Citation: | YU Ruining, JIANG Zhilin, WU Xiaoqin, et al. Effect of Dietary Components on the Bioavailability of Catechins and the Application of Polyphenol Synergism[J]. Science and Technology of Food Industry, 2023, 44(23): 366−375. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020211. |
[1] |
YE J H, AUGUSTIN M A. Nano- and micro-particles for delivery of catechins:Physical and biological performance[J]. Critical Reviews in Food Science and Nutrition,2019,59(10):1563−1579. doi: 10.1080/10408398.2017.1422110
|
[2] |
FANG Z X, BHESH B. Encapsulation of polyphenols-A review[J]. Trends in Food Science & Technology,2010,21(10):510−523.
|
[3] |
RASHIDINEJAD A, BOOSTANI S, BABAZADEH A, et al. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods[J]. Food Research International,2021,142:110186. doi: 10.1016/j.foodres.2021.110186
|
[4] |
闫晓佳, 梁秀萍, 李思琪, 等. 表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J]. 食品科学,2020,41(1):258−266. [YAN X J, LIANG X P, LI S Q, et al. Progress in the study of the properties and stability of epigallocatechin gallate and its delivery system[J]. Food Science,2020,41(1):258−266. doi: 10.7506/spkx1002-6630-20181206-076
|
[5] |
XU Y Q, YU P, ZHOU W. Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system[J]. Journal of Food Engineering,2019,250:46−54. doi: 10.1016/j.jfoodeng.2019.01.016
|
[6] |
KRUPKOVA O, FERGUSON S J, WUERTZ-KOZAK K. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems[J]. Journal of Nutritional Biochemistry,2016,37:1−12. doi: 10.1016/j.jnutbio.2016.01.002
|
[7] |
张建勇, 王伟伟, 崔宏春, 等. 温度对茶多酚制品中儿茶素、没食子酸和咖啡碱贮藏稳定性的影响[J]. 中国茶叶加工,2020,162(4):69−75. [ZHANG J Y, WANG W W, CUI H C, et al. Effect of temperature on the storage stability of catechins, gallic acid and caffeine in tea polyphenol products[J]. Tea Processing in China,2020,162(4):69−75. doi: 10.15905/j.cnki.33-1157/ts.2020.04.011
|
[8] |
吴倩倩. 没食子儿茶素没食酸酯在溶液环境中的稳定性研究[D]. 西安:西北大学, 2017. [WU Q Q. Stability study of gallocatechin gallate in solution environment[D]. Xi’an:Northwest University, 2017.
WU Q Q. Stability study of gallocatechin gallate in solution environment[D]. Xi’an: Northwest University, 2017.
|
[9] |
聂颖. 光、热诱导儿茶素类化合物化学转变及机理研究[D]. 杭州:浙江大学, 2017. [NIE Y. Chemical transformation and mechanism of light and heat induced catechins[D]. Hangzhou:Zhejiang University, 2017.
NIE Y. Chemical transformation and mechanism of light and heat induced catechins[D]. Hangzhou: Zhejiang University, 2017.
|
[10] |
SANG S M, LEE M J, HOU Z, et al. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions[J]. Journal of Agricultural and Food Chemistry,2005,53(24):9478−9484. doi: 10.1021/jf0519055
|
[11] |
SRINIVASAN V S. Bioavailability of nutrients:A practical approach to in vitro demonstration of the availability of nutrients in multivitamin-mineral combination products[J]. Journal of Nutrition,2001,131(4):1349−1350. doi: 10.1093/jn/131.4.1349S
|
[12] |
LIN L C, WANG M N, TSENG T Y, et al. Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution[J]. Journal of Agricultural and Food Chemistry,2007,55(4):1517−1524. doi: 10.1021/jf062816a
|
[13] |
YANG C S, CHEN L S, LEE M J, et al. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers[J]. Cancer Epidemiology Biomarkers & Prevention,1998,7(4):351−354.
|
[14] |
WARDEN B A, SMITH L S, BEECHER G R, et al. Catechins are bioavailable in men and women drinking black tea throughout the day[J]. Journal of Nutrition,2001,131(6):1731−1737. doi: 10.1093/jn/131.6.1731
|
[15] |
CHOW H S, HAKIM I A. Pharmacokinetic and chemoprevention studies on tea in humans[J]. Pharmacological Research,2011,64(2):105−112.
|
[16] |
CAI Z Y, LI X M, LIANG J P, et al. Bioavailability of tea catechins and its improvement[J]. Molecules,2018,23(9):2346. doi: 10.3390/molecules23092346
|
[17] |
REIN M J, RENOUF M, CRUZ-HERNANDEZ C, et al. Bioavailability of bioactive food compounds:A challenging journey to bioefficacy[J]. British Journal of Clinical Pharmacology,2013,75(3):588−602. doi: 10.1111/j.1365-2125.2012.04425.x
|
[18] |
SUN M, SU X, DING B, et al. Advances in nanotechnology-based delivery systems for curcumin[J]. Nanomedicine,2012,7(7):1085−1100. doi: 10.2217/nnm.12.80
|
[19] |
SHIM S M, YOO S H, RA C S, et al. Digestive stability and absorption of green tea polyphenols:Influence of acid and xylitol addition[J]. Food Research International,2012,45(1):204−210. doi: 10.1016/j.foodres.2011.10.016
|
[20] |
GREEN R J, MURPHY A S, SCHULZ B, et al. Common tea formulations modulate in vitro digestive recovery of green tea catechins[J]. Molecular Nutrition & Food Research,2007,51(9):1152−1162.
|
[21] |
LU H, MENG X F, LI C, et al. Glucuronides of tea catechins:Enzymology of biosynthesis and biological activities[J]. Drug Metabolism and Disposition,2003,31(4):452−461. doi: 10.1124/dmd.31.4.452
|
[22] |
DAI W, RUAN C, ZHANG Y, et al. Bioavailability enhancement of EGCG by structural modification and nano-delivery:A review[J]. Journal of Functional Foods,2020,65:103732. doi: 10.1016/j.jff.2019.103732
|
[23] |
SONG Q, LI D, ZHOU Y, et al. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells[J]. International Journal of Nanomedicine,2014,9:2157−2165. doi: 10.2217/nnm.13.202
|
[24] |
吴神群, 李玉壬, 陈春凤, 等. 茶多酚与肠道微生物的相互作用及其对人体健康的影响[J]. 华中农业大学学报,2022,41(5):41−49. [WU S Q, LI Y R, CHEN C F, et al. Interaction of tea polyphenols with intestinal microorganisms and their effects on human health[J]. Journal of Huazhong Agricultural University,2022,41(5):41−49.
|
[25] |
GORDON V S, HANS U H. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model[J]. Journal of Agricultural and Food Chemistry,2009,57(17):8041−8048. doi: 10.1021/jf900458e
|
[26] |
KOHRI T, MATSUMOTO N, YAMAKAWA M, et al. Metabolic fate of (-)-4-H-3 epigallocatechin gallate in rats after oral administration[J]. Journal of Agricultural and Food Chemistry,2001,49(8):4102−4112. doi: 10.1021/jf001491+
|
[27] |
TAKAGAKI A, NANJO F. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora[J]. Journal of Agricultural and Food Chemistry,2010,58(2):1313−1321. doi: 10.1021/jf903375s
|
[28] |
CATTERALL F, KING L J, CLIFFORD M N, et al. Bioavailability of dietary doses of H-3-labelled tea antioxidants (+)-catechin and (-)-epicatechin in rat[J]. Xenobiotica,2003,33(7):743−753. doi: 10.1080/0049825031000108315
|
[29] |
MURAKAMI A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents[J]. Archives of Biochemistry and Biophysics,2014,557:3−10. doi: 10.1016/j.abb.2014.04.018
|
[30] |
GAO Q, FENG J, LIU W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment[J]. Advanced Drug Delivery Reviews,2022,188:114445. doi: 10.1016/j.addr.2022.114445
|
[31] |
郑妍, 隋勇. 膳食因子对多酚生物利用率影响的研究进展[J]. 河南工业大学学报(自然科学版),2020,41(6):111−118. [ZHENG Y, SUI Y. Advances in the study of the effects of dietary factors on the bioavailability of polyphenols[J]. Journal of Henan University of Technology (Natural Science Edition),2020,41(6):111−118.
|
[32] |
刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):179−187. [LIU T T, WU X J, WU W. Advances in polyphenol-dietary fiber interactions and their effects on the bioavailability of polyphenols[J]. Chinese Journal of Grain and Oil,2022,37(7):179−187. doi: 10.3969/j.issn.1003-0174.2022.07.026
|
[33] |
隋勇. 燕麦β-葡聚糖提高荔枝果皮原花青素生物利用率和调节高脂大鼠脂代谢及其机制[D]. 武汉:华中农业大学, 2016. [SUI Y. Oat β-glucan improves bioavailability and regulates lipid metabolism in lychee pericarp proanthocyanidins and its mechanism in high-fat rats[J]. Wuhan:Huazhong Agricultural University, 2016.
SUI Y. Oat β-glucan improves bioavailability and regulates lipid metabolism in lychee pericarp proanthocyanidins and its mechanism in high-fat rats[J]. Wuhan: Huazhong Agricultural University, 2016.
|
[34] |
SERRA A, MACIA A, ROMERO M P, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models[J]. British Journal of Nutrition,2010,103(7):944−952. doi: 10.1017/S0007114509992741
|
[35] |
孙希云, 王静雯, 田思慧, 等. 食品基质及加工方式对多酚生物利用度影响的研究进展[J]. 食品工业科技,2021,42(21):400−407. [SUN X Y, WANG J W, TIAN S H, et al. Advances in the study of the effects of food matrices and processing methods on the bioavailability of polyphenols[J]. Food Industry Science and Technology,2021,42(21):400−407. doi: 10.13386/j.issn1002-0306.2020080268
|
[36] |
KEOGH J B, MCINERNEY J, CLIFTON P M. The effect of milk protein on the bioavailability of cocoa polyphenols[J]. Journal of Food Science,2007,72(3):230−233. doi: 10.1111/j.1750-3841.2007.00314.x
|
[37] |
BURG-KOOREVAAR M, MIRET S, DUCHATEAU G. Effect of milk and brewing method on black tea catechin bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2011,59(14):7752−7758. doi: 10.1021/jf2015232
|
[38] |
CHANPHAI P, BOURASSA P, KANAKIS C D, et al. Review on the loading efficacy of dietary tea polyphenols with milk proteins[J]. Food Hydrocolloids,2018,77:322−328. doi: 10.1016/j.foodhyd.2017.10.008
|
[39] |
石萌. 儿茶素类化合物高效可食载体的开发[D]. 杭州:浙江大学, 2016. [SHI M. Development of efficient edible carriers for catechin-like compounds[D]. Hangzhou:Zhejiang University, 2016.
SHI M. Development of efficient edible carriers for catechin-like compounds[D]. Hangzhou: Zhejiang University, 2016.
|
[40] |
QIE X J, WU Y R, CHEN Y, et al. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems[J]. Food Research International,2021,140:110050. doi: 10.1016/j.foodres.2020.110050
|
[41] |
ISHII S, KITAZAWA H, MORI T, et al. Identification of the catechin uptake transporter responsible for intestinal absorption of epigallocatechin gallate in mice[J]. Scientific Reports,2019,9:11014. doi: 10.1038/s41598-019-47214-4
|
[42] |
MOLINAR-TORIBIO E, FUGUET E, RAMOS-ROMERO S, et al. A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats[J]. European Journal of Nutrition,2018,57(1):339−349. doi: 10.1007/s00394-016-1323-9
|
[43] |
ZHANG L, HAN Y, XU L, et al. The effects of co-administration of butter on the absorption, metabolism and excretion of catechins in rats after oral administration of tea polyphenols[J]. Food & Function,2015,6(7):2249−2256.
|
[44] |
ATHMOUNI K, HAMMI K M, EL FEKI A, et al. Development of catechin-phospholipid complex to enhance the bioavailability and modulatory potential against cadmium-induced oxidative stress in rats liver[J]. Archives of Physiology and Biochemistry,2020,126(1):82−88. doi: 10.1080/13813455.2018.1493608
|
[45] |
王力. 适合工业化制备茶叶儿茶素EGCG的方法及提高EGCG生物利用度的研究[D]. 无锡:江南大学, 2021. [WANG L. A method suitable for the industrial preparation of tea catechin EGCG and the study of improving the bioavailability of EGCG[D]. Wuxi:Jiangnan University, 2021.
WANG L. A method suitable for the industrial preparation of tea catechin EGCG and the study of improving the bioavailability of EGCG[D]. Wuxi: Jiangnan University, 2021.
|
[46] |
DEGRAIN A, MANHIVI V, REMIZE F, et al. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in african nightshade[J]. Microorganisms,2020,8(9):1324. doi: 10.3390/microorganisms8091324
|
[47] |
PETERS C M, GREEN R J, JANLE E M, et al. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea[J]. Food Research International,2010,43(1):95−102. doi: 10.1016/j.foodres.2009.08.016
|
[48] |
XI F, AZAIN M, CROWE-WHITE K, et al. Effect of acute ingestion of green tea extract and lemon juice on oxidative stress and lipid profile in pigs fed a high-fat diet[J]. Antioxidants,2019,8(6):195−195. doi: 10.3390/antiox8060195
|
[49] |
汤琪. 以卵磷脂修饰高岭石为乳化剂稳定W/O/W双重乳液及对姜黄素和儿茶素的协同负载作用研究[D]. 桂林:桂林理工大学, 2019. [TANG Q. Stabilization of W/O/W double emulsions with lecithin-modified kaolinite as emulsifier and synergistic loading of curcumin and catechins[D]. Guilin:Guilin University of Technology, 2019.
TANG Q. Stabilization of W/O/W double emulsions with lecithin-modified kaolinite as emulsifier and synergistic loading of curcumin and catechins[D]. Guilin: Guilin University of Technology, 2019.
|
[50] |
侯滕, 张民, 刘锐, 等. 膳食多酚抗糖尿病活性、作用机制研究进展[J]. 现代食品,2021(19):64−68. [HOU T, ZHANG M, LIU Y, et al. Advances in antidiabetic activity and mechanism of action of dietary polyphenols[J]. Modern Food,2021(19):64−68. doi: 10.16736/j.cnki.cn41-1434/ts.2021.19.018
|
[51] |
ZHAO L, ZHOU T, YAN F, et al. Synergistic inhibitory effects of procyanidin B-2 and catechin on acrylamide in food matrix[J]. Food Chemistry,2019,296:94−99. doi: 10.1016/j.foodchem.2019.05.102
|
[52] |
REN S C, HU H Y. Attenuation of nitrosation by polyphenols and complexes in simulated gastric juice[J]. Food Science and Technology,2021,46(2):264−271.
|
[53] |
PENG Q, LU Y, MO R, et al. Antioxidant and nitrite-scavenging activities of Zanthoxylum bungeanum maxim. and Capsicum annuum L.:A synergistic, additive or antagonistic effect of the extracts[J]. European Food Research and Technology,2021,247(11):2877−2885. doi: 10.1007/s00217-021-03845-4
|
[54] |
李勤, 熊立瑰, 晏玲玲, 等. 安化黑茶的降脂减肥功效及作用机理[J]. 中国茶叶,2023,45(1):6−11. [LI Q, XIONG L G, YAN L L, et al. Anhua black tea's lipid-lowering and weight-loss effects and mechanism of action[J]. Chinese Tea,2023,45(1):6−11.
|
[55] |
WANG Y, CHEN L, LIU H, et al. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase[J]. Food Chemistry,2023,404:134672. doi: 10.1016/j.foodchem.2022.134672
|
[56] |
YANG K, CHEN J, ZHANG T, et al. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease:A systematic review and meta-analysis[J]. Frontiers in Immunology,2022,13:949746. doi: 10.3389/fimmu.2022.949746
|
[57] |
杨哲. EGCG与咖啡因协同及绿茶茶饮的降脂减肥作用及机制研究[D]. 长沙:湖南农业大学, 2019. [YANG Z. Synergistic effect of EGCG with caffeine and green tea tea drink on lipid-lowering and weight loss and its mechanism[D]. Changsha:Hunan Agricultural University, 2019.
YANG Z. Synergistic effect of EGCG with caffeine and green tea tea drink on lipid-lowering and weight loss and its mechanism[D]. Changsha: Hunan Agricultural University, 2019.
|
[58] |
ZHU M Z, ZHOU F, OUYANG J, et al. Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism[J]. Food & Function,2021,12(9):4105−4116.
|
[59] |
徐峰. 咖啡碱和儿茶素组合对3T3-L1细胞的细胞增殖及脂肪代谢的影响[D]. 南昌:江西农业大学, 2012. [XU F. Effect of caffeine and catechin combination on cell proliferation and lipid metabolism of 3T3-L1 cells[D]. Nanchang:Jiangxi Agricultural University, 2012.
XU F. Effect of caffeine and catechin combination on cell proliferation and lipid metabolism of 3T3-L1 cells[D]. Nanchang: Jiangxi Agricultural University, 2012.
|
[60] |
HUI L, LU W, FENG L, et al. The synergistic protection of EGCG and quercetin against streptozotocin (STZ)-induced NIT-1 pancreatic beta cell damage via upregulation of BCL-2 expression by miR-16-5p[J]. Journal of Nutritional Biochemistry,2021,96:108748−108748. doi: 10.1016/j.jnutbio.2021.108748
|
[61] |
袁传勋, 王津坤, 金日生, 等. 葛根与茶多酚体内外协同辅助降血糖活性探究[J]. 食品研究与开发,2022,43(22):71−78. [YUAN C X, WANG J K, JIN R S, et al. Investigation of the synergistic hypoglycemic activity of Pueraria lobata and tea polyphenols in vitro and in vivo[J]. Food Research and Development,2022,43(22):71−78.
|
[62] |
MECHCHATE H, ES-SAFI I, HADDAD H, et al. Combination of catechin, epicatechin, and rutin:Optimization of a novel complete antidiabetic formulation using a mixture design approach[J]. Journal of Nutritional Biochemistry,2021,88:108520. doi: 10.1016/j.jnutbio.2020.108520
|
[63] |
ALQAHTANI A, MARREZ D A, ALERAKY M, et al. Characterization and isolation of the major biologically active metabolites isolated from ficus retusa and their synergistic effect with tetracycline against certain pathogenic-resistant bacteria[J]. Pharmaceuticals,2022,15(12):1473. doi: 10.3390/ph15121473
|
[64] |
BERNAL-MERCADO A T, MELISSA G-P M, ENCINAS-BASURTO D, et al. Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces[J]. Journal of Applied Microbiology,2020,128(2):387−400. doi: 10.1111/jam.14472
|
[65] |
周毅, 陈珍, 刘杨若萱, 等. EGCG和黄芩苷协同mTOR依赖性抑制小鼠牙周炎巨噬细胞M1向极化[J]. 口腔医学研究,2021,37(7):622−627. [ZHOU Y, CHEN Z, LIU Y R X, et al. EGCG and baicalin synergistically inhibit mTOR-dependent M1-directed polarization of murine periodontitis macrophages[J]. Oral Medicine Research,2021,37(7):622−627. doi: 10.13701/j.cnki.kqyxyj.2021.07.010
|
[66] |
LI T, LI F, LIU X, et al. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-kappa B and MAPK signaling pathways[J]. Phytotherapy Research,2019,33(3):756−767. doi: 10.1002/ptr.6268
|
[67] |
吴涛, 张倩, 刘锐, 等. 儿茶素、槲皮素和葡萄籽原花青素的协同抗辐射作用[J]. 天津科技大学学报,2018,33(1):9−13. [WU T, ZHANG Q, LIU Y, et al. Synergistic antiradical effects of catechins, quercetin and grape seed proanthocyanidins[J]. Journal of Tianjin University of Science and Technology,2018,33(1):9−13. doi: 10.13364/j.issn.1672-6510.20160127
|
[68] |
NORATA G D, MARCHESI P, PASSAMONTI S, et al. Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice[J]. Atherosclerosis,2007,191(2):265−271. doi: 10.1016/j.atherosclerosis.2006.05.047
|
[69] |
YIN Z H, LI Y F, GAN H X, Et al. Synergistic effects and antityrosinase mechanism of four plant polyphenols from Morus and Hulless Barley[J]. Food Chemistry,2022,374:131716. doi: 10.1016/j.foodchem.2021.131716
|
1. |
黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 .
![]() | |
2. |
张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
![]() | |
3. |
朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
![]() | |
4. |
薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
![]() | |
5. |
吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
![]() | |
6. |
缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
![]() | |
7. |
孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
![]() | |
8. |
朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
![]() | |
9. |
黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 .
![]() | |
10. |
宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 .
![]() | |
11. |
刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
![]() | |
12. |
张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
![]() | |
13. |
龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
![]() | |
14. |
王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
![]() | |
15. |
刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .
![]() |