LIAO Mingjun, ZHANG Ziran, HUI Sen, et al. Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(22): 84−91. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020230.
Citation: LIAO Mingjun, ZHANG Ziran, HUI Sen, et al. Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(22): 84−91. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020230.

Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles

More Information
  • Received Date: February 21, 2023
  • Available Online: September 17, 2023
  • Silkworm pupa peptide (SCP) was prepared by enzymatic hydrolysis and then chelated with soluble zinc ions to obtain silkworm pupa peptide-zinc chelates (SCP-Zn), so as to develop safe and easily absorbable zinc supplements and improve the utilization value of silkworm pupa. Taking the zinc chelating capacity as an index, the optimum preparation process of SCP-Zn was determined, and the structure of both SCP and SCP-Zn were characterized by ultraviolet spectrum, fluorescence spectra, scanning electron microscopy, elemental analysis, particle size analysis and Fourier transform infrared spectrum. The results showed that the chelation rate of silkworm chrysalis peptide was 58.05% under the conditions of 1% alkaline protease plus enzyme, pH8.0, temperature 50 ℃ and enzymatic hydrolysis time 6 h. The optimum preparation conditions for preparation of SCP-Zn nanoparticles were as follows: Mass ratio of zinc peptide 1:0.5, pH6.5, 55 ℃, time 20 min, and the chelation rate of zinc reached 72.63%. The results of ultraviolet spectrum and fluorescence spectrum showed that zinc ions successfully combined with SCP. The obtained chrysalis SCP-Zn belongs to nanoparticles with an average particle size of 71.99 nm, with uniform granular structure on the surface, and the relative content of zinc reached 37.46%. The -COOH, -NH2 and -C=O in the peptide chain were the main binding sites of Zn2+ and SCP. The results indicated that silkworm pupa was a good raw material for preparation of zinc chelates. The study provides a theoretical basis for enriching organic zinc supplement resources and the high value utilization of silkworm pupa.
  • [1]
    DUAN M P, LI T, LIU B, et al. Zinc nutrition and dietary zinc supplements[J]. Critical Reviews in Food Science and Nutrition,2021,63(9):1277−1292.
    [2]
    MAXFIELD L, SHUKLA S, CRANE J S. Zinc Deficiency[DB/OL]. Treasure Island (FL):StatPearls Publishing, (2023-6-8) [2023-9-6].https://www.ncbi.nlm.nih.gov/books/NBK493231/.
    [3]
    李钰金, 赵元晖, 解万翠, 等. 食源性促锌吸收肽研究进展[J]. 食品科技,2019,44(11):62−67

    LI Y J, ZHAO Y H, XIE W C, et al. Research progress of foodborne zinc promoting peptides[J]. Food Science and Technology,2019,44(11):62−67.
    [4]
    ZHANG Z R, ZHOU F B, LIU X L, et al. Particulate nanocomposite from oyster ( Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry,2018,258:269−277. doi: 10.1016/j.foodchem.2018.03.030
    [5]
    PENG M Y, LU D, YU M, et al. Identification of zinc-chelating pumpkin seed (Cucurbita pepo L.) peptides and in vitro transport of peptide-zinc chelates[J]. Journal of Food Science, 2022, 87(5):2048−2057.
    [6]
    DAI Y, HUANG M J, XU Y J, et al. Enzymatic hydrolysis of silkworm pupa and its allergenicity evaluation by animal model with different immunization routes[J]. Food Science and Human Wellness,2023,12(3):774−782. doi: 10.1016/j.fshw.2022.09.011
    [7]
    LI Z Y, ZHAO S, XIN X D, et al. Purification, identification and functional analysis of a novel immunomodulatory peptide from silkworm pupa protein[J]. International Journal of Peptide Research and Therapeutics,2020,26(1):243−249. doi: 10.1007/s10989-019-09832-4
    [8]
    沈圆圆, 于福田, 秦雅莉, 等. 纳豆菌液态发酵制备蚕蛹肽的工艺优化及其抗炎活性研究[J]. 食品工业科技,2022,43(3):162−171

    SHEN Y Y, YU F T, QIN Y L, et al. Optimization of liquid fermentation process for preparation of silkworm pupa peptide by bacillus natto and its anti-inflammatory activity[J]. Food Industry Science and Technology,2022,43(3):162−171.
    [9]
    MORA L, TOLDRÁ F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides[J]. Current Opinion in Food Science,2023,49:100973. doi: 10.1016/j.cofs.2022.100973
    [10]
    石景, 邹烨, 马晶晶, 等. 食源肽螯合钙的研究进展[J]. 食品工业科技,2023,44(11):460−467

    SHI J, ZHOU H, MA J J, et al. Research progress of calcium chelated by dietary peptide[J]. Food Industry Science and Technology,2023,44(11):460−467.
    [11]
    李少辉, 贾俊强, 桂仲争. 微细化-蛋白酶解对蚕蛹蛋白营养价值和功能特性的影响[J]. 食品科学,2018,39(7):181−187 doi: 10.7506/spkx1002-6630-201807027

    LI S H, JIA J Q, GUI Z Z. Effect of micronization-enzymatic hydrolysis on nutrition and functional properties of silkworm ( Bombyx mori) pupa protein[J]. Food Science,2018,39(7):181−187. doi: 10.7506/spkx1002-6630-201807027
    [12]
    ZHOU J, ZHENG D, ZHANG F, et al. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers[J]. Materials Science and Engineering: C,2016,69:1290−1296. doi: 10.1016/j.msec.2016.08.042
    [13]
    任子旭, 周志峰, 方银, 等. 用超声波改善蚕蛹蛋白性能的工艺条件优化及产品性能测试[J]. 蚕业科学,2015,41(3):548−554

    REN Z X, ZHOU Z F, FANG Y, et al. Optimization of technological conditions and product performance test for improving protein properties of silkworm chrysalis by ultrasonic wave[J]. Science of Sericulture,2015,41(3):548−554.
    [14]
    赵梓月, 王思远, 廖森泰, 等. 蚕蛹多肽螯合钙的制备工艺优化及结构表征[J]. 食品与机械,2019,35(8):20−26

    ZHAO Z Y, WANG S Y, LIAO S T, et al. Preparation and structural characterization of silkworm pupa peptide chelated calcium[J]. Food and Machinery,2019,35(8):20−26.
    [15]
    郭兴凤. 蛋白质水解度的测定[J]. 中国油脂,2000,25(6):176−177

    GUO X F. Determination of proteolytic degree[J]. China Oils and Fats,2000,25(6):176−177.
    [16]
    周志峰, 李少辉, 任子旭, 等. 超声波预处理蚕蛹蛋白的酶解动力学研究[J]. 蚕业科学,2017,43(1):112−117

    ZHOU Z F, LI S H, REN Z X, et al. A kinetic study on enzymatic hydrolysis of silkworm pupa proteins by ultrasonic pretreatment[J]. Science of Sericulture,2017,43(1):112−117.
    [17]
    VAN DER VEN C, MURESAN S, GRUPPEN H, et al. FTIR spectra of whey and casein hydrolysates in relation to their functional properties[J]. Journal of Agricultural and Food Chemistry,2002,50(24):6943−6950. doi: 10.1021/jf020387k
    [18]
    蔡沙, 何建军, 张国忠, 等. 蚕蛹蛋白酶解工艺及其水解产物抗氧化性[J]. 食品工业,2019,40(6):77−82

    CAI S, HE J J, ZHANG G Z, et al. Protease hydrolysis process of silkworm chrysalis and antioxidant activity of its hydrolyzed products[J]. Food Industry,2019,40(6):77−82.
    [19]
    TACIAS-PASCACIO V G, MORELLON-STERLING R, SIAR E H, et al. Use of alcalase in the production of bioactive peptides:A review[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B):2143−2196.
    [20]
    WANG C, LI B, AO J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS[J]. Food Chemistry,2012,134(2):1231−1238. doi: 10.1016/j.foodchem.2012.02.204
    [21]
    康云, 刘昆仑. 米糠肽-铁锌螯合物制备工艺研究[J]. 食品安全质量检测学报,2021,12(16):6579−6585

    KANG Y, LIU K L. Preparation of rice bran peptide-iron zinc chelate[J]. Journal of Food Safety and Quality Inspection,2021,12(16):6579−6585.
    [22]
    UDECHUKWU M C, COLLINS S A, UDENIGWE C C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides[J]. Food and Function, 2016:1010-1039.
    [23]
    HUANG H, FU M, CHEN M. Preparation, characteristics, and formation mechanism of oyster peptide-zinc nanoparticles[J]. Journal of Ocean University of China,2019,18(4):953−961. doi: 10.1007/s11802-019-4007-2
    [24]
    ZHU S, ZHENG Y, HE S, et al. Novel Zn-binding peptide isolated from soy protein hydrolysates:Purification, structure, and digestion[J]. Journal of Agricultural and Food Chemistry,2021,69(1):483−490. doi: 10.1021/acs.jafc.0c05792
    [25]
    SUN X, SARTESHNIZI R A, BOACHIE R T, et al. Peptide–mineral complexes:Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency[J]. Foods,2020,9(10):1402. doi: 10.3390/foods9101402
    [26]
    WANG X, ZHOU J, TONG P S, et al. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes[J]. Journal of Dairy Science,2011,94(6):2731−2740. doi: 10.3168/jds.2010-3900
    [27]
    郑英敏. 基于大豆酶解物锌配合肽的发掘及肽-锌配合作用机理研究[D]. 广州:广州大学, 2020

    ZHENG Y M. Exploration of zinc chelate peptide in soybean hydrolysates and study on the mechanism of peptide-zinc coordination [D]. Guangzhou:Guangzhou University, 2020.
    [28]
    LI C, BU G C, CHEN F S, et al. Preparation and structural characterization of peanut peptide-zinc chelate[J]. CyTA-Journal of Food,2020,18(1):409−416. doi: 10.1080/19476337.2020.1767695
    [29]
    NAVALE G R, RANA A, SAINI S, et al. An efficient fluorescence chemosensor for sensing Zn(II) ions and applications in cell imaging and detection of Zn(II) induced aggregation of PrP(106-126) peptide[J]. Journal of Photochemistry and Photobiology A:Chemistry,2023,441:114703. doi: 10.1016/j.jphotochem.2023.114703
    [30]
    PAULE S G, NIKOLOVSKI B, LUDEMAN J, et al. Ability of GHTD-amide and analogs to enhance insulin activity through zinc chelation and dispersal of insulin oligomers[J]. Peptides,2009,30(6):1088−1097. doi: 10.1016/j.peptides.2009.02.020
    [31]
    MENG K K, CHEN L, XIA G H, et al. Effects of zinc sulfate and zinc lactate on the properties of tilapia ( Oreochromis niloticus) skin collagen peptide chelate zinc[J]. Food Chemistry,2021,347:129043. doi: 10.1016/j.foodchem.2021.129043
    [32]
    ZHANG J P, TANG Y X, ZHOU S P, et al. Novel strategy to improve the bioactivity and anti-hydrolysis ability of oat peptides via zinc ion-induced assembling[J]. Food Chemistry,2023,416:135468. doi: 10.1016/j.foodchem.2023.135468
    [33]
    ZHENG Y J, GUO M, CHENG C X, et al. Structural and physicochemical characteristics, stability, toxicity and antioxidant activity of peptide-zinc chelate from coconut cake globulin hydrolysates[J]. LWT-Food Science and Technology,2023,173:114367. doi: 10.1016/j.lwt.2022.114367
    [34]
    BAI X Y, QIU Z C, ZHENG Z J, et al. Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice[J]. Food Chemistry,2022,15:100361.
    [35]
    BAO Z J, ZHANG P L, SUN N, et al. Elucidating the calcium-binding site, absorption activities, and thermal stability of egg white peptide–calcium chelate[J]. Foods,2021,10(11):2565. doi: 10.3390/foods10112565
    [36]
    CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHEO MT, et al. Peptide-metal complexes:Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
    [37]
    SUN N, CUI P B, LIN S Y, et al. Characterization of sea cucumber ( Stichopus japonicus) ovum hydrolysates:Calcium chelation, solubility and absorption into intestinal epithelial cells[J]. Journal of the Science of Food and Agriculture,2017,97(13):4604−4611. doi: 10.1002/jsfa.8330
    [38]
    张智, 刘慧, 刘奇, 等. 玉米肽-锌螯合物结构表征及抗氧化活性分析[J]. 食品科学,2017,38(3):131−135

    ZHANG Z, LIU H, LIU Q, et al. Structure characterization and antioxidant activity analysis of peptide-zinc chelates of maize[J]. Food Science,2017,38(3):131−135.
    [39]
    SUN R N, LIU X F, YU Y, et al. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill ( Euphausia superba) peptides-zinc chelate[J]. Food Chemisry,2021,340:128056. doi: 10.1016/j.foodchem.2020.128056
  • Cited by

    Periodical cited type(1)

    1. 蔡帅,郭秋爽,刘炎,孙杨,李华,刘宇鹏. 响应面法优化弗托氏葡糖酸杆菌产羟基乙酸工艺条件. 食品工业科技. 2022(12): 138-145 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (101) PDF downloads (18) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return