Citation: | LIAO Mingjun, ZHANG Ziran, HUI Sen, et al. Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(22): 84−91. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020230. |
[1] |
DUAN M P, LI T, LIU B, et al. Zinc nutrition and dietary zinc supplements[J]. Critical Reviews in Food Science and Nutrition,2021,63(9):1277−1292.
|
[2] |
MAXFIELD L, SHUKLA S, CRANE J S. Zinc Deficiency[DB/OL]. Treasure Island (FL):StatPearls Publishing, (2023-6-8) [2023-9-6].https://www.ncbi.nlm.nih.gov/books/NBK493231/.
|
[3] |
李钰金, 赵元晖, 解万翠, 等. 食源性促锌吸收肽研究进展[J]. 食品科技,2019,44(11):62−67
LI Y J, ZHAO Y H, XIE W C, et al. Research progress of foodborne zinc promoting peptides[J]. Food Science and Technology,2019,44(11):62−67.
|
[4] |
ZHANG Z R, ZHOU F B, LIU X L, et al. Particulate nanocomposite from oyster ( Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry,2018,258:269−277. doi: 10.1016/j.foodchem.2018.03.030
|
[5] |
PENG M Y, LU D, YU M, et al. Identification of zinc-chelating pumpkin seed (Cucurbita pepo L.) peptides and in vitro transport of peptide-zinc chelates[J]. Journal of Food Science, 2022, 87(5):2048−2057.
|
[6] |
DAI Y, HUANG M J, XU Y J, et al. Enzymatic hydrolysis of silkworm pupa and its allergenicity evaluation by animal model with different immunization routes[J]. Food Science and Human Wellness,2023,12(3):774−782. doi: 10.1016/j.fshw.2022.09.011
|
[7] |
LI Z Y, ZHAO S, XIN X D, et al. Purification, identification and functional analysis of a novel immunomodulatory peptide from silkworm pupa protein[J]. International Journal of Peptide Research and Therapeutics,2020,26(1):243−249. doi: 10.1007/s10989-019-09832-4
|
[8] |
沈圆圆, 于福田, 秦雅莉, 等. 纳豆菌液态发酵制备蚕蛹肽的工艺优化及其抗炎活性研究[J]. 食品工业科技,2022,43(3):162−171
SHEN Y Y, YU F T, QIN Y L, et al. Optimization of liquid fermentation process for preparation of silkworm pupa peptide by bacillus natto and its anti-inflammatory activity[J]. Food Industry Science and Technology,2022,43(3):162−171.
|
[9] |
MORA L, TOLDRÁ F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides[J]. Current Opinion in Food Science,2023,49:100973. doi: 10.1016/j.cofs.2022.100973
|
[10] |
石景, 邹烨, 马晶晶, 等. 食源肽螯合钙的研究进展[J]. 食品工业科技,2023,44(11):460−467
SHI J, ZHOU H, MA J J, et al. Research progress of calcium chelated by dietary peptide[J]. Food Industry Science and Technology,2023,44(11):460−467.
|
[11] |
李少辉, 贾俊强, 桂仲争. 微细化-蛋白酶解对蚕蛹蛋白营养价值和功能特性的影响[J]. 食品科学,2018,39(7):181−187 doi: 10.7506/spkx1002-6630-201807027
LI S H, JIA J Q, GUI Z Z. Effect of micronization-enzymatic hydrolysis on nutrition and functional properties of silkworm ( Bombyx mori) pupa protein[J]. Food Science,2018,39(7):181−187. doi: 10.7506/spkx1002-6630-201807027
|
[12] |
ZHOU J, ZHENG D, ZHANG F, et al. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers[J]. Materials Science and Engineering: C,2016,69:1290−1296. doi: 10.1016/j.msec.2016.08.042
|
[13] |
任子旭, 周志峰, 方银, 等. 用超声波改善蚕蛹蛋白性能的工艺条件优化及产品性能测试[J]. 蚕业科学,2015,41(3):548−554
REN Z X, ZHOU Z F, FANG Y, et al. Optimization of technological conditions and product performance test for improving protein properties of silkworm chrysalis by ultrasonic wave[J]. Science of Sericulture,2015,41(3):548−554.
|
[14] |
赵梓月, 王思远, 廖森泰, 等. 蚕蛹多肽螯合钙的制备工艺优化及结构表征[J]. 食品与机械,2019,35(8):20−26
ZHAO Z Y, WANG S Y, LIAO S T, et al. Preparation and structural characterization of silkworm pupa peptide chelated calcium[J]. Food and Machinery,2019,35(8):20−26.
|
[15] |
郭兴凤. 蛋白质水解度的测定[J]. 中国油脂,2000,25(6):176−177
GUO X F. Determination of proteolytic degree[J]. China Oils and Fats,2000,25(6):176−177.
|
[16] |
周志峰, 李少辉, 任子旭, 等. 超声波预处理蚕蛹蛋白的酶解动力学研究[J]. 蚕业科学,2017,43(1):112−117
ZHOU Z F, LI S H, REN Z X, et al. A kinetic study on enzymatic hydrolysis of silkworm pupa proteins by ultrasonic pretreatment[J]. Science of Sericulture,2017,43(1):112−117.
|
[17] |
VAN DER VEN C, MURESAN S, GRUPPEN H, et al. FTIR spectra of whey and casein hydrolysates in relation to their functional properties[J]. Journal of Agricultural and Food Chemistry,2002,50(24):6943−6950. doi: 10.1021/jf020387k
|
[18] |
蔡沙, 何建军, 张国忠, 等. 蚕蛹蛋白酶解工艺及其水解产物抗氧化性[J]. 食品工业,2019,40(6):77−82
CAI S, HE J J, ZHANG G Z, et al. Protease hydrolysis process of silkworm chrysalis and antioxidant activity of its hydrolyzed products[J]. Food Industry,2019,40(6):77−82.
|
[19] |
TACIAS-PASCACIO V G, MORELLON-STERLING R, SIAR E H, et al. Use of alcalase in the production of bioactive peptides:A review[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B):2143−2196.
|
[20] |
WANG C, LI B, AO J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS[J]. Food Chemistry,2012,134(2):1231−1238. doi: 10.1016/j.foodchem.2012.02.204
|
[21] |
康云, 刘昆仑. 米糠肽-铁锌螯合物制备工艺研究[J]. 食品安全质量检测学报,2021,12(16):6579−6585
KANG Y, LIU K L. Preparation of rice bran peptide-iron zinc chelate[J]. Journal of Food Safety and Quality Inspection,2021,12(16):6579−6585.
|
[22] |
UDECHUKWU M C, COLLINS S A, UDENIGWE C C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides[J]. Food and Function, 2016:1010-1039.
|
[23] |
HUANG H, FU M, CHEN M. Preparation, characteristics, and formation mechanism of oyster peptide-zinc nanoparticles[J]. Journal of Ocean University of China,2019,18(4):953−961. doi: 10.1007/s11802-019-4007-2
|
[24] |
ZHU S, ZHENG Y, HE S, et al. Novel Zn-binding peptide isolated from soy protein hydrolysates:Purification, structure, and digestion[J]. Journal of Agricultural and Food Chemistry,2021,69(1):483−490. doi: 10.1021/acs.jafc.0c05792
|
[25] |
SUN X, SARTESHNIZI R A, BOACHIE R T, et al. Peptide–mineral complexes:Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency[J]. Foods,2020,9(10):1402. doi: 10.3390/foods9101402
|
[26] |
WANG X, ZHOU J, TONG P S, et al. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes[J]. Journal of Dairy Science,2011,94(6):2731−2740. doi: 10.3168/jds.2010-3900
|
[27] |
郑英敏. 基于大豆酶解物锌配合肽的发掘及肽-锌配合作用机理研究[D]. 广州:广州大学, 2020
ZHENG Y M. Exploration of zinc chelate peptide in soybean hydrolysates and study on the mechanism of peptide-zinc coordination [D]. Guangzhou:Guangzhou University, 2020.
|
[28] |
LI C, BU G C, CHEN F S, et al. Preparation and structural characterization of peanut peptide-zinc chelate[J]. CyTA-Journal of Food,2020,18(1):409−416. doi: 10.1080/19476337.2020.1767695
|
[29] |
NAVALE G R, RANA A, SAINI S, et al. An efficient fluorescence chemosensor for sensing Zn(II) ions and applications in cell imaging and detection of Zn(II) induced aggregation of PrP(106-126) peptide[J]. Journal of Photochemistry and Photobiology A:Chemistry,2023,441:114703. doi: 10.1016/j.jphotochem.2023.114703
|
[30] |
PAULE S G, NIKOLOVSKI B, LUDEMAN J, et al. Ability of GHTD-amide and analogs to enhance insulin activity through zinc chelation and dispersal of insulin oligomers[J]. Peptides,2009,30(6):1088−1097. doi: 10.1016/j.peptides.2009.02.020
|
[31] |
MENG K K, CHEN L, XIA G H, et al. Effects of zinc sulfate and zinc lactate on the properties of tilapia ( Oreochromis niloticus) skin collagen peptide chelate zinc[J]. Food Chemistry,2021,347:129043. doi: 10.1016/j.foodchem.2021.129043
|
[32] |
ZHANG J P, TANG Y X, ZHOU S P, et al. Novel strategy to improve the bioactivity and anti-hydrolysis ability of oat peptides via zinc ion-induced assembling[J]. Food Chemistry,2023,416:135468. doi: 10.1016/j.foodchem.2023.135468
|
[33] |
ZHENG Y J, GUO M, CHENG C X, et al. Structural and physicochemical characteristics, stability, toxicity and antioxidant activity of peptide-zinc chelate from coconut cake globulin hydrolysates[J]. LWT-Food Science and Technology,2023,173:114367. doi: 10.1016/j.lwt.2022.114367
|
[34] |
BAI X Y, QIU Z C, ZHENG Z J, et al. Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice[J]. Food Chemistry,2022,15:100361.
|
[35] |
BAO Z J, ZHANG P L, SUN N, et al. Elucidating the calcium-binding site, absorption activities, and thermal stability of egg white peptide–calcium chelate[J]. Foods,2021,10(11):2565. doi: 10.3390/foods10112565
|
[36] |
CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHEO MT, et al. Peptide-metal complexes:Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
|
[37] |
SUN N, CUI P B, LIN S Y, et al. Characterization of sea cucumber ( Stichopus japonicus) ovum hydrolysates:Calcium chelation, solubility and absorption into intestinal epithelial cells[J]. Journal of the Science of Food and Agriculture,2017,97(13):4604−4611. doi: 10.1002/jsfa.8330
|
[38] |
张智, 刘慧, 刘奇, 等. 玉米肽-锌螯合物结构表征及抗氧化活性分析[J]. 食品科学,2017,38(3):131−135
ZHANG Z, LIU H, LIU Q, et al. Structure characterization and antioxidant activity analysis of peptide-zinc chelates of maize[J]. Food Science,2017,38(3):131−135.
|
[39] |
SUN R N, LIU X F, YU Y, et al. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill ( Euphausia superba) peptides-zinc chelate[J]. Food Chemisry,2021,340:128056. doi: 10.1016/j.foodchem.2020.128056
|
1. |
杨洪焱,何雨淇,牛淼,李雄宇,徐亚文,张方坤,李家华. 不同产地不同贮藏时间普洱熟茶香气成分分析. 食品工业科技. 2025(05): 218-229 .
![]() | |
2. |
黄海,张晓洲,罗金龙,胡正军,张拓,戴宇樵,陈泳铭,王迅,周雪. 基于气味活度值法分析炒青绿茶与烘青绿茶的香气特征差异. 贵州农业科学. 2025(02): 112-119 .
![]() | |
3. |
吴应奇,陈婷,黎敏,庞月兰,郭春雨. 不同地区桂北大叶种古树白茶感官及品质成分分析. 食品科技. 2025(02): 105-112 .
![]() | |
4. |
马雪妮,丁小维,张李旭,李健苗. 一株“金花”菌的分离鉴定及其发酵茶叶研究. 食品与发酵工业. 2025(07): 293-299 .
![]() | |
5. |
黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 .
![]() | |
6. |
李子怡,王锋,赵玲艳,徐永兵,罗凤莲. 基于HS-SPME-GC-MS和多元统计学分析华容芥菜的特征挥发性风味成分. 中国酿造. 2024(03): 234-242 .
![]() | |
7. |
陈国和,胡腾飞,王乐涯,欧行畅,李勤,黄建安,刘仲华,王超. 基于顶空固相微萃取-气相色谱-嗅闻仪-质谱仪结合气味活力值鉴定槟榔香六堡茶关键香气物质. 食品与发酵工业. 2024(08): 271-277 .
![]() | |
8. |
赵志强,陈罗君,饶雨,徐璐,饶军,雷志勇,张丽,高银祥. 基于HS-SPME-GC-MS对不同等级双井绿茶香气物质的研究. 食品工业科技. 2024(10): 273-281 .
![]() | |
9. |
梁贤智,骆妍妃,阳景阳,农玉琴,陈杏,梁光志,陈远权. 不同干燥工艺对金牡丹茶树花品质及挥发性风味成分的影响. 食品工业科技. 2024(15): 253-263 .
![]() | |
10. |
杨桂强,李吉生,莫璋红,吴玉钧,吕敏,陆燕. 六堡茶香气成分及检测技术研究进展. 中南农业科技. 2024(08): 247-249 .
![]() | |
11. |
马莹,刘谢缘,王碧生,翁淑燚,李利君,倪辉. 焙火工艺对白芽奇兰茶叶挥发性香气成分的影响. 食品科学. 2024(19): 123-129 .
![]() | |
12. |
徐秀娟,薛云,胡军,白家峰,马骥,孙建生,杨春强,吴彦. 糯米香净油的制备及其热裂解产物. 烟草科技. 2023(10): 70-81 .
![]() |