Citation: | CHEN Shangli, YU Futian, SHEN Yuanyuan, et al. Mutation Breeding and Optimization of Fermentation Conditions of Bacillus Highly Producing Antimicrobial Lipopeptide Fengycin[J]. Science and Technology of Food Industry, 2023, 44(23): 134−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020239. |
[1] |
CAROLIN C F, KUMAR P S, NGUEAGNI P T. A review on new aspects of lipopeptide biosurfactant:Types, production, properties and its application in the bioremediation process[J]. Journal of Hazardous Materials,2021,407:124827. doi: 10.1016/j.jhazmat.2020.124827
|
[2] |
KASPAR F, NEUBAUER P, GIMPEL M. Bioactive secondary metabolites from Bacillus subtilis:A comprehensive review[J]. Journal of Natural Products,2019,82(7):2038−2053. doi: 10.1021/acs.jnatprod.9b00110
|
[3] |
FAZLE RABBEE M, BAEK K H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications[J]. Molecules (Basel, Switzerland),2020,25(21):4973. doi: 10.3390/molecules25214973
|
[4] |
DONG L, WANG P, ZHAO W, et al. Surfactin and fengycin contribute differentially to the biological activity of Bacillus subtilis NCD-2 against cotton verticillium wilt[J]. Biological Control,2022,174:104999. doi: 10.1016/j.biocontrol.2022.104999
|
[5] |
GAO W, YIN Y, WANG P, et al. Production of fengycin from D-xylose through the expression and metabolic regulation of the Dahms pathway[J]. Applied Microbiology and Biotechnology,2022,106(7):2557−2567. doi: 10.1007/s00253-022-11871-9
|
[6] |
LI Y, LI J, YE Z, et al. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in Streptomyces dengpaensis XZHG99(T)[J]. Preparative Biochemistry & Biotechnology,2021,51(2):173−182.
|
[7] |
ZHANG N, ZHU X, YANG D, et al. Improved production of the tallysomycin H-1 in Streptoalloteichus hindustanus SB8005 strain by fermentation optimization[J]. Applied Microbiology and Biotechnology,2010,86(5):1345−1353. doi: 10.1007/s00253-009-2406-9
|
[8] |
ZHU X, ZHANG W, CHEN X, et al. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization[J]. Biotechnology and Bioengineering,2010,107(3):506−515. doi: 10.1002/bit.22819
|
[9] |
SHAKIBAIE M, AMERI A, GHAZANFARIAN R, et al. Statistical optimization of kojic acid production by a UV-induced mutant strain of Aspergillus terreus[J]. Brazilian Journal of Microbiology:[publication of the Brazilian Society for Microbiology],2018,49(4):865−871. doi: 10.1016/j.bjm.2018.03.009
|
[10] |
TOSCANO L, GOCHEV V, MONTERO G, et al. Enhanced production of extracellular lipase by novel mutant strain of aspergillus niger[J]. Biotechnology & Biotechnological Equipment,2011,25(1):2243−2247.
|
[11] |
LIN C Y, ZHANG Y, WU J H, et al. Regulatory patterns of crp on monensin biosynthesis in Streptomyces cinnamonensis[J]. Microorganisms,2020,8(2):271. doi: 10.3390/microorganisms8020271
|
[12] |
ALVES I R, VÊNCIO R Z, GALHARDO R S. Whole genome analysis of UV-induced mutagenesis in Caulobacter crescentus[J]. Mutation Research,2022,825:111787. doi: 10.1016/j.mrfmmm.2022.111787
|
[13] |
SUGIYAMA T, CHEN Y. Biochemical reconstitution of UV-induced mutational processes[J]. Nucleic Acids Research,2019,47(13):6769−6782. doi: 10.1093/nar/gkz335
|
[14] |
AMERI A, SHAKIBAIE M, SOLEIMANI-KERMANI M, et al. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components[J]. Preparative Biochemistry & Biotechnology,2019,49(2):184−191.
|
[15] |
BEACHAM T A, MACIA V M, ROOKS P, et al. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis[J]. Biotechnology Reports (Amsterdam, Netherlands),2015,7:87−94. doi: 10.1016/j.btre.2015.05.007
|
[16] |
李光月, 李雪玲, 祁姣姣, 等. 响应面法优化枯草芽孢杆菌表面活性素的发酵工艺[J]. 食品工业科技,2022,43(12):146−154. [LI Guangyue, LI Xueling, QI Jiaojiao, et al. Optimization of fermentation conditions of surfactin from Bacillus subtilis by response surface methodology[J]. Science and Technology of Food Industry,2022,43(12):146−154.
|
[17] |
孟兆丽, 丛丽娜, 曾国洪, 等. 枯草芽孢杆菌HS-A38高产抗菌肽突变株的筛选及其抑菌机理的研究[J]. 工业微生物,2018,48(2):23−28. [MENG Zhaoli, CONG Lina, ZENG Guohong, et al. Screening of high yielding antibacterial peptide mutants from Bacillus subtilis HS-A38 and action mechanism of antibacterial peptides[J]. Industrial Microbiology,2018,48(2):23−28.
|
[18] |
辛磊, 安慧, 覃国乐, 等. 枯草芽孢杆菌XL05菌株的紫外诱变及发酵配方优化[J]. 发酵科技通讯,2020,49(3):142−146. [XIN Lei, AN Hui, QIN Guole, et al. The mutagenesis of Bacillus subtilis XL05 by UV radiation and optimization of fermentation medium formula[J]. Bulletin of Fermentation Science and Technology,2020,49(3):142−146.
|
[19] |
杨心萍, 宋词, 张伟豪, 等. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业,2020,46(9):73−77. [YANG Xinping, SONG Ci, ZHANG Weihao, et al. Combined mutagenesis of ARTP and 5-BU for improving production of adenosine in Bacillus subtilis[J]. Food and Fermentation Industries,2020,46(9):73−77.
|
[20] |
GANCEL F, MONTASTRUC L, TAO L, et al. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles[J]. Process Biochemistry,2009,44(9):975−978. doi: 10.1016/j.procbio.2009.04.023
|
[21] |
YU G, PENG H, CAO J, et al. Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes[J]. World Journal of Microbiology & Biotechnology,2022,38(3):50.
|
[22] |
沙见宇, 裴欢, 刘曦, 等. 高产Monacolin K红曲霉的诱变选育及其与酿酒酵母共酵培养[J]. 中国酿造,2023,42(2):189−192. [SHA Jianyu, PEI Huan, LIU Xi, et al. Mutagenesis of high-yield Monacolin K Monascus strains and co-fermentation culture with Saccharomyces cerevisiae[J]. China Brewing,2023,42(2):189−192.
|
[23] |
吴亦楠, 邢新会, 张翀, 等. ARTP生物育种技术与装备研发及其产业化发展[J]. 生物产业技术,2017(1):37−45. [WU Yinan, XING Xinhui, ZHANG Chong, et al. Recent progress on atmospheric and room temperature plasma(ARTP) biobreeding technology, instrumentation and its industrialization[J]. Biotechnology & Business,2017(1):37−45.
|
[24] |
童凡, 黄家琪, 范坚强, 等. 常压室温等离子体诱变选育淀粉酶菌株及其酶学特性研究[J]. 食品工业科技,2022,43(20):137−143. [TONG Fan, HUANG Jiaqi, FAN Jianqiang, et al. Selection of amylase producing strain by atmospheric and room temperature plasmas and its enzymological properties[J]. Science and Technology of Food Industry,2022,43(20):137−143.
|
[25] |
杨小冲, 陈忠军. 新型物理诱变技术在微生物育种中的应用进展[J]. 食品工业,2017,38(3):242−245. [YANG Xiaochong, CHEN Zhongjun. Application progress of new microorganism physical mutation breeding technology[J]. The Food Industry,2017,38(3):242−245.
|
[26] |
冒鑫哲, 彭政, 周冠宇, 等. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业,2020,46(17):138−144. [MAO Xinzhe, PENG Zheng, ZHOU Guanyu, et a1. Optimized fermentation for improving keratinase production by Bacillus subtillis WB600[J]. Food and Fermentation Industries,2020,46(17):138−144.
|
[27] |
韩唱, 宿玲恰, 吴敬. Sulfolobus acidocaldarius ATCC 33909麦芽寡糖基海藻糖合成酶在Bacillus subtilis中的重组表达和发酵优化[J]. 生物技术通报, 2017, 33(7):162−168. [HAN C, SU L Q, WU J. Recombinant expression and fermentation optimization of Sulfolobus acidocaldarius ATCC 33909 maltooligo syltrehalose ynthase in Bacillus subtilis[J]. 2017, 33(7):162−168.
HAN C, SU L Q, WU J. Recombinant expression and fermentation optimization of Sulfolobus acidocaldarius ATCC 33909 maltooligo syltrehalose ynthase in Bacillus subtilis[J]. 2017, 33(7): 162−168.
|
[28] |
王銮, 包怡红, 康宁. 混菌固态发酵榛仁粕制备降血压肽工艺优化研究[J]. 中国粮油学报,2018,33(12):35−41. [WANG Luan, BAO Yihong, KANG Ning. Optimization of antihypertensive peptide preparation by mixed solid fermentation of hazelnut meal[J]. Journal of the Chinese Cereals and Oils Association,2018,33(12):35−41.
|
[29] |
LI Y, CHEN Y, TIAN X, et al. Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology[J]. Applied Microbiology and Biotechnology,2020,104(24):10325−10337. doi: 10.1007/s00253-020-10964-7
|
[30] |
鞠兴荣, 王雪峰, 王立峰, 等. 混菌固态发酵菜籽粕制备菜籽肽的菌种筛选[J]. 食品与发酵工业,2011,37(9):104−108. [JU X R, WANG X F, WANG L F, et a1. Study on screening of strains used for preparing rapeseed peptide from rapeseed meal by mixed fermentation[J]. Food and Fermentation Industries,2011,37(9):104−108. doi: 10.13995/j.cnki.11-1802/ts.2011.09.005
|
[31] |
ZHANG X, CHEN X, QIAO X, et al. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici[J]. Journal of Separation Science,2021,44(4):931−940. doi: 10.1002/jssc.201901274
|
1. |
黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 .
![]() | |
2. |
张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
![]() | |
3. |
朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
![]() | |
4. |
薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
![]() | |
5. |
吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
![]() | |
6. |
缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
![]() | |
7. |
孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
![]() | |
8. |
朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
![]() | |
9. |
黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 .
![]() | |
10. |
宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 .
![]() | |
11. |
刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
![]() | |
12. |
张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
![]() | |
13. |
龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
![]() | |
14. |
王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
![]() | |
15. |
刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .
![]() |