LI Ruiyi, CHEN Xuefeng, CHEN Hangjun, et al. Optimization of Preparation Process of Bayberry Soft Candy and Analysis of Its Hypoglycemic Function[J]. Science and Technology of Food Industry, 2023, 44(23): 80−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020278.
Citation: LI Ruiyi, CHEN Xuefeng, CHEN Hangjun, et al. Optimization of Preparation Process of Bayberry Soft Candy and Analysis of Its Hypoglycemic Function[J]. Science and Technology of Food Industry, 2023, 44(23): 80−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020278.

Optimization of Preparation Process of Bayberry Soft Candy and Analysis of Its Hypoglycemic Function

More Information
  • Received Date: February 27, 2023
  • Available Online: October 07, 2023
  • In order to develop soft fruit candy products with hypoglycemic function, the preparation method was optimized by single-factor and response surface studies. The texture profile analysis and sensory score was regarded as the evaluation indices, while bayberry juice was used as the main raw material, carrageenan and gelatin as the gelling agent, and xylitol as the sweetener. Additionally, the hypoglycemic effect of bayberry soft candy extract was evaluated by in vitro study, and the components of bayberry juice was detected by using UPLC-MS/MS assay. Finally, the hypoglycemic components and related pathways of action were predicted by network pharmacology. The results showed that in the 100 mL bayberry soft candy gel solution system, the optimal formulation of bayberry soft candy obtained by response surface methodology was as follows: 89.37% bayberry juice for swelling and constant volume, with 9.90% gelatin, 1.41% carrageenan, and 30.86% xylitol addition. The sensory score of bayberry soft candy produced under this process was 87.30, which was close to the theoretical value. The in vitro hypoglycemic study showed that the inhibition of α-glucosidase and α-amylase by 4 mg/mL of bayberry soft candy extract reached 98.58% and 86.89%, respectively. The network pharmacological analysis postulated that 3,5-diacetyltambrin (YM16), azaleatin (YM17) and raspberry ketone glucoside (YM1) were the key hypoglycemic components in bayberry juice, in addition, the human cancer pathway and PI3K-Akt pathway were important pathways of their action. The soft candy prepared under the optimal process condition showed good elasticity, fantastic taste and certain hypoglycemic effects. These results provide a certain theoretical basis for the development of fruit-flavored functional soft candy.
  • [1]
    蔡继业, 房祥军, 韩延超, 等. 气调贮藏对东魁杨梅品质的影响[J]. 浙江农业学报,2022,34(2):352−359. [CAI J Y, FANG X J, HAN Y C, et al. Effect controlled atmosphere storage on postharvest preservation of Dongkui bayberry[J]. Acta Agriculturae Zhejiangensis,2022,34(2):352−359. doi: 10.3969/j.issn.1004-1524.2022.02.17

    CAI J Y, FANG X J, HAN Y C, et al. Effect controlled atmosphere storage on postharvest preservation of Dongkui bayberry[J]. Acta Agriculturae Zhejiangensis, 2022, 342): 352359. doi: 10.3969/j.issn.1004-1524.2022.02.17
    [2]
    BAO T, LI Y, XIE J, et al. Systematic evaluation of bioactive components and antioxidant capacity of some new and common bayberry cultivars using an in vitro gastrointestinal digestion method[J]. Food Research International,2018,103:326−334. doi: 10.1016/j.foodres.2017.10.062
    [3]
    周强, 韩延超, 陈杭君, 等. 电商物流贮藏过程杨梅品质的变化及货架寿命预测[J]. 中国食品学报,2021,21(11):112−119. [ZHOU Q, HAN Y C, CHEN H J, et al. Quality change and shelf-life prediction of Myrica during e-commerce logistics storage[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):112−119. doi: 10.16429/j.1009-7848.2021.11.014

    ZHOU Q, HAN Y C, CHEN H J, et al. Quality change and shelf-life prediction of Myrica during e-commerce logistics storage[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 2111): 112119. doi: 10.16429/j.1009-7848.2021.11.014
    [4]
    柳萌, 郜海燕, 房祥军, 等. 不同成熟度杨梅酚酸的超声-微波协同优化提取及其抗氧化性对比[J]. 食品科学,2021,42(3):112−120. [LIU M, GAO H Y, FANG X J, et al. Optimization of ultrasonic-microwave assisted extraction of phenolic acids from Chinese bayberries ( Morella rubra Sieb. et Zucc) of different maturities and a comparative study of their antioxidant activities[J]. Food Science,2021,42(3):112−120. doi: 10.7506/spkx1002-6630-20200109-120

    LIU M, GAO H Y, FANG X J, et al. Optimization of ultrasonic-microwave assisted extraction of phenolic acids from Chinese bayberries (Morella rubra Sieb. et Zucc) of different maturities and a comparative study of their antioxidant activities[J]. Food Science, 2021, 423): 112120. doi: 10.7506/spkx1002-6630-20200109-120
    [5]
    占刘欢. 杨梅果实降血糖活性物质稳定性及制备工艺放大研究[D]. 杭州:浙江大学, 2021. [ZHAN L H. Stability and scale-up of separation on anti-diabetic compounds from Chinese bayberry (Morella rubra Sieb. et Zucc.)[D]. Hangzhou:Zhejiang University, 2021.

    ZHAN L H. Stability and scale-up of separation on anti-diabetic compounds from Chinese bayberry (Morella rubra Sieb. et Zucc.)[D]. Hangzhou: Zhejiang University, 2021.
    [6]
    ZHANG Y, CHEN S, WEI C, et al. Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells[J]. European Journal of Medicinal Chemistry,2018,147:218−226. doi: 10.1016/j.ejmech.2018.01.084
    [7]
    ZHANG Q, HUANG Z, WANG Y, et al. Chinese bayberry ( Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products:A mechanistic investigation[J]. Food Chemistry,2021,361:130102. doi: 10.1016/j.foodchem.2021.130102
    [8]
    高雪, 陈荣紫. 水杨酸(SA)处理结合低温保鲜杨梅的研究[J]. 北方园艺,2018(6):102−105. [GAO X, CHEN R Z. Preservation of Myrica rubra fruit by salicylic acid treatment and low temperature storage[J]. Northern Horticulture,2018(6):102−105.

    GAO X, CHEN R Z. Preservation of Myrica rubra fruit by salicylic acid treatment and low temperature storage[J]. Northern Horticulture, 20186): 102105.
    [9]
    LI J, CHENG H, LIAO X, et al. Inactivation of Bacillus subtilis and quality assurance in Chinese bayberry ( Myrica rubra) juice with ultrasound and mild heat[J]. LWT-Food Science and Technology,2019,108:113−119. doi: 10.1016/j.lwt.2019.03.061
    [10]
    GE S, WANG L, MA J, et al. Biological analysis on extractives of bayberry fresh flesh by GC-MS[J]. Saudi Journal of Biological Sciences,2018,25(4):816−818. doi: 10.1016/j.sjbs.2017.09.001
    [11]
    SHI L Y, CAO S F, SHAO J R, et al. Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes[J]. Postharvest Biology and Technology,2016,111:197−204. doi: 10.1016/j.postharvbio.2015.08.013
    [12]
    刘永吉, 冯小燕, 郭红辉. 悬浮型杨梅果粒饮料关键工艺优化研究[J]. 食品科技,2018,43(5):121−126. [LIU Y J, FENG X Y, GUO H H. Optimization of key process for red bayberry pulp particle drink production[J]. Food Science and Technology,2018,43(5):121−126. doi: 10.13684/j.cnki.spkj.2018.05.023

    LIU Y J, FENG X Y, GUO H H. Optimization of key process for red bayberry pulp particle drink production[J]. Food Science and Technology, 2018, 435): 121126. doi: 10.13684/j.cnki.spkj.2018.05.023
    [13]
    张宁. 杨梅果粒色泽和质构品质保持技术研究[D]. 金华:浙江师范大学, 2016. [ZHANG N. Research the preservation technology on the color and texture of the quantity of bayberry granule[D]. Jinhua:Zhejiang Normal University, 2016.

    ZHANG N. Research the preservation technology on the color and texture of the quantity of bayberry granule[D]. Jinhua: Zhejiang Normal University, 2016.
    [14]
    叶双全, 秦国正, 游旋. 杨梅果干加工工艺[J]. 农村新技术,2020(4):58. [YE S Q, QIN G Z, YOU X. Processing technology of dried bayberry fruit[J]. New Technology in the Countryside,2020(4):58.

    YE S Q, QIN G Z, YOU X. Processing technology of dried bayberry fruit[J]. New Technology in the Countryside, 20204): 58.
    [15]
    潘旭婕, 刘瑞玲, 邓尚贵, 等. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报,2022,34(7):1502−1512. [PAN X J, LIU R L, DENG S G, et al. Optimization of process and volatile flavor components analysis of bayberry pulp fermented by lactic acid bacteria[J]. Acta Agriculturae Zhejiangensis,2022,34(7):1502−1512. doi: 10.3969/j.issn.1004-1524.2022.07.18

    PAN X J, LIU R L, DENG S G, et al. Optimization of process and volatile flavor components analysis of bayberry pulp fermented by lactic acid bacteria[J]. Acta Agriculturae Zhejiangensis, 2022, 347): 15021512. doi: 10.3969/j.issn.1004-1524.2022.07.18
    [16]
    唐森, 张夺, 柳富杰, 等. 百香果软糖制备工艺的优化[J]. 食品工业,2022,43(3):64−68. [TANG S, ZHANG D, LIU F J, et al. Optimized preparation of passion fruit soft candy[J]. The Food Industry,2022,43(3):64−68.

    TANG S, ZHANG D, LIU F J, et al. Optimized preparation of passion fruit soft candy[J]. The Food Industry, 2022, 433): 6468.
    [17]
    钟秋丽, 陈国康, 陈玉红, 等. 橘红软糖的制备及其工艺优化[J]. 农产品加工,2022(17):25−29. [ZHONG Q L, CHEN G K, CHEN Y H, et al. Preparation and process optimization of Exocarpium citri Grandis soft candy[J]. Farm Products Processing,2022(17):25−29. doi: 10.16693/j.cnki.1671-9646(X).2022.09.007

    ZHONG Q L, CHEN G K, CHEN Y H, et al. Preparation and process optimization of Exocarpium citri Grandis soft candy[J]. Farm Products Processing, 202217): 2529. doi: 10.16693/j.cnki.1671-9646(X).2022.09.007
    [18]
    KUMAR V, KUSHWAHA R, GOYAL A, et al. Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract[J]. Food Chemistry,2018,245(15):168−177.
    [19]
    杨娟, 戴家宁, 梁楚彤, 等. 杜仲凝胶软糖的制备工艺优化[J]. 食品工业科技,2021,42(3):147−152. [YANG J, DAI J N, LIANG C T, et al. Optimization of preparation technology of Eucommia ulmoides gel soft sweets[J]. Science and Technology of Food Industry,2021,42(3):147−152. doi: 10.13386/j.issn1002-0306.2020030002

    YANG J, DAI J N, LIANG C T, et al. Optimization of preparation technology of Eucommia ulmoides gel soft sweets[J]. Science and Technology of Food Industry, 2021, 423): 147152. doi: 10.13386/j.issn1002-0306.2020030002
    [20]
    唐莹, 邹波, 余元善, 等. 佛手益生菌软糖的制备及其体外消化耐受性分析[J]. 现代食品科技,2022,38(7):256−263, 300. [TANG Y, ZOU B, YU Y S, et al. Preparation of Citrus medica 'fingered' probiotic gummies and analysis of its in vitro digestive tolerance[J]. Modern Food Science and Technology,2022,38(7):256−263, 300. doi: 10.13982/j.mfst.1673-9078.2022.7.1089

    TANG Y, ZOU B, YU Y S, et al. Preparation of Citrus medica 'fingered' probiotic gummies and analysis of its in vitro digestive tolerance[J]. Modern Food Science and Technology, 2022, 387): 256263, 300. doi: 10.13982/j.mfst.1673-9078.2022.7.1089
    [21]
    许粟, 姚绍炉, 刘宇泽, 等. 响应面优化淀粉型刺梨凝胶软糖配方工艺[J]. 食品工业科技,2022,43(17):240−247. [XU S, YAO S L, LIU Y Z, et al. Optimization of preparation processing of starchy roxburgh rose gel soft sweet by responsesurface analysis[J]. Science and Technology of Food Industry,2022,43(17):240−247. doi: 10.13386/j.issn1002-0306.2021110372

    XU S, YAO S L, LIU Y Z, et al. Optimization of preparation processing of starchy roxburgh rose gel soft sweet by responsesurface analysis[J]. Science and Technology of Food Industry, 2022, 4317): 240247. doi: 10.13386/j.issn1002-0306.2021110372
    [22]
    杨玉洁, 刘焕, 王淑惠, 等. 基于酶活力和细胞模型分析广佛手多糖降血糖活性及作用机制[J]. 食品科学,2022,43(23):149−157. [YANG Y J, LIU H, WANG S H, et al. Hypoglycemic effect and mechanism of polysaccharides from finger citron from guangdong province based on enzyme activities and cell model[J]. Food science,2022,43(23):149−157. doi: 10.7506/spkx1002-6630-20220104-024

    YANG Y J, LIU H, WANG S H, et al. Hypoglycemic effect and mechanism of polysaccharides from finger citron from guangdong province based on enzyme activities and cell model[J]. Food science, 2022, 4323): 149157. doi: 10.7506/spkx1002-6630-20220104-024
    [23]
    ADEFEGHA S A, OBOH G, OMOJOKUN O S, et al. In vitro antioxidant activities of African birch ( Anogeissus leiocarpus) leaf and its effect on the α-amylase and α-glucosidase inhibitory properties of acarbose[J]. Journal of Taibah University Medical Sciences,2016,11(3):236−242. doi: 10.1016/j.jtumed.2016.03.001
    [24]
    马卓. 凝胶软糖质构影响因素及品质分析[D]. 延吉:延边大学, 2017. [MA Z. The influence factors and quality analysis of jelly soft sugar[D]. Yanji:Yanbian University, 2017.

    MA Z. The influence factors and quality analysis of jelly soft sugar[D]. Yanji: Yanbian University, 2017.
    [25]
    张献伟, 周梁, 蒋爱民, 等. 食品胶特性及其在食品中应用[J]. 食品与机械,2011,27(1):166−169. [ZHANG X W, ZHOU L, JIANG A M, et al. Properties of food gum and its application on food[J]. Food & Machinery,2011,27(1):166−169. doi: 10.3969/j.issn.1003-5788.2011.01.047

    ZHANG X W, ZHOU L, JIANG A M, et al. Properties of food gum and its application on food[J]. Food & Machinery, 2011, 271): 166169. doi: 10.3969/j.issn.1003-5788.2011.01.047
    [26]
    TUNDIS R, LOIZZO M R, MENICHINI F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes:An update[J]. Mini Reviews in Medicinal Chemistry,2010,10(4):315−331. doi: 10.2174/138955710791331007
    [27]
    YANG Y, LEI Z, ZHAO M, et al. Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.:Structural characteristics and biological activities[J]. Industrial Crops and Products,2020,147:112249. doi: 10.1016/j.indcrop.2020.112249
    [28]
    JIANG Z, YU G, LIANG Y, et al. Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangia fusco-purpurea on α-amylase and α-glucosidase[J]. Bioscience Biotechnology and Biochemistry, 2019,83(11):2065−2074.
    [29]
    常国立, 房祥军, 陈明, 等. 杨梅核多酚提取优化及体外抗氧化和降血糖活性研究[J]. 食品科技,2022,47(1):212−218. [CHANG G L, FANG X J CHEN M, et al. Extraction optimization and in vitro antioxidant and hypoglycemic activity of polyphenols from Myrica rubra kernel[J]. Food Science and Technology,2022,47(1):212−218. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201032

    CHANG G L, FANG X J CHEN M, et al. Extraction optimization and in vitro antioxidant and hypoglycemic activity of polyphenols from Myrica rubra kernel[J]. Food Science and Technology, 2022, 471): 212218. doi: 10.3969/j.issn.1005-9989.2022.1.spkj202201032
    [30]
    孔红铭, 叶嘉昕, 赵雅婷, 等. 基于网络药理学和分子对接探讨枇杷叶防治Ⅱ型糖尿病的作用机制[J]. 核农学报,2022,36(12):2436−2446. [KONG H M, YE J X, ZHAO Y T, et al. Mechanism of loquat leaf on type 2 diabetes based on network pharmacology and molecular docking[J]. Journal of Nuclear Agricultural Sciences,2022,36(12):2436−2446. doi: 10.11869/j.issn.100-8551.2022.12.2436

    KONG H M, YE J X, ZHAO Y T, et al. Mechanism of loquat leaf on type 2 diabetes based on network pharmacology and molecular docking[J]. Journal of Nuclear Agricultural Sciences, 2022, 3612): 24362446. doi: 10.11869/j.issn.100-8551.2022.12.2436
    [31]
    卢明星, 赵茂, 王道平, 等. 基于网络药理学-分子对接探讨黄芪生脉散对糖尿病的作用机制[J]. 世界科学技术-中医药现代化,2022,24(9):3449−3464. [LU M X, ZHAO M, WANG D P, et al. Exploration on mechanism of Huangqi Shengmai powder on diabetes based on network pharmacology and molecular docking[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2022,24(9):3449−3464.

    LU M X, ZHAO M, WANG D P, et al. Exploration on mechanism of Huangqi Shengmai powder on diabetes based on network pharmacology and molecular docking[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 249): 34493464.
  • Cited by

    Periodical cited type(2)

    1. 李曼,刘立增,刘爱国,井琳,刘园,强锋,赵丽峥. 蛋白质对冰淇淋品质影响及其在冰淇淋中应用的研究进展. 食品工业科技. 2024(24): 416-426 . 本站查看
    2. 贾世亮,刘永清,赵雅婷,尹宇浩,周绪霞,丁玉庭. 超低温深冷冻结对水产品冰晶生成及品质的影响研究进展. 食品与发酵工业. 2024(24): 362-372 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (128) PDF downloads (27) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return