LAI Yuping, CHEN Yingyi, WEI Wanping, et al. Effects of Sacha Inchi Leaf Alcohol Extract on Delaying Aging of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(21): 402−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020176.
Citation: LAI Yuping, CHEN Yingyi, WEI Wanping, et al. Effects of Sacha Inchi Leaf Alcohol Extract on Delaying Aging of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(21): 402−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020176.

Effects of Sacha Inchi Leaf Alcohol Extract on Delaying Aging of Caenorhabditis elegans

More Information
  • Received Date: February 19, 2023
  • Available Online: September 06, 2023
  • In this study, the effects of different mass concentrations (5, 10 and 15 mg/mL) of Sacha inchi leaf alcohol extract (SILAE) on Caenorhabditis elegans (C. elegans) longevity, mobility, reproductive capacity, resistance to oxidative stress and levels of ROS, lipofuscin and malondialdehyde (MDA) in vivo, as well as the effects of SILAE on enzymatic and non-enzymatic antioxidants in C. elegans were investigated by constructing a senescence model of C. elegans, with the aim of providing certain theoretical references to the further research and application of Sacha inchi leaf. The results showed that SILAE at 5 and 10 mg/mL significantly prolonged the life span of C. elegans compared with the blank group (P<0.05) by 59.3% and 30.2%, respectively, and 15 mg/mL SILAE also prolonged their life span but without significant differences. Meanwhile, their reproductive and motility abilities were also effectively improved by SILAE. In oxidative stress environments, SILAE prolonged the life span of C. elegans under H2O2 stress by approximately 2, 4, and 5-fold, respectively, and 5 and 10 mg/mL of SILAE also significantly prolonged the life span of C. elegans under juglone stress (P<0.05). The accumulation of ROS, lipofuscin (P<0.001), and MDA (P<0.05) in C. elegans was reduced to varying degrees by SILAE. In addition, both superoxide dismutase and catalase activities in C. elegans were highly significantly increased by SILAE (P<0.001), while glutathione peroxidase activity and glutathione content were significantly increased by SILAE at 5 mg/mL (P<0.05) and 10 mg/mL (P<0.01), respectively. In conclusion, SILAE has anti-aging property and is a new possible source of functional foods or alternative drugs with oxidative mitigation and aging retardation effects.
  • [1]
    OKORO N O, ODIBA A S, OSADEBE P O, et al. Bioactive phytochemicals with anti-aging and lifespan extending potentials in caenorhabditis elegans[J]. Molecules (Basel, Switzerland),2021,26(23):7323. doi: 10.3390/molecules26237323
    [2]
    DA COSTA J P, VITORINO R, SILVA G M, et al. A synopsis on aging-theories, mechanisms and future prospects[J]. Ageing Research Reviews,2016,29:90−112. doi: 10.1016/j.arr.2016.06.005
    [3]
    BACK P, BRAECKMAN B P, MATTHIJSSENS F. ROS in aging Caenorhabditis elegans: Damage or signaling?[J]. Oxidative Medicine and Cellular Longevity,2012,2012:608478.
    [4]
    FONTANA L, PARTRIDGE L. Promoting health and longevity through diet: From model organisms to humans[J]. Cell,2015,161(1):106−118. doi: 10.1016/j.cell.2015.02.020
    [5]
    庄燕苹, 杨帆, 肖曼, 等. 忧遁草乙醇提取物对秀丽隐杆线虫的抗衰老作用及机制[J]. 食品工业科技, 2023, 44(11):411−417

    ZHUANG Y P, YANG F, XIAO M, et al. Anti-aging effect and mechanism of ethanolic extract of Clinacanthus nutans on Caenorhabditis elegans[J] Science and Technology of Food Industry, 2023, 44(11):411−417.
    [6]
    LIANG T, ZHOU J, JING P, et al. Anti-senescence effects of Rhodiola crenulate extracts on LO(2) cells and bioactive compounds [J]. Journal of Ethnopharmacology,2023,306:116179. doi: 10.1016/j.jep.2023.116179
    [7]
    GOYAL A, TANWAR B, KUMAR S M, et al. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals[J]. Food Chemistry, 2022, 373(Pt B):131459.
    [8]
    TRAN P T, TRAN T T N. Evaluation of acute and subchronic toxicity induced by the crude ethanol extract of Plukenetia volubilis Linneo leaves in Swiss albino mice[J]. BioMed Research International,2021,2021:6524658.
    [9]
    LIN J, WEN J, XIAO N, et al. Anti-diabetic and gut microbiota modulation effects of sacha inchi ( Plukenetia volubilis L.) leaf extract in streptozotocin-induced type 1 diabetic mice[J]. Journal of the Science of Food and Agriculture,2022,102(10):4304−4312. doi: 10.1002/jsfa.11782
    [10]
    NASCIMENTO A K L, MELO-SILVEIRA R F, DANTAS-SANTOS N, et al. Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae)[J]. Evidence-based Complementary and Alternative Medicine:eCAM, 2013, 2013:950272.
    [11]
    KITTIBUNCHAKUL S, HUDTHAGOSOL C, SANPORKHA P, et al. Effects of maturity and thermal treatment on phenolic profiles and in vitro health-related properties of Sacha inchi leaves[J]. Plants (Basel, Switzerland),2022,11(11):1515.
    [12]
    PALLAUF K, DUCKSTEIN N, RIMBACH G. A literature review of flavonoids and lifespan in model organisms[J]. The Proceedings of the Nutrition Society,2017,76(2):145−162. doi: 10.1017/S0029665116000720
    [13]
    SCERBAK C, VAYNDORF E M, HERNANDEZ A, et al. Mechanosensory neuron aging: Differential trajectories with lifespan-extending alaskan berry and fungal treatments in caenorhabditis elegans[J]. Frontiers in Aging Neuroscience,2016,8:173.
    [14]
    YE Y, GU Q, SUN X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3084−3105. doi: 10.1111/1541-4337.12654
    [15]
    王凤, 肖楚翔, 刘淑珍, 等. 榴莲核黄酮的提取及其对秀丽隐杆线虫氧化和衰老的影响[J]. 食品科学,2021,42(9):123−129 doi: 10.7506/spkx1002-6630-20200409-127

    WANG F, XIAO Z X, LIU S Z, et al. Extraction of flavonoids from durian seeds and its antioxidant and anti-aging effects on Caenorhabditis elegans[J]. Food Science,2021,42(9):123−129. doi: 10.7506/spkx1002-6630-20200409-127
    [16]
    王冰芳. 西兰苔叶黄酮的提取、分离、鉴定及体外抗癌活性研究[D]. 广州:华南理工大学, 2010

    WANG B F. Extraction, isolation, characterization and in vitro anticancer activity of leaf flavonoids from the Broccolini[D]. Guangzhou:South China University of Technology, 2010.
    [17]
    杨永涛. 罗布麻总黄酮的提取、分离纯化及其抗氧化性能研究[D]. 广州:华南理工大学, 2018

    YANG Y T. Extraction, purification and antioxidant properties of total flavonoids from Rhubarb[D]. Guangzhou:South China University of Technology, 2018.
    [18]
    杨云, 蔡朝霞. 天麻总酚闪式提取工艺研究及含量测定[J]. 食品工业,2021,42(9):43−46

    YANG Y, CAI Z X. Flash extraction process of total phenol and determination of content from Gastrodia elata [J]. The Food Industry,2021,42(9):43−46.
    [19]
    海力茜·陶尔大洪, 祖丽皮艳·阿布力米特, 李亚童, 等. 新疆芜菁多糖含量测定及提取工艺优化[J]. 食品安全质量检测学报,2021,12(5):1960−1965 doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.054

    HAILIQIAN T E D H, ZUPILIYAN A B L M T, LI Y T, et al. Determination of polysaccharide content from Brassica rapa L. in Xinjiang and optimization of extraction technology[J]. Journal of Food Safety & Quality,2021,12(5):1960−1965. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.054
    [20]
    黄婉玉, 曹炜, 李菁, 等. 考马斯亮蓝法测定果汁中蛋白质的含量[J]. 食品与发酵工业,2009,35(5):160−162 doi: 10.13995/j.cnki.11-1802/ts.2009.05.015

    HUANG W Y, CAO W, LI, J, et al. Determination of protein content in juice by coomassie brilliant blue[J]. Food and Fermentation Industries,2009,35(5):160−162. doi: 10.13995/j.cnki.11-1802/ts.2009.05.015
    [21]
    SUN J, ZHONG X, SUN D, et al. Anti-aging effects of polysaccharides from ginseng extract residues in Caenorhabditis elegans[J]. International Journal of Biological Macromolecules,2022,225:1072−1084.
    [22]
    YANG J, WAN Q, MU Q, et al. The lifespan-promoting effect of otophylloside B in Caenorhabditis elegans[J]. Natural Products and Bioprospecting,2015,5(4):177−183. doi: 10.1007/s13659-015-0064-4
    [23]
    王猛, 马浩天, 关思宇, 等. 螺旋藻多糖对秀丽隐杆线虫氧化应激及寿命的影响[J]. 中国食品学报,2022,22(5):137−146

    WANG M, MA H T, GUANG S Y, et al. Effects of spirulina polysaccharides on oxidative stress and life span of Caenorhabditis elegans[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(5):137−146.
    [24]
    李振旺. 马鹿角水提物对秀丽隐杆线虫抗衰老作用研究[D]. 长春:长春工业大学, 2022

    LI Z W. Study on the anti-aging effect of aqueous extract of horse antler on Caenorhabditis elegans[D]. Changchun:Changchun University of Technology, 2022.
    [25]
    陈宇. 银杏叶黄酮延长秀丽隐杆线虫寿命及作用机制研究[D]. 重庆:重庆三峡学院, 2021

    CHEN Y. Prolongation of life span and mechanism of action of ginkgo biloba flavonoids in Caenorhabditis elegans[D]. Chongqin:Chongqing Three Gorges University, 2021.
    [26]
    HUI H, XIN A, CUI H, et al. Anti-aging effects on Caen orhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor cotton[J]. International Journal of Biological Macromolecules,2020,155:846−852. doi: 10.1016/j.ijbiomac.2020.03.206
    [27]
    LOPEZ-OTIN C, BLASCO M A, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell,2013,153(6):1194−1217. doi: 10.1016/j.cell.2013.05.039
    [28]
    SMITA S S, TRIVEDI S, PANDEY T, et al. A bioactive compound shatavarin IV-mediated longevity as revealed by dietary restriction-induced autophagy in Caenorhabditis elegans[J]. Biogerontology,2020,21(6):827−844. doi: 10.1007/s10522-020-09897-5
    [29]
    GUO P, WANG P, LIU L, et al. Naringin alleviates glucose-induced aging by reducing fat accumulation and promoting autophagy in Caenorhabditis elegans[J]. Nutrients,2023,15(4):907. doi: 10.3390/nu15040907
    [30]
    FANG E F, WALTZ T B, KASSAHUN H, et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway[J]. Scientific Reports,2017,7:46208. doi: 10.1038/srep46208
    [31]
    郭佑铭. 以秀丽隐杆线虫为模型的铃兰毒甙抗衰老研究[D]. 长春:吉林大学, 2014

    GUO Y M. Anti-aging study of Suzuki glucoside using Caenorhabditis elegans as a model[D]. Changchun:Jilin University, 2014.
    [32]
    鹿颜. EGCG调控线粒体和氧化还原动态平衡影响秀丽线虫幼虫发育作用研究[D]. 长沙:湖南农业大学, 2021

    LU Y. EGCG regulates the dynamic balance of mitochondria and redox to influence the development of Caenorhabditis elegans[D]. Changsha:Hunan Agricultural University, 2021.
    [33]
    SCHLOTTERER A, KUKUDOV G, BOZORGMEHR F, et al. C. elegans as model for the study of high glucose-mediated life span reduction[J]. Diabetes,2009,58(11):2450−2456. doi: 10.2337/db09-0567
    [34]
    刘静. 金钗石斛总生物碱抗秀丽隐杆线虫衰老作用及其机制研究[D]. 遵义:遵义医科大学, 2019

    LIU J. Study on the anti-aging effect and mechanism of total alkaloids from Dendrobium nobile on Caenorhabditis elegans[D]. Zunyi:Zunyi Medical University, 2019.
    [35]
    黄少杰, 陈宏著, 钟淳菲, 等. 铁皮石斛叶多糖对秀丽隐杆线虫体内抗衰老作用[J]. 食品科学,2022,43(21):203−208 doi: 10.7506/spkx1002-6630-20211202-031

    HUANG S J, CHEN H Z, ZHONG C F, et al. Anti-aging effect of polysaccharide from dendrobium officinale leaves in Caenorhabditis elegans[J]. Food Science,2022,43(21):203−208. doi: 10.7506/spkx1002-6630-20211202-031
    [36]
    杨文旭, 王昌禄, 崔桂友, 等. 香椿叶总黄酮对延缓秀丽线虫衰老影响的初步研究[J]. 中国食品添加剂,2010(6):143−146 doi: 10.3969/j.issn.1006-2513.2010.06.021

    YANG W X, WANG C L, CUI G Y, et al. Study on the effect of toona sinensis leaf flavonoids on anti-aging of Caenorhabditis elegans[J]. China Food Additives,2010(6):143−146. doi: 10.3969/j.issn.1006-2513.2010.06.021
    [37]
    王怀玲. 蓝莓多酚化合物抗衰老活性及作用机制研究[D]. 广州:华南理工大学, 2018

    WANG H L. Study on the anti-aging activity and mechanism of action of blueberry polyphenolic compounds[D]. Guangzhou:South China University of Technology, 2018.
    [38]
    袁梦, 阙斐, 肖楚翔, 等. 基于秀丽隐杆线虫模型的樱桃乙醇提取物抗衰老作用研究[J]. 食品工业科技,2023,44(13):375−382

    YUAN M, QUE F, XIAO C X, et al. Study on the anti-aging effect of cherry ethanol extract based on Caenorhabditis elegans mode[J]. Science and Technology of Food Industry,2023,44(13):375−382.
    [39]
    王晶. 江西蜜柑酚类化合物抗氧化、抗癌、抗衰老活性及作用机理研究[D]. 广州:华南理工大学, 2020

    WANG J. Antioxidant, anticancer and anti-aging activities and mechanism of action of phenolic compounds in Jiangxi mandarin[D]. Guangzhou:South China University of Technology, 2020.
    [40]
    张慧康, 马佳波, 司奇, 等. 基于线虫模型的木姜叶柯抗氧化应激及抗衰老作用[J]. 食品工业科技, 2023, 44(12):363−370

    ZHANG H K, MA J B, SI Q, et al. Anti-oxidative stress and anti-aging effects of Mucuna pruriens based on Caenorhabditis elegans model[J]. Science and Technology of Food Industry, 2023, 44(12):363−370.
    [41]
    王梅霖. 玫瑰类黄酮的生物活性及其应用研究[D]. 济南:齐鲁工业大学, 2021

    WANG M L. Study on the biological activities of rose flavonoids and their applications[D]. Jinan:Qilu University of Technology, 2021.
    [42]
    PANDEY T, SAMMI S R, NOOREEN Z, et al. Anti-ageing and anti-parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans [J]. Experimental Gerontology,2019,120:50−61. doi: 10.1016/j.exger.2019.02.016
    [43]
    LI Q, LIU Y, DAI X, et al. Nanozymes regulate redox homeostasis in ROS-related inflammation[J]. Frontiers in Chemistry,2021,9:740607. doi: 10.3389/fchem.2021.740607
    [44]
    刘嘉榆. 内源代谢小分子甘油磷酰胆碱抗衰老活性及作用机制研究[D]. 北京:军事科学院, 2022

    LIU J Y. Study on the anti-aging activity and mechanism of action of endogenously metabolized small molecule glycerophosphorylcholine[D]. Beijing:Academy of Military Science, 2022.
    [45]
    GERSTBREIN B, STAMATAS G, KOLLIAS N, et al. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans[J]. Aging Cell,2005,4(3):127−137. doi: 10.1111/j.1474-9726.2005.00153.x
    [46]
    HU Q, LIU Z, GUO Y, et al. Antioxidant capacity of flavonoids from folium artemisiae argyi and the molecular mechanism in Caenorhabditis elegans[J]. Journal of Ethnopharmacology,2021,279:114398. doi: 10.1016/j.jep.2021.114398
    [47]
    LIN C, CHEN Y, LIN Y, et al. Antistress and anti-aging activities of Caenorhabditis elegans were enhanced by Momordica saponin extract[J]. European Journal of Nutrition,2021,60(4):1819−1832. doi: 10.1007/s00394-020-02338-6
    [48]
    VILLALPANDO-RODRIGUEZ G E, GIBSON S B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat[J]. Oxidative Medicine and Cellular Longevity,2021,2021:9912436.
    [49]
    LIN C, SU Z, LUO J, et al. Polysaccharide extracted from the leaves of Cyclocarya paliurus (Batal.) Iljinskaja enhanced stress resistance in Caenorhabditis elegans via skn-1 and hsf-1[J]. International Journal of Biological Macromolecules,2020,143:243−254. doi: 10.1016/j.ijbiomac.2019.12.023
    [50]
    MUNTEANU I G, APETREI C. Analytical methods used in determining antioxidant activity: A Review[J]. International Journal of Molecular Sciences,2021,22(7):3380. doi: 10.3390/ijms22073380
  • Cited by

    Periodical cited type(4)

    1. 黄碧飞,李洋,胡泽茜. 玻璃态液氮速冻对蓝莓品质特性的影响. 食品科学. 2024(06): 225-232 .
    2. 李国林,李丹丹,王成有,何扬波,李咏富,陈丽梅. 两种不同加工方式杨梅汤抗氧化及风味品质比较. 现代食品科技. 2024(05): 212-220 .
    3. 张泽雄,丘苑新,莫观连,陈彩云,柳建良,王琴,钟乐,谢宏峰. 鱼花生大豆废弃物发酵肥的制备及其对桃品质的影响. 园艺学报. 2024(10): 2386-2400 .
    4. 李宾,周显青,韩佳静. 实心麻球外观、内部结构及食用品质的影响因素与评价方法研究. 食品安全质量检测学报. 2023(19): 68-77 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return