan, JIA Chao, TIAN Xiaoliang, et al. Biochemical characterization of β-galactosidases from Aspergillus niger strain F0215[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 1711): 198207. doi: 10.16429/j.1009-7848.2017.11.026
    [24]
    高鑫. 米曲霉来源β-半乳糖苷酶的分子改造及其制备低聚半乳糖的研究[D]. 无锡:江南大学, 2019. [GAO Xin. Molecular modification of the β-galactosidase from Aspergillus oryzae and the study of its ability to prepare galactoligosaccharide[D]. Wuxi:Jiangnan University, 2019.

    GAO Xin. Molecular modification of the β-galactosidase from Aspergillus oryzae and the study of its ability to prepare galactoligosaccharide[D]. Wuxi: Jiangnan University, 2019.
    [25]
    徐晓锋. 黄瓜α-半乳糖苷酶基因克隆及表达分析[D]. 扬州:扬州大学, 2006. [XU Xiaofeng. Cloning and expression analysis of α-galactosidases in cucumber (Cucumis sativus L.)[D]. Yangzhou:Yangzhou University, 2006.

    XU Xiaofeng. Cloning and expression analysis of α-galactosidases in cucumber (Cucumis sativus L.)[D]. Yangzhou: Yangzhou University, 2006.
    [26]
    陈国梁, 何晓利, 王旭东, 等. 狗头枣 β-半乳糖苷酶酶学特性研究[J]. 黑龙江农业科学,2018(10):31−34. [CHEN Guoliang, HE Xiaoli, WANG Xudong, et al. Enzymatic characteristics of β-galactosidase from Zizyphus jujube Goutouzao[J]. Heilongjiang Agricultural Sciences,2018(10):31−34.

    CHEN Guoliang, HE Xiaoli, WANG Xudong, et al. Enzymatic characteristics of β-galactosidase from Zizyphus jujube Goutouzao[J]. Heilongjiang Agricultural Sciences, 201810): 3134.
    [27]
    THOMA J, STENITZER D, GRABHERR R, et al. Identification, characterization, and expression of a β-galactosidase from arion species (mollusca)[J]. Biomolecules,2022,12(11):1578.
    [28]
    邓智年, 魏源文, 潘有强, 等. DNA分子进化研究进展[J]. 广西农业科学,2009,40(2):128−132. [DENG Zhinian, WEI Yuanwen, PAN Youqiang, et al. Advances in DNA molecular evolution[J]. Guangxi Agricultural Sciences,2009,40(2):128−132.

    DENG Zhinian, WEI Yuanwen, PAN Youqiang, et al. Advances in DNA molecular evolution[J]. Guangxi Agricultural Sciences, 2009, 402): 128132.
    [29]
    彭惠, 孔慧慧, 李艺冰, 等. 一种人工改造的β-半乳糖苷酶GaLT1及其在水解乳糖中的应用:中国, CN114149987A[P]. 2022-03-08. [PENG Hui, KONG Huihui, LI Yibing, et al. A modified β-galactosidase GaLT1 and its application in the hydrolysis of lactose:China, CN114149987A[P]. 2022-03-08.

    PENG Hui, KONG Huihui, LI Yibing, et al. A modified β-galactosidase GaLT1 and its application in the hydrolysis of lactose: China, CN114149987A[P]. 2022-03-08.
    [30]
    杨萍. 通过定点突变提高米曲霉乳糖酶的热稳定性的研究[D]. 北京:中国农业科学院, 2010. [YANG Ping. Improving the thermal stability of the β-galactosidase from Aspergillus oryzae by site-directed mutagenesis[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010.

    YANG Ping. Improving the thermal stability of the β-galactosidase from Aspergillus oryzae by site-directed mutagenesis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
    [31]
    李晨霞, 向芷璇, 李敬, 等. 米曲霉 β-半乳糖苷酶的定向进化, 高效表达及应用[J]. 食品与生物技术学报,2022,41(10):49−57. [LI Chenxia, XIANG Zhixuan, LI Jing, et al. Directed evolution, high-level expression and application of the β-galactosidase from Aspergillus oryzae[J]. Journal of Food Science and Biotechnology,2022,41(10):49−57.

    LI Chenxia, XIANG Zhixuan, LI Jing, et al. Directed evolution, high-level expression and application of the β-galactosidase from Aspergillus oryzae[J]. Journal of Food Science and Biotechnology, 2022, 4110): 4957.
    [32]
    史然, 张登娅, 谷懿寰, 等. 地杆菌 α-L-岩藻糖苷酶的分子改造及其在合成2'-岩藻糖基乳糖中的应用[J]. 食品科学,2021,42(18):135−142. [SHI Ran, ZHANG Dengya, GU Yihuan, et al. Direct evolution of α-L-fucosidase from Pedobacter sp. and its application in the synthesis of 2'-fucosyllactose[J]. Food Science,2021,42(18):135−142. doi: 10.7506/spkx1002-6630-20210207-125

    SHI Ran, ZHANG Dengya, GU Yihuan, et al. Direct evolution of α-L-fucosidase from Pedobacter sp. and its application in the synthesis of 2'-fucosyllactose[J]. Food Science, 2021, 4218): 135142. doi: 10.7506/spkx1002-6630-20210207-125
    [33]
    俞路, 王雅倩, 章世元. DNA改组( DNA shuffling )及其研究进展[J]. 生物学杂志,2008,25(1):12−16. [YU Lu, WANG Yaqian, ZHANG Shiyuan. DNA shuffling and its research progress[J]. Chinese Journal of Biology,2008,25(1):12−16.

    YU Lu, WANG Yaqian, ZHANG Shiyuan. DNA shuffling and its research progress[J]. Chinese Journal of Biology, 2008, 251): 1216.
    [34]
    王珏, 吴娜, 张育敏, 等. 易错PCR定向进化技术提高蒙古黄芪病程相关蛋白AmPR-10核酸酶活性的研究[J]. 化学与生物工程,2022,39(2):23−27. [WANG Jue, WU Na, ZHANG Yumin, et al. Improvement in nuclease activity of Astragalus membrana ceus pathogenesis-related protein-10(AmPR-10) by error prone PCR directed evolution[J]. Chemical & Biological Engineering,2022,39(2):23−27.

    WANG Jue, WU Na, ZHANG Yumin, et al. Improvement in nuclease activity of Astragalus membranaceus pathogenesis-related protein-10(AmPR-10) by error prone PCR directed evolution[J]. Chemical & Biological Engineering, 2022, 392): 2327.
    [35]
    韩媛媛. Lactobacillus brevis ATCC 367源β-半乳糖苷酶的异源表达、酶学性质及应用研究[D]. 南京:南京农业大学, 2020. [HAN Yuanyuan. Heterologous expression, characterization and application of the β-galactosidase from Lactobacillus brevis ATCC 367[D]. Nanjing:Nanjing Agricultural University, 2020.

    HAN Yuanyuan. Heterologous expression, characterization and application of the β-galactosidase from Lactobacillus brevis ATCC 367[D]. Nanjing: Nanjing Agricultural University, 2020.
    [36]
    HILDEGARD W, JOSEF A. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system[J]. AMB Express,2019,9(1):158−169.
    [37]
    苏松坤, 晏励民, 刘芳. 乳酸菌食品级表达系统的研究进展[J]. 食品与生物技术学报,2012,31(12):1233−1238. [SU Songkun, YAN Limin, LIU Fang. Research development of LAB food-grade expression system[J]. Journal of Food Science and Biotechnology,2012,31(12):1233−1238.

    SU Songkun, YAN Limin, LIU Fang. Research development of LAB food-grade expression system[J]. Journal of Food Science and Biotechnology, 2012, 3112): 12331238.
    [38]
    YOUNG R, BUDGE J D, SMALES M C. Mammalian expression system, Europe:EP3341484[P]. 2020-09-23.
    [39]
    GAO J, JIANG L, LIAN J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology,2021,6(2):110−119.
    [40]
    李航, 戚睿斌, 陈宗艳, 等. 外源蛋白表达系统及其应用的研究进展[J]. 黑龙江畜牧兽医, 2021(7):34−37. [LI Hang, QI Ruibin, CHEN Zongyan, et al. Progress in research on foreign protein expression system and its application[J]. Heilongjiang Animal and Veterinary Science, 2021(7):34−47.

    LI Hang, QI Ruibin, CHEN Zongyan, et al. Progress in research on foreign protein expression system and its application[J]. Heilongjiang Animal and Veterinary Science, 2021(7): 34−47.
    [41]
    聂春明. 乳酸杆菌β-半乳糖苷酶重叠基因的克隆、表达及酶学性质分析[D]. 内蒙古:内蒙古农业大学, 2012. [NIE Chunming. The overlapping gene cloning, expression and characterization of a β-galactosidase from Lactobacillus crispatus[D]. Inner Mongolia:Inner Mongolia Agricultural University, 2012.

    NIE Chunming. The overlapping gene cloning, expression and characterization of a β-galactosidase from Lactobacillus crispatus[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2012.
    [42]
    窦媛媛, 林艳, 高向征, 等. 重组人bFGF的原核表达及功能分析[J]. 中国细胞生物学学报,2019,41(7):1365−1370. [DOU Yuanyuan, LIN Yan, GAO Xiangzheng, et al. Prokaryotic expression and functional analysis of recombinant human bFGF[J]. Chinese Journal of Cell Biology,2019,41(7):1365−1370.

    DOU Yuanyuan, LIN Yan, GAO Xiangzheng, et al. Prokaryotic expression and functional analysis of recombinant human bFGF[J]. Chinese Journal of Cell Biology, 2019, 417): 13651370.
    [43]
    冀成法, 刘忠, 马鲁南, 等. 重组大肠杆菌高密度、高表达研究进展[J]. 生物技术,2022,32(2):246−251. [JI Chengfa, LIU Zhong, MA Lunan, et al. Review of high density fermentation and high expression of engineering E. coli[J]. Biotechnology,2022,32(2):246−251. doi: 10.16519/j.cnki.1004-311x.2022.02.0040

    JI Chengfa, LIU Zhong, MA Lunan, et al. Review of high density fermentation and high expression of engineering E. coli[J]. Biotechnology, 2022, 322): 246251. doi: 10.16519/j.cnki.1004-311x.2022.02.0040
    [44]
    陈卫, 张灏, 葛佳佳, 等. 高温乳糖酶基因在大肠杆菌中的高效表达[J]. 生物技术,2002,12(5):8−11. [CHEN Wei, ZHANG Hao, GE Jiajia, et al. High-level expression of thermostable galactosidase gene in Escherichia coli[J]. Biotechnology,2002,12(5):8−11. doi: 10.16519/j.cnki.1004-311x.2002.05.006

    CHEN Wei, ZHANG Hao, GE Jiajia, et al. High-level expression of thermostable galactosidase gene in Escherichia coli[J]. Biotechnology, 2002, 125): 811. doi: 10.16519/j.cnki.1004-311x.2002.05.006
    [45]
    徐顺清, 陈杏洲, 崔罗生, 等. 乳酸克鲁维酵母乳糖酶基因在大肠杆菌中的表达及酶学性质[J]. 华中农业大学学报,2010,29(2):175−180. [XU Shunqing, CHEN Xingzhou, CUI Luosheng, et al. Expression and enzymatic properties of lactase gene from Kluyveromyces lactis in Escherichia coli[J]. Journal of Huazhong Agricultural University,2010,29(2):175−180. doi: 10.13300/j.cnki.hnlkxb.2010.02.003

    XU Shunqing, CHEN Xingzhou, CUI Luosheng, et al. Expression and enzymatic properties of lactase gene from Kluyveromyces lactis in Escherichia coli[J]. Journal of Huazhong Agricultural University, 2010, 292): 175180. doi: 10.13300/j.cnki.hnlkxb.2010.02.003
    [46]
    梁琰, 崔欣, 王哲, 等. 乳酸菌食品级表达载体的研究与应用[J]. 微生物学通报,2021,48(3):906−915. [LIANG Yan, CUI Xin, WANG Zhe, et al. Research and application of food-grade expression vectors of lactic acid bacteria[J]. Chinese Journal of Microbiology,2021,48(3):906−915. doi: 10.13344/j.microbiol.china.200430

    LIANG Yan, CUI Xin, WANG Zhe, et al. Research and application of food-grade expression vectors of lactic acid bacteria[J]. Chinese Journal of Microbiology, 2021, 483): 906915. doi: 10.13344/j.microbiol.china.200430
    [47]
    孙芝兰, 孔文涛, 孔健. Paenibacillus sp. K1乳糖酶基因bga在乳酸乳球菌中的表达[J]. 山东大学学报(理学版),2008,43(7):74−77. [SUN Zhilan, KONG Wentao, KONG Jian. Expression of lactase gene bga from Paenibacillus sp. K1 in Lactococcus lactis[J]. Journal of Shandong University (Natural Science),2008,43(7):74−77.

    SUN Zhilan, KONG Wentao, KONG Jian. Expression of lactase gene bga from Paenibacillus sp. K1 in Lactococcus lactis[J]. Journal of Shandong University (Natural Science), 2008, 437): 7477.
    [48]
    马雁. 自诱导型启动子PsrfA在大肠杆菌及乳酸菌中表达适应性的研究[D]. 扬州:扬州大学, 2020. [MA Yan. Study on the expression feasibility of self-inducible promoter PsrfA in Escherichia coli and lactic acid bacteria[D]. Yangzhou:Yangzhou University, 2020.

    MA Yan. Study on the expression feasibility of self-inducible promoter PsrfA in Escherichia coli and lactic acid bacteria[D]. Yangzhou: Yangzhou University, 2020.
    [49]
    王杰, 王晨, 杜燕, 等. 枯草芽孢杆菌表达和分泌异源蛋白的研究进展[J]. 微生物学通报,2021,48(8):2815−2826. [WANG Jie, WANG Chen, DU Yan, et al. Advances in heterologous protein expression and secretion of Bacillus subtilis[J]. Microbiology China,2021,48(8):2815−2826. doi: 10.13344/j.microbiol.china.200895

    WANG Jie, WANG Chen, DU Yan, et al. Advances in heterologous protein expression and secretion of Bacillus subtilis[J]. Microbiology China, 2021, 488): 28152826. doi: 10.13344/j.microbiol.china.200895
    [50]
    许俊勇, 毕然, 夏伟, 等. Bacillus circulans来源 β-半乳糖苷酶在 Bacillus subtilis中的表达, 性质及发酵优化[J]. 食品与发酵工业,2022,48(18):20−27. [XU Junyong, BI Xia, XIA Wei, et al. Heterologous expression, properties, applications, and fermentation optimization of β-galactosidase from Bacillus circulans in Bacillus subtilis[J]. Food and Fermentation Industries,2022,48(18):20−27.

    XU Junyong, BI Xia, XIA Wei, et al. Heterologous expression, properties, applications, and fermentation optimization of β-galactosidase from Bacillus circulans in Bacillus subtilis[J]. Food and Fermentation Industries, 2022, 4818): 2027.
    [51]
    王斌. 固定化 β-半乳糖苷酶的酶学性质研究[J]. 阴山学刊(自然科学版),2018,32(2):46−48. [WANG Bin. Characterization of β-galactosidase immobilized on chitosan calcium alginate[J]. Yinshan Academic Journal (Natural Science),2018,32(2):46−48.

    WANG Bin. Characterization of β-galactosidase immobilized on chitosan calcium alginate[J]. Yinshan Academic Journal (Natural Science), 2018, 322): 4648.
    [52]
    TIZCHANG S, KHIABANI M S, MOKARRAM R R, et al. Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix[J]. Biochimica et Biophysica Acta-General Subjects,2021(6):1865−1875.
    [53]
    王晓静. 自固定化乳糖酶的基因构建、表达及其酶学性质研究[D]. 镇江:江苏大学, 2021. [WANG Xiaojing. Study of gene construction and expression of self-immobilized lactase and its enzymatic properties[D]. Zhenjiang:Jiangsu University, 2021.

    WANG Xiaojing. Study of gene construction and expression of self-immobilized lactase and its enzymatic properties[D]. Zhenjiang: Jiangsu University, 2021.
    [54]
    李云亮. 金枪鱼降血压肽的基因设计、克隆表达和活性评价[D]. 镇江:江苏大学, 2015. [LI Yunliang. The gene design, cloning-expression and activity evaluation of tuna antihypertensive peptide[D]. Zhenjiang:Jiangsu University, 2015.

    LI Yunliang. The gene design, cloning-expression and activity evaluation of tuna antihypertensive peptide[D]. Zhenjiang: Jiangsu University, 2015.
    [55]
    朱明慧, 李晓静, 王浩民, 等. 原核和真核双表达载体的构建及功能分析[J]. 中国细胞生物学学报,2022,44(3):437−442. [ZHU Minghui, LI Xiaojing, WANG Haomin, et al. Construction and functional analysis of prokaryotic and eukaryotic dual expression vectors[J]. Chinese Journal of Cell Biology,2022,44(3):437−442.

    ZHU Minghui, LI Xiaojing, WANG Haomin, et al. Construction and functional analysis of prokaryotic and eukaryotic dual expression vectors[J]. Chinese Journal of Cell Biology, 2022, 443): 437442.
    [56]
    李洪波, 罗海燕, 张树琴, 等. 重组嗜热乳糖酶在毕赤酵母中的表达、纯化与活性分析[J]. 食品与生物技术学报,2018,37(8):812−816. [LI Hongbo, LUO Haiyan, ZHANG Shuqin, et al. Expression, purification and activity assay of recombinant thermophile lactase from Pichia pastoris[J]. Journal of Food Science and Biotechnology,2018,37(8):812−816.

    LI Hongbo, LUO Haiyan, ZHANG Shuqin, et al. Expression, purification and activity assay of recombinant thermophile lactase from Pichia pastoris[J]. Journal of Food Science and Biotechnology, 2018, 378): 812816.
    [57]
    王敏, 席志文, 黄琳娜, 等. 米曲霉乳糖酶基因在乳酸克鲁维酵母中的表达[J]. 食品研究与开发,2019,40(7):177−183. [WANG Min, XI Zhiwen, HUANG Linna, et al. Recombinant expression of lactase gene from Aspergillus oryzae in Kluyvermyces lactis[J]. Food Research and Development,2019,40(7):177−183.

    WANG Min, XI Zhiwen, HUANG Linna, et al. Recombinant expression of lactase gene from Aspergillus oryzae in Kluyvermyces lactis[J]. Food Research and Development, 2019, 407): 177183.
    [58]
    食品安全国家标准 食品添加剂 食品工业用酶制剂[S]. 国内-国家标准-国家市场监督管理总局 GB 1886.174, 2016. [National standard for food safety-Food additives:Enzyme preparations for food industry[S]. Domestic-National Standards-State Administration for Market Supervision and Administration, GB 1886.174, 2016.

    National standard for food safety-Food additives: Enzyme preparations for food industry[S]. Domestic-National Standards-State Administration for Market Supervision and Administration, GB 1886.174, 2016.
    [59]
    关昕. 乳糖:让牛奶成为窜稀毒药的元凶[J]. 中国食品工业,2021(11):105. [GUAN Xin. Lactose:Makes milk a watery poison[J]. Chinese Food Industry,2021(11):105.

    GUAN Xin. Lactose: Makes milk a watery poison[J]. Chinese Food Industry, 202111): 105.
    [60]
    ELISABETH H J, ROMAN K, PATRICK W, et al. Determination of lactose in lactose-free and low-lactose milk, milk products, and products containing dairy ingredients by the lactosensr amperometry method:First action 2020.01.[J]. Journal of AOAC International,2020,103(6):1534−1546.
    [61]
    刘杰, 李顺发, 沈政元, 等. 低乳糖益生菌乳粉制备研究[J]. 食品与发酵科技, 2022, 58(1):107−114. [LIU Jie, LI Shunfa, SHEN Zhengyuan, et al. Preparation technology of low lactose probiotic milk powder[J]. Food and Fermentation Science & Technology, 022, 58(1):107−114.

    LIU Jie, LI Shunfa, SHEN Zhengyuan, et al. Preparation technology of low lactose probiotic milk powder[J]. Food and Fermentation Science & Technology, 022, 58(1): 107−114.
    [62]
    LIU Y, WU Z, ZENG X, et al. A novel cold-adapted phospho-beta-galactosidase from Bacillus velezensis and its potential application for lactose hydrolysis in milk[J]. International Journal of Biological Macromolecules,2020,166(4):760−770.
    [63]
    姜钊, 张卫花, 孙芳云. 双歧杆菌及寡糖类双歧因子的种类及应用[J]. 中国食品添加剂,2022,33(8):240−248. [JIANG Zhao, ZHANG Weihua, SUN Fangyun. The types and applications of Bifidobacterium and bifidus factors[J]. China Food Additives,2022,33(8):240−248. doi: 10.19804/j.issn1006-2513.2022.08.034

    JIANG Zhao, ZHANG Weihua, SUN Fangyun. The types and applications of Bifidobacterium and bifidus factors[J]. China Food Additives, 2022, 338): 240248. doi: 10.19804/j.issn1006-2513.2022.08.034
    [64]
    薛雅莺, 袁卫涛, 杨海军. 低聚半乳糖的特性及应用前景[J]. 发酵科技通讯,2011,40(3):50−52. [XUE Yaying, YUAN Weitao, YANG Haijun. Characteristics and application prospect of galactose oligosaccharide[J]. Fermentation Science and Technology Bulletin,2011,40(3):50−52. doi: 10.16774/j.cnki.issn.1674-2214.2011.03.018

    XUE Yaying, YUAN Weitao, YANG Haijun. Characteristics and application prospect of galactose oligosaccharide[J]. Fermentation Science and Technology Bulletin, 2011, 403): 5052. doi: 10.16774/j.cnki.issn.1674-2214.2011.03.018
    [65]
    辛跃强. 低聚半乳糖对肠道益生菌作用机理的研究[D]. 济南:齐鲁工业大学, 2015. [XIN Yueqiang. Research on the mechanism of GOS applied to intestinal probiotics[D]. Jinan:Qilu University of Technology, 2015.

    XIN Yueqiang. Research on the mechanism of GOS applied to intestinal probiotics[D]. Jinan: Qilu University of Technology, 2015.
    [66]
    YAO S, ZHAO Z, WANG W, et al. Bifidobacterium long um:Protection against inflammatory bowel disease[J]. Journal of Immunology Research,2021,11:1−11.
    [67]
    CUKROWSKA B, BIERŁA J B, ZAKRZEWSKA M, et al. The relationship between the infant gut microbiota and allergy. The role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life[J]. Nutrients,2020,12(4):946−962.
    [68]
    LAI H H, CHIU C H, KONG M S, et al. Probiotic Lactobacillus casei:Effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers[J]. Nutrients,2019,11(5):1150−1165.
    [69]
    GAO H, LI X, CHEN X, et al. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes[J]. Journal of Microbiology and Biotechnology,2022,32(10):1226−1233.
    [70]
    IYER N, WILLIAMS M A, O'CALLAGHAN A A, et al. Lactobacillus salivarius UCC118™ dampens inflammation and promotes microbiota recovery to provide therapeutic benefit in a dss-induced colitis model[J]. Microorganisms,2022,10(7):1383.
    [71]
    FÜREDER V, RODRIGUEZ-COLINAS B, CERVANTES F V, et al. Selective synthesis of galactooligosaccharides containing β (1→3) linkages with β-galactosidase from Bifidobacterium bifidum (Saphera)[J]. Journal of Agricultural and Food Chemistry,2020,68(17):4930−4938.
    [72]
    WILSON B, ROSSI M, KANNO T, et al. β-Galactooligosaccharide in conjunction with low FODMAP diet improves irritable bowel syndrome symptoms but reduces fecal Bifidobacteria[J]. Official Journal of the American College of Gastroenterology,2020,115(6):906−915.
    [73]
    YANG C, PUTTEN J, GILBERT M S, et al. Galacto-oligosaccharides as an anti-bacterial and anti-invasive agent in lung infections[J]. Biomaterials,2022,283(3):121461.
    [74]
    潘玉宁, 刘成志, 颜春荣, 等. 低聚半乳糖的生理功能研究进展[J]. 食品安全质量检测学报, 2019, 10(10):2849−2855. [PAN Yuning, LIU Chengzhi, YAN Chunrong, et al. Research progress of physiological function of galacto-oligosaccharides[J]. 2019, 10(10):2849−2855.

    PAN Yuning, LIU Chengzhi, YAN Chunrong, et al. Research progress of physiological function of galacto-oligosaccharides[J]. 2019, 10(10): 2849−2855.
    [75]
    吴昊. 酶法制备GOS工艺优化及GOS-抹茶复合产品的开发[D]. 天津:天津大学, 2021. [WU Hao. Optimization of GOS production process by β-galactosidase and its application for the preparation of GOS-Matcha complex[D]. Tianjin:Tianjin University, 2021.

    WU Hao. Optimization of GOS production process by β-galactosidase and its application for the preparation of GOS-Matcha complex[D]. Tianjin: Tianjin University, 2021.
    [76]
    ESKANDARLOO H, ABBASPOURRAD A. Production of galacto-oligosaccharides from whey permeate using β-galactosidase immobilized on functionalized glass bead[J]. Food Chemistry,2018,251(15):115−124.
    [77]
    丁春明. 高产乳糖酶酵母菌的筛选、培养基优化及生长模型的研究[D]. 内蒙古:内蒙古农业大学, 2007. [DING Chunming. Study on screening, medium optimization and kinetic models of high β-glycosidase-yielding yeasts[D]. Inner Mongolia:Inner Mongolia University, 2007.

    DING Chunming. Study on screening, medium optimization and kinetic models of high β-glycosidase-yielding yeasts[D]. Inner Mongolia: Inner Mongolia University, 2007.
    [78]
    李兴. 酶法降解乳糖及低乳糖发酵酸乳的发酵工艺技术研究[D]. 石家庄:河北科技大学, 2013. [LI Xing. Enzymatic degradation of lactose and technology research of low lactose fermentation yogurt[D]. Shijiazhuang:Hebei University of Science & Technology, 2013.

    LI Xing. Enzymatic degradation of lactose and technology research of low lactose fermentation yogurt[D]. Shijiazhuang: Hebei University of Science & Technology, 2013.
    [79]
    张海斌. 乳糖水解技术在酸奶中的研究与应用[M]. 北京:中国科学技术出版社, 2017. [ZHANG Haibing. Research and application of lactose hydrolysis technology in yogurt[M]. Beijing:Science and Technology of China Press, 2017.

    ZHANG Haibing. Research and application of lactose hydrolysis technology in yogurt[M]. Beijing: Science and Technology of China Press, 2017.
    [80]
    李冠龙, 刘晓兰, PRITI K. β-半乳糖苷酶的固定化及其在制备低乳糖牛奶中的应用[J]. 食品工业,2018,39(9):105−110. [LI Guanlong, LIU Xiaolan, KATROLIA Priti. Immobilization of β-galactosidase and its use in preparing low lactose milk[J]. The Food Industry,2018,39(9):105−110.

    LI Guanlong, LIU Xiaolan, KATROLIA Priti. Immobilization of β-galactosidase and its use in preparing low lactose milk[J]. The Food Industry, 2018, 399): 105110.
  • Cited by

    Periodical cited type(1)

    1. 杨丽娟,王伟伟,许勇泉,江和源. 外源酶在红茶加工中的应用研究进展. 食品工业科技. 2024(07): 344-351 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (170) PDF downloads (26) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return