Citation: | LAI Yuping, CHEN Yingyi, WEI Wanping, et al. Effects of Sacha Inchi Leaf Alcohol Extract on Delaying Aging of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(21): 402−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020176. |
[1] |
OKORO N O, ODIBA A S, OSADEBE P O, et al. Bioactive phytochemicals with anti-aging and lifespan extending potentials in caenorhabditis elegans[J]. Molecules (Basel, Switzerland),2021,26(23):7323. doi: 10.3390/molecules26237323
|
[2] |
DA COSTA J P, VITORINO R, SILVA G M, et al. A synopsis on aging-theories, mechanisms and future prospects[J]. Ageing Research Reviews,2016,29:90−112. doi: 10.1016/j.arr.2016.06.005
|
[3] |
BACK P, BRAECKMAN B P, MATTHIJSSENS F. ROS in aging Caenorhabditis elegans: Damage or signaling?[J]. Oxidative Medicine and Cellular Longevity,2012,2012:608478.
|
[4] |
FONTANA L, PARTRIDGE L. Promoting health and longevity through diet: From model organisms to humans[J]. Cell,2015,161(1):106−118. doi: 10.1016/j.cell.2015.02.020
|
[5] |
庄燕苹, 杨帆, 肖曼, 等. 忧遁草乙醇提取物对秀丽隐杆线虫的抗衰老作用及机制[J]. 食品工业科技, 2023, 44(11):411−417
ZHUANG Y P, YANG F, XIAO M, et al. Anti-aging effect and mechanism of ethanolic extract of Clinacanthus nutans on Caenorhabditis elegans[J] Science and Technology of Food Industry, 2023, 44(11):411−417.
|
[6] |
LIANG T, ZHOU J, JING P, et al. Anti-senescence effects of Rhodiola crenulate extracts on LO(2) cells and bioactive compounds [J]. Journal of Ethnopharmacology,2023,306:116179. doi: 10.1016/j.jep.2023.116179
|
[7] |
GOYAL A, TANWAR B, KUMAR S M, et al. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals[J]. Food Chemistry, 2022, 373(Pt B):131459.
|
[8] |
TRAN P T, TRAN T T N. Evaluation of acute and subchronic toxicity induced by the crude ethanol extract of Plukenetia volubilis Linneo leaves in Swiss albino mice[J]. BioMed Research International,2021,2021:6524658.
|
[9] |
LIN J, WEN J, XIAO N, et al. Anti-diabetic and gut microbiota modulation effects of sacha inchi ( Plukenetia volubilis L.) leaf extract in streptozotocin-induced type 1 diabetic mice[J]. Journal of the Science of Food and Agriculture,2022,102(10):4304−4312. doi: 10.1002/jsfa.11782
|
[10] |
NASCIMENTO A K L, MELO-SILVEIRA R F, DANTAS-SANTOS N, et al. Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae)[J]. Evidence-based Complementary and Alternative Medicine:eCAM, 2013, 2013:950272.
|
[11] |
KITTIBUNCHAKUL S, HUDTHAGOSOL C, SANPORKHA P, et al. Effects of maturity and thermal treatment on phenolic profiles and in vitro health-related properties of Sacha inchi leaves[J]. Plants (Basel, Switzerland),2022,11(11):1515.
|
[12] |
PALLAUF K, DUCKSTEIN N, RIMBACH G. A literature review of flavonoids and lifespan in model organisms[J]. The Proceedings of the Nutrition Society,2017,76(2):145−162. doi: 10.1017/S0029665116000720
|
[13] |
SCERBAK C, VAYNDORF E M, HERNANDEZ A, et al. Mechanosensory neuron aging: Differential trajectories with lifespan-extending alaskan berry and fungal treatments in caenorhabditis elegans[J]. Frontiers in Aging Neuroscience,2016,8:173.
|
[14] |
YE Y, GU Q, SUN X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3084−3105. doi: 10.1111/1541-4337.12654
|
[15] |
王凤, 肖楚翔, 刘淑珍, 等. 榴莲核黄酮的提取及其对秀丽隐杆线虫氧化和衰老的影响[J]. 食品科学,2021,42(9):123−129 doi: 10.7506/spkx1002-6630-20200409-127
WANG F, XIAO Z X, LIU S Z, et al. Extraction of flavonoids from durian seeds and its antioxidant and anti-aging effects on Caenorhabditis elegans[J]. Food Science,2021,42(9):123−129. doi: 10.7506/spkx1002-6630-20200409-127
|
[16] |
王冰芳. 西兰苔叶黄酮的提取、分离、鉴定及体外抗癌活性研究[D]. 广州:华南理工大学, 2010
WANG B F. Extraction, isolation, characterization and in vitro anticancer activity of leaf flavonoids from the Broccolini[D]. Guangzhou:South China University of Technology, 2010.
|
[17] |
杨永涛. 罗布麻总黄酮的提取、分离纯化及其抗氧化性能研究[D]. 广州:华南理工大学, 2018
YANG Y T. Extraction, purification and antioxidant properties of total flavonoids from Rhubarb[D]. Guangzhou:South China University of Technology, 2018.
|
[18] |
杨云, 蔡朝霞. 天麻总酚闪式提取工艺研究及含量测定[J]. 食品工业,2021,42(9):43−46
YANG Y, CAI Z X. Flash extraction process of total phenol and determination of content from Gastrodia elata [J]. The Food Industry,2021,42(9):43−46.
|
[19] |
海力茜·陶尔大洪, 祖丽皮艳·阿布力米特, 李亚童, 等. 新疆芜菁多糖含量测定及提取工艺优化[J]. 食品安全质量检测学报,2021,12(5):1960−1965 doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.054
HAILIQIAN T E D H, ZUPILIYAN A B L M T, LI Y T, et al. Determination of polysaccharide content from Brassica rapa L. in Xinjiang and optimization of extraction technology[J]. Journal of Food Safety & Quality,2021,12(5):1960−1965. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.054
|
[20] |
黄婉玉, 曹炜, 李菁, 等. 考马斯亮蓝法测定果汁中蛋白质的含量[J]. 食品与发酵工业,2009,35(5):160−162 doi: 10.13995/j.cnki.11-1802/ts.2009.05.015
HUANG W Y, CAO W, LI, J, et al. Determination of protein content in juice by coomassie brilliant blue[J]. Food and Fermentation Industries,2009,35(5):160−162. doi: 10.13995/j.cnki.11-1802/ts.2009.05.015
|
[21] |
SUN J, ZHONG X, SUN D, et al. Anti-aging effects of polysaccharides from ginseng extract residues in Caenorhabditis elegans[J]. International Journal of Biological Macromolecules,2022,225:1072−1084.
|
[22] |
YANG J, WAN Q, MU Q, et al. The lifespan-promoting effect of otophylloside B in Caenorhabditis elegans[J]. Natural Products and Bioprospecting,2015,5(4):177−183. doi: 10.1007/s13659-015-0064-4
|
[23] |
王猛, 马浩天, 关思宇, 等. 螺旋藻多糖对秀丽隐杆线虫氧化应激及寿命的影响[J]. 中国食品学报,2022,22(5):137−146
WANG M, MA H T, GUANG S Y, et al. Effects of spirulina polysaccharides on oxidative stress and life span of Caenorhabditis elegans[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(5):137−146.
|
[24] |
李振旺. 马鹿角水提物对秀丽隐杆线虫抗衰老作用研究[D]. 长春:长春工业大学, 2022
LI Z W. Study on the anti-aging effect of aqueous extract of horse antler on Caenorhabditis elegans[D]. Changchun:Changchun University of Technology, 2022.
|
[25] |
陈宇. 银杏叶黄酮延长秀丽隐杆线虫寿命及作用机制研究[D]. 重庆:重庆三峡学院, 2021
CHEN Y. Prolongation of life span and mechanism of action of ginkgo biloba flavonoids in Caenorhabditis elegans[D]. Chongqin:Chongqing Three Gorges University, 2021.
|
[26] |
HUI H, XIN A, CUI H, et al. Anti-aging effects on Caen orhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor cotton[J]. International Journal of Biological Macromolecules,2020,155:846−852. doi: 10.1016/j.ijbiomac.2020.03.206
|
[27] |
LOPEZ-OTIN C, BLASCO M A, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell,2013,153(6):1194−1217. doi: 10.1016/j.cell.2013.05.039
|
[28] |
SMITA S S, TRIVEDI S, PANDEY T, et al. A bioactive compound shatavarin IV-mediated longevity as revealed by dietary restriction-induced autophagy in Caenorhabditis elegans[J]. Biogerontology,2020,21(6):827−844. doi: 10.1007/s10522-020-09897-5
|
[29] |
GUO P, WANG P, LIU L, et al. Naringin alleviates glucose-induced aging by reducing fat accumulation and promoting autophagy in Caenorhabditis elegans[J]. Nutrients,2023,15(4):907. doi: 10.3390/nu15040907
|
[30] |
FANG E F, WALTZ T B, KASSAHUN H, et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway[J]. Scientific Reports,2017,7:46208. doi: 10.1038/srep46208
|
[31] |
郭佑铭. 以秀丽隐杆线虫为模型的铃兰毒甙抗衰老研究[D]. 长春:吉林大学, 2014
GUO Y M. Anti-aging study of Suzuki glucoside using Caenorhabditis elegans as a model[D]. Changchun:Jilin University, 2014.
|
[32] |
鹿颜. EGCG调控线粒体和氧化还原动态平衡影响秀丽线虫幼虫发育作用研究[D]. 长沙:湖南农业大学, 2021
LU Y. EGCG regulates the dynamic balance of mitochondria and redox to influence the development of Caenorhabditis elegans[D]. Changsha:Hunan Agricultural University, 2021.
|
[33] |
SCHLOTTERER A, KUKUDOV G, BOZORGMEHR F, et al. C. elegans as model for the study of high glucose-mediated life span reduction[J]. Diabetes,2009,58(11):2450−2456. doi: 10.2337/db09-0567
|
[34] |
刘静. 金钗石斛总生物碱抗秀丽隐杆线虫衰老作用及其机制研究[D]. 遵义:遵义医科大学, 2019
LIU J. Study on the anti-aging effect and mechanism of total alkaloids from Dendrobium nobile on Caenorhabditis elegans[D]. Zunyi:Zunyi Medical University, 2019.
|
[35] |
黄少杰, 陈宏著, 钟淳菲, 等. 铁皮石斛叶多糖对秀丽隐杆线虫体内抗衰老作用[J]. 食品科学,2022,43(21):203−208 doi: 10.7506/spkx1002-6630-20211202-031
HUANG S J, CHEN H Z, ZHONG C F, et al. Anti-aging effect of polysaccharide from dendrobium officinale leaves in Caenorhabditis elegans[J]. Food Science,2022,43(21):203−208. doi: 10.7506/spkx1002-6630-20211202-031
|
[36] |
杨文旭, 王昌禄, 崔桂友, 等. 香椿叶总黄酮对延缓秀丽线虫衰老影响的初步研究[J]. 中国食品添加剂,2010(6):143−146 doi: 10.3969/j.issn.1006-2513.2010.06.021
YANG W X, WANG C L, CUI G Y, et al. Study on the effect of toona sinensis leaf flavonoids on anti-aging of Caenorhabditis elegans[J]. China Food Additives,2010(6):143−146. doi: 10.3969/j.issn.1006-2513.2010.06.021
|
[37] |
王怀玲. 蓝莓多酚化合物抗衰老活性及作用机制研究[D]. 广州:华南理工大学, 2018
WANG H L. Study on the anti-aging activity and mechanism of action of blueberry polyphenolic compounds[D]. Guangzhou:South China University of Technology, 2018.
|
[38] |
袁梦, 阙斐, 肖楚翔, 等. 基于秀丽隐杆线虫模型的樱桃乙醇提取物抗衰老作用研究[J]. 食品工业科技,2023,44(13):375−382
YUAN M, QUE F, XIAO C X, et al. Study on the anti-aging effect of cherry ethanol extract based on Caenorhabditis elegans mode[J]. Science and Technology of Food Industry,2023,44(13):375−382.
|
[39] |
王晶. 江西蜜柑酚类化合物抗氧化、抗癌、抗衰老活性及作用机理研究[D]. 广州:华南理工大学, 2020
WANG J. Antioxidant, anticancer and anti-aging activities and mechanism of action of phenolic compounds in Jiangxi mandarin[D]. Guangzhou:South China University of Technology, 2020.
|
[40] |
张慧康, 马佳波, 司奇, 等. 基于线虫模型的木姜叶柯抗氧化应激及抗衰老作用[J]. 食品工业科技, 2023, 44(12):363−370
ZHANG H K, MA J B, SI Q, et al. Anti-oxidative stress and anti-aging effects of Mucuna pruriens based on Caenorhabditis elegans model[J]. Science and Technology of Food Industry, 2023, 44(12):363−370.
|
[41] |
王梅霖. 玫瑰类黄酮的生物活性及其应用研究[D]. 济南:齐鲁工业大学, 2021
WANG M L. Study on the biological activities of rose flavonoids and their applications[D]. Jinan:Qilu University of Technology, 2021.
|
[42] |
PANDEY T, SAMMI S R, NOOREEN Z, et al. Anti-ageing and anti-parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans [J]. Experimental Gerontology,2019,120:50−61. doi: 10.1016/j.exger.2019.02.016
|
[43] |
LI Q, LIU Y, DAI X, et al. Nanozymes regulate redox homeostasis in ROS-related inflammation[J]. Frontiers in Chemistry,2021,9:740607. doi: 10.3389/fchem.2021.740607
|
[44] |
刘嘉榆. 内源代谢小分子甘油磷酰胆碱抗衰老活性及作用机制研究[D]. 北京:军事科学院, 2022
LIU J Y. Study on the anti-aging activity and mechanism of action of endogenously metabolized small molecule glycerophosphorylcholine[D]. Beijing:Academy of Military Science, 2022.
|
[45] |
GERSTBREIN B, STAMATAS G, KOLLIAS N, et al. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans[J]. Aging Cell,2005,4(3):127−137. doi: 10.1111/j.1474-9726.2005.00153.x
|
[46] |
HU Q, LIU Z, GUO Y, et al. Antioxidant capacity of flavonoids from folium artemisiae argyi and the molecular mechanism in Caenorhabditis elegans[J]. Journal of Ethnopharmacology,2021,279:114398. doi: 10.1016/j.jep.2021.114398
|
[47] |
LIN C, CHEN Y, LIN Y, et al. Antistress and anti-aging activities of Caenorhabditis elegans were enhanced by Momordica saponin extract[J]. European Journal of Nutrition,2021,60(4):1819−1832. doi: 10.1007/s00394-020-02338-6
|
[48] |
VILLALPANDO-RODRIGUEZ G E, GIBSON S B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat[J]. Oxidative Medicine and Cellular Longevity,2021,2021:9912436.
|
[49] |
LIN C, SU Z, LUO J, et al. Polysaccharide extracted from the leaves of Cyclocarya paliurus (Batal.) Iljinskaja enhanced stress resistance in Caenorhabditis elegans via skn-1 and hsf-1[J]. International Journal of Biological Macromolecules,2020,143:243−254. doi: 10.1016/j.ijbiomac.2019.12.023
|
[50] |
MUNTEANU I G, APETREI C. Analytical methods used in determining antioxidant activity: A Review[J]. International Journal of Molecular Sciences,2021,22(7):3380. doi: 10.3390/ijms22073380
|