Citation: | LI Yunliang, XIE Pengfei, LIU Xiaoshuang, et al. Source, Modification, Heterologous Expression of β-Galactosidase and Its Application in Food[J]. Science and Technology of Food Industry, 2023, 44(23): 387−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030097. |
[1] |
ZAMAN U, REHMAN K U, KHAN S U, et al. Identification, kinetics and thermodynamic analysis of novel β-galactosidase from Convolvulus arvensis seeds:An efficient agent for delactosed milk activity[J]. International Journal of Biological Macromolecules,2022(220):1545−1555.
|
[2] |
侯瑾, 杨凯, 薛冰, 等. 乳糖酶的性质及其在低乳糖乳制品中的应用[J]. 食品安全导刊,2022,15(19):172−177. [HOU Jin, YANG Kai, XUE Bing, et al. Properties of lactase and its application in low lactose dairy products[J]. Food Safety Guide,2022,15(19):172−177. doi: 10.3969/j.issn.1674-0270.2022.19.spaqdk202219060
|
[3] |
何云山, 吴仪, 谭周进. 猪肠道乳糖酶研究进展[J]. 现代农业科技,2020,48(9):208−214. [HE Yunshan, WU Yi, TAN Zhoujin. Research progress of intestinal lactase in pigs[J]. Modern Agricultural Science and Technology,2020,48(9):208−214. doi: 10.3969/j.issn.1007-5739.2020.09.125
|
[4] |
SONI N K, TRIVEDI H H, KUMAR S, et al. A review of digestive enzyme and probiotic supplementation for functional gastrointestinal disorders[J]. Nutrients,2020,73(3):35−37.
|
[5] |
BAN Q, YE H, HE Y, et al. Functional characterization of persimmon β-galactosidase gene DkGAL1 in tomato reveals cell wall modification related to fruit ripening and radicle elongation[J]. Plant Science,2018,274:109−120.
|
[6] |
ZHAN B A, D W A, YLA C, et al. Analysis of populus glycosyl hydrolase family I members and their potential role in the ABA treatment and drought stress response[J]. Plant Physiology and Biochemistry,2021,163:178−188.
|
[7] |
MARÍA, MONEO-SÁNCHEZ, ALEJANDRO, et al. β-(1, 4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation[J]. Planta,2018,249(2):33−34.
|
[8] |
HUIJUAN Y, JUNLING L, MEILE D, et al. Analysis of β-galactosidase during fruit development and ripening in two different texture types of apple cultivars[J]. Frontiers in Plant Science,2018,9(5):539−552.
|
[9] |
艾尔·毛利, 亚伦·盖伦提, 克里斯蒂娜·皮诺奇, 等. 增加从咖啡豆中提取固体的可提取性的组成物及方法:中国, 111164216A[P]. 2020-05-15. [AL M, AARON G, CHRISTINA P, et al. A component and a method for increasing the extractability of solids from coffee beans:China, 111164216A[P]. 2020-05-15.
AL M, AARON G, CHRISTINA P, et al. A component and a method for increasing the extractability of solids from coffee beans: China, 111164216A[P]. 2020-05-15.
|
[10] |
SINGH R V, SAMBYAL K. β-Galactosidase as an industrial enzyme:Production and potential[J]. Chemical Papers,2022,77(1):1−31.
|
[11] |
GAMIZ-ARCO G, RISSO V A, GAUCHER E A, et al. Combining ancestral reconstruction with folding-landscape simulations to engineer heterologous protein expression[J]. Journal of Molecular Biology,2021,433(24):167321.
|
[12] |
KAIRAMKONDA M, SHARMA M, GUPTA P, et al. Overexpression of bacteriophage T4 and T7 endolysins differentially regulate the metabolic fingerprint of host Escherichia coli[J]. International Journal of Biological Macromolecules,2022,221:212−223. doi: 10.1016/j.ijbiomac.2022.09.012
|
[13] |
贺璐, 龙承星, 刘又嘉, 等. 微生物乳糖酶研究进展[J]. 食品与发酵工业,2017,43(6):268−273. [HE Lu, LONG Chengxing, LIU Youjia, et al. Research progress on microorganism lactase[J]. Food and Fermentation Industry,2017,43(6):268−273. doi: 10.13995/j.cnki.11-1802/ts.201706046
|
[14] |
岳寿松, 边斐, 张燕, 等. 马克斯克鲁维酵母菌的分离鉴定与所产乳糖酶酶学性能研究[J]. 山东农业科学,2018,50(11):66−70. [YUE Shusong, BIAN Fei, ZHANG Yan, et al. Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase[J]. Shandong Agricultural Sciences,2018,50(11):66−70. doi: 10.14083/j.issn.1001-4942.2018.11.013
|
[15] |
蔡可. 黑曲霉β-半乳聚糖酶AghA的分子克隆与特征解析[D]. 天津:天津科技大学, 2019. [CAI Ke. Molecular cloning and biochemical charaterization of β-galactanase AghA from Aspergillus niger[D]. Tianjin:Tianjin University of Science and Technology, 2019.
CAI Ke. Molecular cloning and biochemical charaterization of β-galactanase AghA from Aspergillus niger[D]. Tianjin: Tianjin University of Science and Technology, 2019.
|
[16] |
关波, 胡有贞, 韩明明. 产转糖基活性β-半乳糖苷酶的开菲尔乳杆菌及制备的β-半乳糖苷酶生产低聚半乳糖的方法:中国, 202011173142. X[P]. 2020-10-28. [GUANG Bo, HU Youzhen, HAN Mingming. Lactobacillus kefir producing glycosyl-active β-galactosidase and the preparation of β-galactosidase for the production of oligo-galactose:China, 202011173142. X[P]. 2020-10-28.
GUANG Bo, HU Youzhen, HAN Mingming. Lactobacillus kefir producing glycosyl-active β-galactosidase and the preparation of β-galactosidase for the production of oligo-galactose: China, 202011173142. X[P]. 2020-10-28.
|
[17] |
何乃莹, 竺胜权, 黄金. 生物催化法制备低聚半乳糖的研究进展[J]. 发酵科技通讯,2021,50(1):20−27. [HE Naiying, ZHU Shengquan, HUANG Jin. Recent research progress on biocatalytic production of galactooligosaccharides[J]. Fermentation Science and Technology Bulletin,2021,50(1):20−27. doi: 10.16774/j.cnki.issn.1674-2214.2021.01.004
|
[18] |
高秀容. 乳糖酶的基因克隆[D]. 成都:西华大学, 2006. [GAO Xiurong. Gene cloning of lactase[D]. Chengdu:Xihua University, 2006.
GAO Xiurong. Gene cloning of lactase[D]. Chengdu: Xihua University, 2006.
|
[19] |
董艺凝, 陈海琴, 张灏, 等. β-半乳糖苷酶的研究现状与进展[J]. 食品与生物技术学报,2018,37(4):337−343. [DONG Yining, CHEN Haiqin, ZHANG Hao, et al. Research status and progress on β-galactosidase[J]. Journal of Food and Biotechnology,2018,37(4):337−343.
|
[20] |
剧淑君. β-D-半乳糖苷酶的发酵生产、分离纯化和性质研究[D]. 无锡:江南大学, 2011. [JU Shujun. Study on fermentation, separation, and characteristics of β-D-galactosidase[D]. Wuxi:Jiangnan University, 2011.
JU Shujun. Study on fermentation, separation, and characteristics of β-D-galactosidase[D]. Wuxi: Jiangnan University, 2011.
|
[21] |
成静, 朱智睿, 杨江科. 乳酸克鲁维酵母乳糖酶的可溶性表达及优化[J]. 生物技术,2020,30(1):17−24. [CHENG Jing, ZHU Zhirui, YANG Jiangke. Soluble expression and optimization of lactase from Kluyveromyces lactis[J]. Biotechnology,2020,30(1):17−24. doi: 10.16519/j.cnki.1004-311x.2020.01.0004
|
[22] |
谭树华, MAJID H A A, 高向东, 等. 脆壁克鲁维酵母乳糖酶提取物性质研究[J]. 药物生物技术,2000,7(3):153−156. [TAN Shuhua, MAJID H A A, GAO Xiangdong, et al. Properties of an inducible lactase isolated from the yeast Kluyveromyces fragilis[J]. Pharmaceutical Biotechnology,2000,7(3):153−156. doi: 10.19526/j.cnki.1005-8915.2000.03.007
|
[23] |
牛丹丹, 贾超, 田晓靓, 等. 黑曲霉F0215中 β-半乳糖苷酶系的生化特征[J]. 中国食品学报,2017,17(11):198−207. [NIU Dandan, JIA Chao, TIAN Xiaoliang, et al. Biochemical characterization of β-galactosidases from Aspergillus niger strain F0215[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(11):198−207. doi: 10.16429/j.1009-7848.2017.11.026
|
[24] |
高鑫. 米曲霉来源β-半乳糖苷酶的分子改造及其制备低聚半乳糖的研究[D]. 无锡:江南大学, 2019. [GAO Xin. Molecular modification of the β-galactosidase from Aspergillus oryzae and the study of its ability to prepare galactoligosaccharide[D]. Wuxi:Jiangnan University, 2019.
GAO Xin. Molecular modification of the β-galactosidase from Aspergillus oryzae and the study of its ability to prepare galactoligosaccharide[D]. Wuxi: Jiangnan University, 2019.
|
[25] |
徐晓锋. 黄瓜α-半乳糖苷酶基因克隆及表达分析[D]. 扬州:扬州大学, 2006. [XU Xiaofeng. Cloning and expression analysis of α-galactosidases in cucumber (Cucumis sativus L.)[D]. Yangzhou:Yangzhou University, 2006.
XU Xiaofeng. Cloning and expression analysis of α-galactosidases in cucumber (Cucumis sativus L.)[D]. Yangzhou: Yangzhou University, 2006.
|
[26] |
陈国梁, 何晓利, 王旭东, 等. 狗头枣 β-半乳糖苷酶酶学特性研究[J]. 黑龙江农业科学,2018(10):31−34. [CHEN Guoliang, HE Xiaoli, WANG Xudong, et al. Enzymatic characteristics of β-galactosidase from Zizyphus jujube Goutouzao[J]. Heilongjiang Agricultural Sciences,2018(10):31−34.
|
[27] |
THOMA J, STENITZER D, GRABHERR R, et al. Identification, characterization, and expression of a β-galactosidase from arion species (mollusca)[J]. Biomolecules,2022,12(11):1578.
|
[28] |
邓智年, 魏源文, 潘有强, 等. DNA分子进化研究进展[J]. 广西农业科学,2009,40(2):128−132. [DENG Zhinian, WEI Yuanwen, PAN Youqiang, et al. Advances in DNA molecular evolution[J]. Guangxi Agricultural Sciences,2009,40(2):128−132.
|
[29] |
彭惠, 孔慧慧, 李艺冰, 等. 一种人工改造的β-半乳糖苷酶GaLT1及其在水解乳糖中的应用:中国, CN114149987A[P]. 2022-03-08. [PENG Hui, KONG Huihui, LI Yibing, et al. A modified β-galactosidase GaLT1 and its application in the hydrolysis of lactose:China, CN114149987A[P]. 2022-03-08.
PENG Hui, KONG Huihui, LI Yibing, et al. A modified β-galactosidase GaLT1 and its application in the hydrolysis of lactose: China, CN114149987A[P]. 2022-03-08.
|
[30] |
杨萍. 通过定点突变提高米曲霉乳糖酶的热稳定性的研究[D]. 北京:中国农业科学院, 2010. [YANG Ping. Improving the thermal stability of the β-galactosidase from Aspergillus oryzae by site-directed mutagenesis[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010.
YANG Ping. Improving the thermal stability of the β-galactosidase from Aspergillus oryzae by site-directed mutagenesis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
|
[31] |
李晨霞, 向芷璇, 李敬, 等. 米曲霉 β-半乳糖苷酶的定向进化, 高效表达及应用[J]. 食品与生物技术学报,2022,41(10):49−57. [LI Chenxia, XIANG Zhixuan, LI Jing, et al. Directed evolution, high-level expression and application of the β-galactosidase from Aspergillus oryzae[J]. Journal of Food Science and Biotechnology,2022,41(10):49−57.
|
[32] |
史然, 张登娅, 谷懿寰, 等. 地杆菌 α-L-岩藻糖苷酶的分子改造及其在合成2'-岩藻糖基乳糖中的应用[J]. 食品科学,2021,42(18):135−142. [SHI Ran, ZHANG Dengya, GU Yihuan, et al. Direct evolution of α-L-fucosidase from Pedobacter sp. and its application in the synthesis of 2'-fucosyllactose[J]. Food Science,2021,42(18):135−142. doi: 10.7506/spkx1002-6630-20210207-125
|
[33] |
俞路, 王雅倩, 章世元. DNA改组( DNA shuffling )及其研究进展[J]. 生物学杂志,2008,25(1):12−16. [YU Lu, WANG Yaqian, ZHANG Shiyuan. DNA shuffling and its research progress[J]. Chinese Journal of Biology,2008,25(1):12−16.
|
[34] |
王珏, 吴娜, 张育敏, 等. 易错PCR定向进化技术提高蒙古黄芪病程相关蛋白AmPR-10核酸酶活性的研究[J]. 化学与生物工程,2022,39(2):23−27. [WANG Jue, WU Na, ZHANG Yumin, et al. Improvement in nuclease activity of Astragalus membrana ceus pathogenesis-related protein-10(AmPR-10) by error prone PCR directed evolution[J]. Chemical & Biological Engineering,2022,39(2):23−27.
|
[35] |
韩媛媛. Lactobacillus brevis ATCC 367源β-半乳糖苷酶的异源表达、酶学性质及应用研究[D]. 南京:南京农业大学, 2020. [HAN Yuanyuan. Heterologous expression, characterization and application of the β-galactosidase from Lactobacillus brevis ATCC 367[D]. Nanjing:Nanjing Agricultural University, 2020.
HAN Yuanyuan. Heterologous expression, characterization and application of the β-galactosidase from Lactobacillus brevis ATCC 367[D]. Nanjing: Nanjing Agricultural University, 2020.
|
[36] |
HILDEGARD W, JOSEF A. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system[J]. AMB Express,2019,9(1):158−169.
|
[37] |
苏松坤, 晏励民, 刘芳. 乳酸菌食品级表达系统的研究进展[J]. 食品与生物技术学报,2012,31(12):1233−1238. [SU Songkun, YAN Limin, LIU Fang. Research development of LAB food-grade expression system[J]. Journal of Food Science and Biotechnology,2012,31(12):1233−1238.
|
[38] |
YOUNG R, BUDGE J D, SMALES M C. Mammalian expression system, Europe:EP3341484[P]. 2020-09-23.
|
[39] |
GAO J, JIANG L, LIAN J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology,2021,6(2):110−119.
|
[40] |
李航, 戚睿斌, 陈宗艳, 等. 外源蛋白表达系统及其应用的研究进展[J]. 黑龙江畜牧兽医, 2021(7):34−37. [LI Hang, QI Ruibin, CHEN Zongyan, et al. Progress in research on foreign protein expression system and its application[J]. Heilongjiang Animal and Veterinary Science, 2021(7):34−47.
LI Hang, QI Ruibin, CHEN Zongyan, et al. Progress in research on foreign protein expression system and its application[J]. Heilongjiang Animal and Veterinary Science, 2021(7): 34−47.
|
[41] |
聂春明. 乳酸杆菌β-半乳糖苷酶重叠基因的克隆、表达及酶学性质分析[D]. 内蒙古:内蒙古农业大学, 2012. [NIE Chunming. The overlapping gene cloning, expression and characterization of a β-galactosidase from Lactobacillus crispatus[D]. Inner Mongolia:Inner Mongolia Agricultural University, 2012.
NIE Chunming. The overlapping gene cloning, expression and characterization of a β-galactosidase from Lactobacillus crispatus[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2012.
|
[42] |
窦媛媛, 林艳, 高向征, 等. 重组人bFGF的原核表达及功能分析[J]. 中国细胞生物学学报,2019,41(7):1365−1370. [DOU Yuanyuan, LIN Yan, GAO Xiangzheng, et al. Prokaryotic expression and functional analysis of recombinant human bFGF[J]. Chinese Journal of Cell Biology,2019,41(7):1365−1370.
|
[43] |
冀成法, 刘忠, 马鲁南, 等. 重组大肠杆菌高密度、高表达研究进展[J]. 生物技术,2022,32(2):246−251. [JI Chengfa, LIU Zhong, MA Lunan, et al. Review of high density fermentation and high expression of engineering E. coli[J]. Biotechnology,2022,32(2):246−251. doi: 10.16519/j.cnki.1004-311x.2022.02.0040
|
[44] |
陈卫, 张灏, 葛佳佳, 等. 高温乳糖酶基因在大肠杆菌中的高效表达[J]. 生物技术,2002,12(5):8−11. [CHEN Wei, ZHANG Hao, GE Jiajia, et al. High-level expression of thermostable galactosidase gene in Escherichia coli[J]. Biotechnology,2002,12(5):8−11. doi: 10.16519/j.cnki.1004-311x.2002.05.006
|
[45] |
徐顺清, 陈杏洲, 崔罗生, 等. 乳酸克鲁维酵母乳糖酶基因在大肠杆菌中的表达及酶学性质[J]. 华中农业大学学报,2010,29(2):175−180. [XU Shunqing, CHEN Xingzhou, CUI Luosheng, et al. Expression and enzymatic properties of lactase gene from Kluyveromyces lactis in Escherichia coli[J]. Journal of Huazhong Agricultural University,2010,29(2):175−180. doi: 10.13300/j.cnki.hnlkxb.2010.02.003
|
[46] |
梁琰, 崔欣, 王哲, 等. 乳酸菌食品级表达载体的研究与应用[J]. 微生物学通报,2021,48(3):906−915. [LIANG Yan, CUI Xin, WANG Zhe, et al. Research and application of food-grade expression vectors of lactic acid bacteria[J]. Chinese Journal of Microbiology,2021,48(3):906−915. doi: 10.13344/j.microbiol.china.200430
|
[47] |
孙芝兰, 孔文涛, 孔健. Paenibacillus sp. K1乳糖酶基因bga在乳酸乳球菌中的表达[J]. 山东大学学报(理学版),2008,43(7):74−77. [SUN Zhilan, KONG Wentao, KONG Jian. Expression of lactase gene bga from Paenibacillus sp. K1 in Lactococcus lactis[J]. Journal of Shandong University (Natural Science),2008,43(7):74−77.
|
[48] |
马雁. 自诱导型启动子PsrfA在大肠杆菌及乳酸菌中表达适应性的研究[D]. 扬州:扬州大学, 2020. [MA Yan. Study on the expression feasibility of self-inducible promoter PsrfA in Escherichia coli and lactic acid bacteria[D]. Yangzhou:Yangzhou University, 2020.
MA Yan. Study on the expression feasibility of self-inducible promoter PsrfA in Escherichia coli and lactic acid bacteria[D]. Yangzhou: Yangzhou University, 2020.
|
[49] |
王杰, 王晨, 杜燕, 等. 枯草芽孢杆菌表达和分泌异源蛋白的研究进展[J]. 微生物学通报,2021,48(8):2815−2826. [WANG Jie, WANG Chen, DU Yan, et al. Advances in heterologous protein expression and secretion of Bacillus subtilis[J]. Microbiology China,2021,48(8):2815−2826. doi: 10.13344/j.microbiol.china.200895
|
[50] |
许俊勇, 毕然, 夏伟, 等. Bacillus circulans来源 β-半乳糖苷酶在 Bacillus subtilis中的表达, 性质及发酵优化[J]. 食品与发酵工业,2022,48(18):20−27. [XU Junyong, BI Xia, XIA Wei, et al. Heterologous expression, properties, applications, and fermentation optimization of β-galactosidase from Bacillus circulans in Bacillus subtilis[J]. Food and Fermentation Industries,2022,48(18):20−27.
|
[51] |
王斌. 固定化 β-半乳糖苷酶的酶学性质研究[J]. 阴山学刊(自然科学版),2018,32(2):46−48. [WANG Bin. Characterization of β-galactosidase immobilized on chitosan calcium alginate[J]. Yinshan Academic Journal (Natural Science),2018,32(2):46−48.
|
[52] |
TIZCHANG S, KHIABANI M S, MOKARRAM R R, et al. Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix[J]. Biochimica et Biophysica Acta-General Subjects,2021(6):1865−1875.
|
[53] |
王晓静. 自固定化乳糖酶的基因构建、表达及其酶学性质研究[D]. 镇江:江苏大学, 2021. [WANG Xiaojing. Study of gene construction and expression of self-immobilized lactase and its enzymatic properties[D]. Zhenjiang:Jiangsu University, 2021.
WANG Xiaojing. Study of gene construction and expression of self-immobilized lactase and its enzymatic properties[D]. Zhenjiang: Jiangsu University, 2021.
|
[54] |
李云亮. 金枪鱼降血压肽的基因设计、克隆表达和活性评价[D]. 镇江:江苏大学, 2015. [LI Yunliang. The gene design, cloning-expression and activity evaluation of tuna antihypertensive peptide[D]. Zhenjiang:Jiangsu University, 2015.
LI Yunliang. The gene design, cloning-expression and activity evaluation of tuna antihypertensive peptide[D]. Zhenjiang: Jiangsu University, 2015.
|
[55] |
朱明慧, 李晓静, 王浩民, 等. 原核和真核双表达载体的构建及功能分析[J]. 中国细胞生物学学报,2022,44(3):437−442. [ZHU Minghui, LI Xiaojing, WANG Haomin, et al. Construction and functional analysis of prokaryotic and eukaryotic dual expression vectors[J]. Chinese Journal of Cell Biology,2022,44(3):437−442.
|
[56] |
李洪波, 罗海燕, 张树琴, 等. 重组嗜热乳糖酶在毕赤酵母中的表达、纯化与活性分析[J]. 食品与生物技术学报,2018,37(8):812−816. [LI Hongbo, LUO Haiyan, ZHANG Shuqin, et al. Expression, purification and activity assay of recombinant thermophile lactase from Pichia pastoris[J]. Journal of Food Science and Biotechnology,2018,37(8):812−816.
|
[57] |
王敏, 席志文, 黄琳娜, 等. 米曲霉乳糖酶基因在乳酸克鲁维酵母中的表达[J]. 食品研究与开发,2019,40(7):177−183. [WANG Min, XI Zhiwen, HUANG Linna, et al. Recombinant expression of lactase gene from Aspergillus oryzae in Kluyvermyces lactis[J]. Food Research and Development,2019,40(7):177−183.
|
[58] |
食品安全国家标准 食品添加剂 食品工业用酶制剂[S]. 国内-国家标准-国家市场监督管理总局 GB 1886.174, 2016. [National standard for food safety-Food additives:Enzyme preparations for food industry[S]. Domestic-National Standards-State Administration for Market Supervision and Administration, GB 1886.174, 2016.
National standard for food safety-Food additives: Enzyme preparations for food industry[S]. Domestic-National Standards-State Administration for Market Supervision and Administration, GB 1886.174, 2016.
|
[59] |
关昕. 乳糖:让牛奶成为窜稀毒药的元凶[J]. 中国食品工业,2021(11):105. [GUAN Xin. Lactose:Makes milk a watery poison[J]. Chinese Food Industry,2021(11):105.
|
[60] |
ELISABETH H J, ROMAN K, PATRICK W, et al. Determination of lactose in lactose-free and low-lactose milk, milk products, and products containing dairy ingredients by the lactosensr amperometry method:First action 2020.01.[J]. Journal of AOAC International,2020,103(6):1534−1546.
|
[61] |
刘杰, 李顺发, 沈政元, 等. 低乳糖益生菌乳粉制备研究[J]. 食品与发酵科技, 2022, 58(1):107−114. [LIU Jie, LI Shunfa, SHEN Zhengyuan, et al. Preparation technology of low lactose probiotic milk powder[J]. Food and Fermentation Science & Technology, 022, 58(1):107−114.
LIU Jie, LI Shunfa, SHEN Zhengyuan, et al. Preparation technology of low lactose probiotic milk powder[J]. Food and Fermentation Science & Technology, 022, 58(1): 107−114.
|
[62] |
LIU Y, WU Z, ZENG X, et al. A novel cold-adapted phospho-beta-galactosidase from Bacillus velezensis and its potential application for lactose hydrolysis in milk[J]. International Journal of Biological Macromolecules,2020,166(4):760−770.
|
[63] |
姜钊, 张卫花, 孙芳云. 双歧杆菌及寡糖类双歧因子的种类及应用[J]. 中国食品添加剂,2022,33(8):240−248. [JIANG Zhao, ZHANG Weihua, SUN Fangyun. The types and applications of Bifidobacterium and bifidus factors[J]. China Food Additives,2022,33(8):240−248. doi: 10.19804/j.issn1006-2513.2022.08.034
|
[64] |
薛雅莺, 袁卫涛, 杨海军. 低聚半乳糖的特性及应用前景[J]. 发酵科技通讯,2011,40(3):50−52. [XUE Yaying, YUAN Weitao, YANG Haijun. Characteristics and application prospect of galactose oligosaccharide[J]. Fermentation Science and Technology Bulletin,2011,40(3):50−52. doi: 10.16774/j.cnki.issn.1674-2214.2011.03.018
|
[65] |
辛跃强. 低聚半乳糖对肠道益生菌作用机理的研究[D]. 济南:齐鲁工业大学, 2015. [XIN Yueqiang. Research on the mechanism of GOS applied to intestinal probiotics[D]. Jinan:Qilu University of Technology, 2015.
XIN Yueqiang. Research on the mechanism of GOS applied to intestinal probiotics[D]. Jinan: Qilu University of Technology, 2015.
|
[66] |
YAO S, ZHAO Z, WANG W, et al. Bifidobacterium long um:Protection against inflammatory bowel disease[J]. Journal of Immunology Research,2021,11:1−11.
|
[67] |
CUKROWSKA B, BIERŁA J B, ZAKRZEWSKA M, et al. The relationship between the infant gut microbiota and allergy. The role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life[J]. Nutrients,2020,12(4):946−962.
|
[68] |
LAI H H, CHIU C H, KONG M S, et al. Probiotic Lactobacillus casei:Effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers[J]. Nutrients,2019,11(5):1150−1165.
|
[69] |
GAO H, LI X, CHEN X, et al. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes[J]. Journal of Microbiology and Biotechnology,2022,32(10):1226−1233.
|
[70] |
IYER N, WILLIAMS M A, O'CALLAGHAN A A, et al. Lactobacillus salivarius UCC118™ dampens inflammation and promotes microbiota recovery to provide therapeutic benefit in a dss-induced colitis model[J]. Microorganisms,2022,10(7):1383.
|
[71] |
FÜREDER V, RODRIGUEZ-COLINAS B, CERVANTES F V, et al. Selective synthesis of galactooligosaccharides containing β (1→3) linkages with β-galactosidase from Bifidobacterium bifidum (Saphera)[J]. Journal of Agricultural and Food Chemistry,2020,68(17):4930−4938.
|
[72] |
WILSON B, ROSSI M, KANNO T, et al. β-Galactooligosaccharide in conjunction with low FODMAP diet improves irritable bowel syndrome symptoms but reduces fecal Bifidobacteria[J]. Official Journal of the American College of Gastroenterology,2020,115(6):906−915.
|
[73] |
YANG C, PUTTEN J, GILBERT M S, et al. Galacto-oligosaccharides as an anti-bacterial and anti-invasive agent in lung infections[J]. Biomaterials,2022,283(3):121461.
|
[74] |
潘玉宁, 刘成志, 颜春荣, 等. 低聚半乳糖的生理功能研究进展[J]. 食品安全质量检测学报, 2019, 10(10):2849−2855. [PAN Yuning, LIU Chengzhi, YAN Chunrong, et al. Research progress of physiological function of galacto-oligosaccharides[J]. 2019, 10(10):2849−2855.
PAN Yuning, LIU Chengzhi, YAN Chunrong, et al. Research progress of physiological function of galacto-oligosaccharides[J]. 2019, 10(10): 2849−2855.
|
[75] |
吴昊. 酶法制备GOS工艺优化及GOS-抹茶复合产品的开发[D]. 天津:天津大学, 2021. [WU Hao. Optimization of GOS production process by β-galactosidase and its application for the preparation of GOS-Matcha complex[D]. Tianjin:Tianjin University, 2021.
WU Hao. Optimization of GOS production process by β-galactosidase and its application for the preparation of GOS-Matcha complex[D]. Tianjin: Tianjin University, 2021.
|
[76] |
ESKANDARLOO H, ABBASPOURRAD A. Production of galacto-oligosaccharides from whey permeate using β-galactosidase immobilized on functionalized glass bead[J]. Food Chemistry,2018,251(15):115−124.
|
[77] |
丁春明. 高产乳糖酶酵母菌的筛选、培养基优化及生长模型的研究[D]. 内蒙古:内蒙古农业大学, 2007. [DING Chunming. Study on screening, medium optimization and kinetic models of high β-glycosidase-yielding yeasts[D]. Inner Mongolia:Inner Mongolia University, 2007.
DING Chunming. Study on screening, medium optimization and kinetic models of high β-glycosidase-yielding yeasts[D]. Inner Mongolia: Inner Mongolia University, 2007.
|
[78] |
李兴. 酶法降解乳糖及低乳糖发酵酸乳的发酵工艺技术研究[D]. 石家庄:河北科技大学, 2013. [LI Xing. Enzymatic degradation of lactose and technology research of low lactose fermentation yogurt[D]. Shijiazhuang:Hebei University of Science & Technology, 2013.
LI Xing. Enzymatic degradation of lactose and technology research of low lactose fermentation yogurt[D]. Shijiazhuang: Hebei University of Science & Technology, 2013.
|
[79] |
张海斌. 乳糖水解技术在酸奶中的研究与应用[M]. 北京:中国科学技术出版社, 2017. [ZHANG Haibing. Research and application of lactose hydrolysis technology in yogurt[M]. Beijing:Science and Technology of China Press, 2017.
ZHANG Haibing. Research and application of lactose hydrolysis technology in yogurt[M]. Beijing: Science and Technology of China Press, 2017.
|
[80] |
李冠龙, 刘晓兰, PRITI K. β-半乳糖苷酶的固定化及其在制备低乳糖牛奶中的应用[J]. 食品工业,2018,39(9):105−110. [LI Guanlong, LIU Xiaolan, KATROLIA Priti. Immobilization of β-galactosidase and its use in preparing low lactose milk[J]. The Food Industry,2018,39(9):105−110.
|
1. |
杨丽娟,王伟伟,许勇泉,江和源. 外源酶在红茶加工中的应用研究进展. 食品工业科技. 2024(07): 344-351 .
![]() |