CHEN Shangli, YU Futian, SHEN Yuanyuan, et al. Mutation Breeding and Optimization of Fermentation Conditions of Bacillus Highly Producing Antimicrobial Lipopeptide Fengycin[J]. Science and Technology of Food Industry, 2023, 44(23): 134−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020239.
Citation: CHEN Shangli, YU Futian, SHEN Yuanyuan, et al. Mutation Breeding and Optimization of Fermentation Conditions of Bacillus Highly Producing Antimicrobial Lipopeptide Fengycin[J]. Science and Technology of Food Industry, 2023, 44(23): 134−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020239.

Mutation Breeding and Optimization of Fermentation Conditions of Bacillus Highly Producing Antimicrobial Lipopeptide Fengycin

More Information
  • Received Date: February 22, 2023
  • Available Online: October 07, 2023
  • In order to increase the yield of Fengycin, Bacillus YA-215 was used as the starting strain in this study to obtain high-yield Fengycin mutants through compound mutagenesis (UV mutagenesis, ARTP-LiCl mutagenesis) breeding. The optimum fermentation conditions were determined by single-factor experiment and response surface methodology. The results showed that a high-yielding Fengycin mutant strain UA397 was obtained through compound mutagenesis, and the whole genome sequencing combined with 16S evolution sample analysis showed that it was Bacillus siamensis. The optimum fermentation process conditions were: Sucrose 25 g/L, peptone 30 g/L, fermentation temperature 37.7 ℃, fermentation time 37.8 h, inoculum size 5.01%. Under these conditions, the Fengycin yield of Bacillus siamensis UA-397 was 517.09 mg/L, which was 4.575 times the Fengycin yield of 113.02 mg/L of the wild type without optimizing the fermentation conditions. This study laid the yield basis for the application of antibacterial lipopeptide Fengycin in the fields of food, medicine and biological control.
  • [1]
    CAROLIN C F, KUMAR P S, NGUEAGNI P T. A review on new aspects of lipopeptide biosurfactant:Types, production, properties and its application in the bioremediation process[J]. Journal of Hazardous Materials,2021,407:124827. doi: 10.1016/j.jhazmat.2020.124827
    [2]
    KASPAR F, NEUBAUER P, GIMPEL M. Bioactive secondary metabolites from Bacillus subtilis:A comprehensive review[J]. Journal of Natural Products,2019,82(7):2038−2053. doi: 10.1021/acs.jnatprod.9b00110
    [3]
    FAZLE RABBEE M, BAEK K H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications[J]. Molecules (Basel, Switzerland),2020,25(21):4973. doi: 10.3390/molecules25214973
    [4]
    DONG L, WANG P, ZHAO W, et al. Surfactin and fengycin contribute differentially to the biological activity of Bacillus subtilis NCD-2 against cotton verticillium wilt[J]. Biological Control,2022,174:104999. doi: 10.1016/j.biocontrol.2022.104999
    [5]
    GAO W, YIN Y, WANG P, et al. Production of fengycin from D-xylose through the expression and metabolic regulation of the Dahms pathway[J]. Applied Microbiology and Biotechnology,2022,106(7):2557−2567. doi: 10.1007/s00253-022-11871-9
    [6]
    LI Y, LI J, YE Z, et al. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in Streptomyces dengpaensis XZHG99(T)[J]. Preparative Biochemistry & Biotechnology,2021,51(2):173−182.
    [7]
    ZHANG N, ZHU X, YANG D, et al. Improved production of the tallysomycin H-1 in Streptoalloteichus hindustanus SB8005 strain by fermentation optimization[J]. Applied Microbiology and Biotechnology,2010,86(5):1345−1353. doi: 10.1007/s00253-009-2406-9
    [8]
    ZHU X, ZHANG W, CHEN X, et al. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization[J]. Biotechnology and Bioengineering,2010,107(3):506−515. doi: 10.1002/bit.22819
    [9]
    SHAKIBAIE M, AMERI A, GHAZANFARIAN R, et al. Statistical optimization of kojic acid production by a UV-induced mutant strain of Aspergillus terreus[J]. Brazilian Journal of Microbiology:[publication of the Brazilian Society for Microbiology],2018,49(4):865−871. doi: 10.1016/j.bjm.2018.03.009
    [10]
    TOSCANO L, GOCHEV V, MONTERO G, et al. Enhanced production of extracellular lipase by novel mutant strain of aspergillus niger[J]. Biotechnology & Biotechnological Equipment,2011,25(1):2243−2247.
    [11]
    LIN C Y, ZHANG Y, WU J H, et al. Regulatory patterns of crp on monensin biosynthesis in Streptomyces cinnamonensis[J]. Microorganisms,2020,8(2):271. doi: 10.3390/microorganisms8020271
    [12]
    ALVES I R, VÊNCIO R Z, GALHARDO R S. Whole genome analysis of UV-induced mutagenesis in Caulobacter crescentus[J]. Mutation Research,2022,825:111787. doi: 10.1016/j.mrfmmm.2022.111787
    [13]
    SUGIYAMA T, CHEN Y. Biochemical reconstitution of UV-induced mutational processes[J]. Nucleic Acids Research,2019,47(13):6769−6782. doi: 10.1093/nar/gkz335
    [14]
    AMERI A, SHAKIBAIE M, SOLEIMANI-KERMANI M, et al. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components[J]. Preparative Biochemistry & Biotechnology,2019,49(2):184−191.
    [15]
    BEACHAM T A, MACIA V M, ROOKS P, et al. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis[J]. Biotechnology Reports (Amsterdam, Netherlands),2015,7:87−94. doi: 10.1016/j.btre.2015.05.007
    [16]
    李光月, 李雪玲, 祁姣姣, 等. 响应面法优化枯草芽孢杆菌表面活性素的发酵工艺[J]. 食品工业科技,2022,43(12):146−154. [LI Guangyue, LI Xueling, QI Jiaojiao, et al. Optimization of fermentation conditions of surfactin from Bacillus subtilis by response surface methodology[J]. Science and Technology of Food Industry,2022,43(12):146−154.

    LI Guangyue, LI Xueling, QI Jiaojiao, et al. Optimization of fermentation conditions of surfactin from Bacillus subtilis by response surface methodology[J]. Science and Technology of Food Industry, 2022, 4312): 146154.
    [17]
    孟兆丽, 丛丽娜, 曾国洪, 等. 枯草芽孢杆菌HS-A38高产抗菌肽突变株的筛选及其抑菌机理的研究[J]. 工业微生物,2018,48(2):23−28. [MENG Zhaoli, CONG Lina, ZENG Guohong, et al. Screening of high yielding antibacterial peptide mutants from Bacillus subtilis HS-A38 and action mechanism of antibacterial peptides[J]. Industrial Microbiology,2018,48(2):23−28.

    MENG Zhaoli, CONG Lina, ZENG Guohong, et al. Screening of high yielding antibacterial peptide mutants from Bacillus subtilis HS-A38 and action mechanism of antibacterial peptides[J]. Industrial Microbiology, 2018, 482): 2328.
    [18]
    辛磊, 安慧, 覃国乐, 等. 枯草芽孢杆菌XL05菌株的紫外诱变及发酵配方优化[J]. 发酵科技通讯,2020,49(3):142−146. [XIN Lei, AN Hui, QIN Guole, et al. The mutagenesis of Bacillus subtilis XL05 by UV radiation and optimization of fermentation medium formula[J]. Bulletin of Fermentation Science and Technology,2020,49(3):142−146.

    XIN Lei, AN Hui, QIN Guole, et al. The mutagenesis of Bacillus subtilis XL05 by UV radiation and optimization of fermentation medium formula[J]. Bulletin of Fermentation Science and Technology, 2020, 493): 142146.
    [19]
    杨心萍, 宋词, 张伟豪, 等. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业,2020,46(9):73−77. [YANG Xinping, SONG Ci, ZHANG Weihao, et al. Combined mutagenesis of ARTP and 5-BU for improving production of adenosine in Bacillus subtilis[J]. Food and Fermentation Industries,2020,46(9):73−77.

    YANG Xinping, SONG Ci, ZHANG Weihao, et al. Combined mutagenesis of ARTP and 5-BU for improving production of adenosine in Bacillus subtilis[J]. Food and Fermentation Industries, 2020, 469): 7377.
    [20]
    GANCEL F, MONTASTRUC L, TAO L, et al. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles[J]. Process Biochemistry,2009,44(9):975−978. doi: 10.1016/j.procbio.2009.04.023
    [21]
    YU G, PENG H, CAO J, et al. Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes[J]. World Journal of Microbiology & Biotechnology,2022,38(3):50.
    [22]
    沙见宇, 裴欢, 刘曦, 等. 高产Monacolin K红曲霉的诱变选育及其与酿酒酵母共酵培养[J]. 中国酿造,2023,42(2):189−192. [SHA Jianyu, PEI Huan, LIU Xi, et al. Mutagenesis of high-yield Monacolin K Monascus strains and co-fermentation culture with Saccharomyces cerevisiae[J]. China Brewing,2023,42(2):189−192.

    SHA Jianyu, PEI Huan, LIU Xi, et al. Mutagenesis of high-yield Monacolin K Monascus strains and co-fermentation culture with Saccharomyces cerevisiae[J]. China Brewing, 2023, 422): 189192.
    [23]
    吴亦楠, 邢新会, 张翀, 等. ARTP生物育种技术与装备研发及其产业化发展[J]. 生物产业技术,2017(1):37−45. [WU Yinan, XING Xinhui, ZHANG Chong, et al. Recent progress on atmospheric and room temperature plasma(ARTP) biobreeding technology, instrumentation and its industrialization[J]. Biotechnology & Business,2017(1):37−45.

    WU Yinan, XING Xinhui, ZHANG Chong, et al. Recent progress on atmospheric and room temperature plasma(ARTP) biobreeding technology, instrumentation and its industrialization[J]. Biotechnology & Business, 20171): 3745.
    [24]
    童凡, 黄家琪, 范坚强, 等. 常压室温等离子体诱变选育淀粉酶菌株及其酶学特性研究[J]. 食品工业科技,2022,43(20):137−143. [TONG Fan, HUANG Jiaqi, FAN Jianqiang, et al. Selection of amylase producing strain by atmospheric and room temperature plasmas and its enzymological properties[J]. Science and Technology of Food Industry,2022,43(20):137−143.

    TONG Fan, HUANG Jiaqi, FAN Jianqiang, et al. Selection of amylase producing strain by atmospheric and room temperature plasmas and its enzymological properties[J]. Science and Technology of Food Industry, 2022, 4320): 137143.
    [25]
    杨小冲, 陈忠军. 新型物理诱变技术在微生物育种中的应用进展[J]. 食品工业,2017,38(3):242−245. [YANG Xiaochong, CHEN Zhongjun. Application progress of new microorganism physical mutation breeding technology[J]. The Food Industry,2017,38(3):242−245.

    YANG Xiaochong, CHEN Zhongjun. Application progress of new microorganism physical mutation breeding technology[J]. The Food Industry, 2017, 383): 242245.
    [26]
    冒鑫哲, 彭政, 周冠宇, 等. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业,2020,46(17):138−144. [MAO Xinzhe, PENG Zheng, ZHOU Guanyu, et a1. Optimized fermentation for improving keratinase production by Bacillus subtillis WB600[J]. Food and Fermentation Industries,2020,46(17):138−144.

    MAO Xinzhe, PENG Zheng, ZHOU Guanyu, et a1. Optimized fermentation for improving keratinase production by Bacillus subtillis WB600[J]. Food and Fermentation Industries, 2020, 4617): 138144.
    [27]
    韩唱, 宿玲恰, 吴敬. Sulfolobus acidocaldarius ATCC 33909麦芽寡糖基海藻糖合成酶在Bacillus subtilis中的重组表达和发酵优化[J]. 生物技术通报, 2017, 33(7):162−168. [HAN C, SU L Q, WU J. Recombinant expression and fermentation optimization of Sulfolobus acidocaldarius ATCC 33909 maltooligo syltrehalose ynthase in Bacillus subtilis[J]. 2017, 33(7):162−168.

    HAN C, SU L Q, WU J. Recombinant expression and fermentation optimization of Sulfolobus acidocaldarius ATCC 33909 maltooligo syltrehalose ynthase in Bacillus subtilis[J]. 2017, 33(7): 162−168.
    [28]
    王銮, 包怡红, 康宁. 混菌固态发酵榛仁粕制备降血压肽工艺优化研究[J]. 中国粮油学报,2018,33(12):35−41. [WANG Luan, BAO Yihong, KANG Ning. Optimization of antihypertensive peptide preparation by mixed solid fermentation of hazelnut meal[J]. Journal of the Chinese Cereals and Oils Association,2018,33(12):35−41.

    WANG Luan, BAO Yihong, KANG Ning. Optimization of antihypertensive peptide preparation by mixed solid fermentation of hazelnut meal[J]. Journal of the Chinese Cereals and Oils Association, 2018, 3312): 3541.
    [29]
    LI Y, CHEN Y, TIAN X, et al. Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology[J]. Applied Microbiology and Biotechnology,2020,104(24):10325−10337. doi: 10.1007/s00253-020-10964-7
    [30]
    鞠兴荣, 王雪峰, 王立峰, 等. 混菌固态发酵菜籽粕制备菜籽肽的菌种筛选[J]. 食品与发酵工业,2011,37(9):104−108. [JU X R, WANG X F, WANG L F, et a1. Study on screening of strains used for preparing rapeseed peptide from rapeseed meal by mixed fermentation[J]. Food and Fermentation Industries,2011,37(9):104−108. doi: 10.13995/j.cnki.11-1802/ts.2011.09.005

    JU X R, WANG X F, WANG L F, et a1. Study on screening of strains used for preparing rapeseed peptide from rapeseed meal by mixed fermentation[J]. Food and Fermentation Industries, 2011, 379): 104108. doi: 10.13995/j.cnki.11-1802/ts.2011.09.005
    [31]
    ZHANG X, CHEN X, QIAO X, et al. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici[J]. Journal of Separation Science,2021,44(4):931−940. doi: 10.1002/jssc.201901274
  • Cited by

    Periodical cited type(15)

    1. 黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 . 本站查看
    2. 张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
    3. 朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
    4. 薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
    5. 吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
    6. 缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
    7. 孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
    8. 朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
    9. 黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 . 本站查看
    10. 宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 . 本站查看
    11. 刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
    12. 张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
    13. 龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
    14. 王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
    15. 刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (168) PDF downloads (14) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return