LI Shuang, LIU Xiaofang, LI Fuhou, et al. Optimization of Enzymatic Hydrolysis Preparation Process and Stability Evaluation of ACE Inhibitory Peptides from Antarctic Krill (Euphausia superba)[J]. Science and Technology of Food Industry, 2023, 44(21): 243−250. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020174.
Citation: LI Shuang, LIU Xiaofang, LI Fuhou, et al. Optimization of Enzymatic Hydrolysis Preparation Process and Stability Evaluation of ACE Inhibitory Peptides from Antarctic Krill (Euphausia superba)[J]. Science and Technology of Food Industry, 2023, 44(21): 243−250. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020174.

Optimization of Enzymatic Hydrolysis Preparation Process and Stability Evaluation of ACE Inhibitory Peptides from Antarctic Krill (Euphausia superba)

More Information
  • Received Date: February 19, 2023
  • Available Online: September 04, 2023
  • Enzymatic hydrolysis preparation process of angiotensin-I converting enzyme (ACE) inhibitory peptides from Antarctic krill (Euphausia superba) was optimized and its stability was evaluated. Using the degreased Antarctic krill meal as the substrate and the ACE inhibition rate of enzymatic hydrolysates as the evaluation index, alkaline protease was selected as the optimal protease for preparing ACE inhibitory peptides from Antarctic krill among six types of proteases. The optimum enzymatic hydrolysis conditions were determined through single factor and response surface experiments, which were finally confirmed as follows: Enzymatic hydrolysis time of 3.4 h, material liquid ratio of 1:7 (g/mL) and enzyme dosage of 1.6%. Under these conditions, the ACE inhibition rate of enzymatic hydrolysates was 74.37%±0.87%. The obtained ACE inhibitory peptides exhibited good thermal stability at temperatures ranging from 20 ℃ to 100 ℃ and were relatively stable under neutral and weak alkaline conditions. The ACE inhibitory activity of the peptides decreased significantly under pH<7.0 and pH>8.0 conditions (P<0.05). The peptides could maintain 86.96% of the original ACE inhibitory activity after simulated gastrointestinal digestion in vitro. The present research provides scientific support for the development of Antarctic krill protein-derived healthy foods and food-derived peptides-based antihypertensive drugs.
  • [1]
    赵宪勇, 左涛, 冷凯良, 等. 南极磷虾渔业发展的工程科技需求[J]. 中国工程科学,2016,18(2):85−90 doi: 10.3969/j.issn.1009-1742.2016.02.013

    ZHAO X Y, ZUO T, LENG K L, et al. Engineering science and technology challenges in the Antarctic krill fishery[J]. Strategic Study of Chinese Academy of Engineering,2016,18(2):85−90. doi: 10.3969/j.issn.1009-1742.2016.02.013
    [2]
    高颖, 王彦超, 常耀光, 等. 三种低氟南极磷虾肽的ACE抑制作用及抗氧化活性研究[J]. 食品工业科技,2016,37(2):82−87, 92 doi: 10.13386/j.issn1002-0306.2016.02.008

    GAO Y, WANG Y C, CHANG Y G, et al. ACE inhibition and antioxidant activities of three types of Antarctic krill ( Euphausia superba) peptides with low fluorine content[J]. Science and Technology of Food Industry,2016,37(2):82−87, 92. doi: 10.13386/j.issn1002-0306.2016.02.008
    [3]
    刘柯欣, 林松毅, 胡胜杰, 等. 南极磷虾蛋白营养与功能特性及食用安全性研究进展[J]. 食品科学,2022,43(7):263−272 doi: 10.7506/spkx1002-6630-20210301-007

    LIU K X, LIN S Y, HU S J, et al. Advances in our knowledge of the nutritional and functional properties and safety of Antarctic krill proteins[J]. Food Science,2022,43(7):263−272. doi: 10.7506/spkx1002-6630-20210301-007
    [4]
    孙如男, 冷凯良, 高华, 等. 南极磷虾金属螯合肽蛋白基料的酶解制备工艺优化[J]. 食品科技,2020,45(7):159−165 doi: 10.13684/j.cnki.spkj.2020.07.028

    SUN R N, LENG K L, GAO H, et al. Optimization of enzymatic hydrolysis preparation of the protein-based material for the production of Antarctic krill metal-chelating peptide[J]. Food Science and Technology,2020,45(7):159−165. doi: 10.13684/j.cnki.spkj.2020.07.028
    [5]
    汤海霞, 张艳, 葛武鹏, 等. 酶解法制备绵羊乳酪蛋白ACE抑制肽的工艺优化及其抑制机制[J]. 中国食品学报,2022,22(6):220−231 doi: 10.16429/j.1009-7848.2022.06.023

    TANG H X, ZHANG Y, GE W P, et al. Optimization of enzymatic preparation of ACE inhibitory peptide from sheep milk casein and its inhibition mechanism[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(6):220−231. doi: 10.16429/j.1009-7848.2022.06.023
    [6]
    ZHENG S L, LUO Q B, SUO S K, et al. Preparation, identification, molecular docking study and protective function on HUVECs of novel ACE inhibitory peptides from protein hydrolysate of skipjack tuna muscle[J]. Marine Drugs,2022,20(3):176. doi: 10.3390/md20030176
    [7]
    蔡金秀, 夏姗姗, 马佳雯, 等. 马面鱼皮ACE抑制肽的制备、分离纯化及稳定性[J]. 中国食品学报,2022,22(3):225−234 doi: 10.16429/j.1009-7848.2022.03.025

    CAI J X, XIA S S, MA J W, et al. Preparation, isolation and stability of collagen ACE inhibitory peptides from the skin of navodon septentrionalis ACE[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(3):225−234. doi: 10.16429/j.1009-7848.2022.03.025
    [8]
    YU D Y, WANG C, SONG Y F, et al. Discovery of novel angiotensin-converting enzyme inhibitory peptides from Todarodes pacificus and their inhibitory mechanism: In silico and in vitro studies[J]. International Journal of Molecular Sciences,2019,20(17):4159. doi: 10.3390/ijms20174159
    [9]
    纪慧卓, 陈嘉钰, 李欣, 等. 大黄鱼蛋白源ACE抑制三肽的虚拟筛选、体外活性验证及分子机制[J]. 食品工业科技,2021,42(6):125−129, 143 doi: 10.13386/j.issn1002-0306.2020060287

    JI H Z, CHEN J Y, LI X, et al. Screening, in vitro activity and molecular mechanism of ACE inhibitory tirpeptides from Larimichthys crocea protein[J]. Science and Technology of Food Industry,2021,42(6):125−129, 143. doi: 10.13386/j.issn1002-0306.2020060287
    [10]
    MIRZAEI M, MIRDAMADI S, SAFAVI M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure,2020,1213:128199. doi: 10.1016/j.molstruc.2020.128199
    [11]
    SUO S K, ZHAO Y Q, WANG Y M, et al. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis:Isolation, identification, molecular docking study, and protective function on HUVECs[J]. Food & Function,2022,13(14):7831−7846.
    [12]
    ZHONG C, SUN L C, YAN L J, et al. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber ( Stichopus japonicus) gonad[J]. Food & Function,2018,9(1):594−603.
    [13]
    苑园园, 于宏伟, 田益玲, 等. 酶法制备牡蛎ACE抑制肽的条件优化[J]. 中国食品学报,2013,13(3):115−121 doi: 10.16429/j.1009-7848.2013.03.010

    YUAN Y Y, YU H W, TIAN Y L, et al. Enzymatic preparation of angiotensin I-converting enzyme inhibitory peptides derived from oyster[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(3):115−121. doi: 10.16429/j.1009-7848.2013.03.010
    [14]
    LEE J K, JEON J K, BYUN H G. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon ( Oncorhynchus keta) skin in spontaneously hypertensive rats[J]. Journal of Functional Foods,2014,7:381−389. doi: 10.1016/j.jff.2014.01.021
    [15]
    KO J Y, KAND N, LEE J H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish ( Paralichthys olivaceus) muscle as a potent anti-hypertensive agent[J]. Process Biochemistry,2016,51(4):535−541. doi: 10.1016/j.procbio.2016.01.009
    [16]
    ZHAO Y Q, ZHANG L, TAO J, et al. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill ( Euphausia superba):Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs)[J]. Food Research International,2019,121:197−204. doi: 10.1016/j.foodres.2019.03.035
    [17]
    陈秋銮, 陈雪芹, 马倩, 等. 酶解法制备牡丹籽ACE抑制肽及其稳定性[J]. 食品工业科技,2020,41(19):149−156. [CHEN Q L, CHEN X Q, MA Q, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2020,41(19):149−156. doi: 10.13386/j.issn1002-0306.2020.19.024

    CHEN Q L, CHEN X Q, MA Q, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry, 2020, 4119): 149156. doi: 10.13386/j.issn1002-0306.2020.19.024
    [18]
    KOHMURA M, NIO N, ARIYOSHI Y. Inhibition of angiotensin-converting enzyme by synthetic peptide fragments of human κ-Casein[J]. Agricultural and Biological Chemistry,1990,54(3):835−836.
    [19]
    王振斌, 刘加友, 陈兵兵, 等. 响应面优化酶法制备芝麻饼粕ACE抑制肽研究[J]. 中国粮油学报,2015,30(9):88−93 doi: 10.3969/j.issn.1003-0174.2015.09.017

    WANG Z B, LIU J Y, CHEN B B, et al. The response surface optimizate preparation of sesame dregs’ ACE inhibitory peptides with enzyme[J]. Journal of the Chinese Cereals and Oils Association,2015,30(9):88−93. doi: 10.3969/j.issn.1003-0174.2015.09.017
    [20]
    贾叶叶, 田洪磊, 詹萍, 等. 酶法制备沙漠果蛋白ACE抑制肽工艺的研究[J]. 食品工业科技,2016,37(6):264−274 doi: 10.13386/j.issn1002-0306.2016.06.046

    JIA Y Y, TIAN H L, ZHAN P, et al. Preparation of ACE inhibitory peptides from Brazil nut protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2016,37(6):264−274. doi: 10.13386/j.issn1002-0306.2016.06.046
    [21]
    张婉迎, 杨俊杰, 杨松, 等. 响应面优化桑葚果粉喷雾干燥研究[J]. 食品工业,2018,39(7):182−185

    ZHANG W Y, YANG J J, YANG S, et al. Optimization of spray drying of mulberry powder by response surface method[J]. The Food Industry,2018,39(7):182−185.
    [22]
    陈冰冰, 欧颖仪, 叶灏铎, 等. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究[J]. 食品工业科技,2022,43(3):1−9

    CHEN B B, OU Y Y, YE H D, et al. Optimization of enzymatic hydrolysis process and activity of ACE inhibitory peptides from selenium-rich Moringa oleifera leaves protein[J]. Science and Technology of Food Industry,2022,43(3):1−9.
    [23]
    李珊, 梁俭, 冯群, 等. 桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性[J]. 食品工业科技,2019,40(4):220−225, 231 doi: 10.13386/j.issn1002-0306.2019.04.036

    LI S, LANG J, FENG Q, et al. Optimization of polysaccharides from guiqi-mango peels by response surface methodology and its antioxidant activity in vitro[J]. Science and Technology of Food Industry,2019,40(4):220−225, 231. doi: 10.13386/j.issn1002-0306.2019.04.036
    [24]
    姚轶俊, 张晶, 鞠兴荣, 等. 菜籽抗氧化肽WDHHAPQLR的环境稳定性研究[J]. 中国粮油学报,2019,34(8):54−60 doi: 10.3969/j.issn.1003-0174.2019.08.010

    YAO Y J, ZHANG J, JU X R, et al. Environmental stability of rapeseed antioxidant peptide WDHHAPQLR[J]. Journal of the Chinese Cereals and Oils Association,2019,34(8):54−60. doi: 10.3969/j.issn.1003-0174.2019.08.010
    [25]
    ZHU Q, XUE J, WANG P, et al. Identification of a novel ACE inhibitory hexapeptide from camellia seed cake and evaluation of its stability[J]. Foods,2023,12(3):501. doi: 10.3390/foods12030501
    [26]
    TAO M, WANG C, LIAO D, et al. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa ( Bombyx mori) protein hydrolysate[J]. Process Biochemistry,2017,54:172−179. doi: 10.1016/j.procbio.2016.12.022
    [27]
    ESCUDERO E, MORA L, TOLDRÁ F. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion[J]. Food Chemistry,2014,161:305−311. doi: 10.1016/j.foodchem.2014.03.117
    [28]
    刘鑫烔, 宋铖铖, 乔变文, 等. 两种皮氏蛾螺ACE抑制肽的稳定性和抑制活性[J]. 食品工业科技,2020,41(19):7−12, 19 doi: 10.13386/j.issn1002-0306.2020.19.002

    LIU X J, SONG C C, QIAO B W, et al. Research on the stability and activity of two ACE inhibitory peptides from Volutharpa ampullaceal perryi[J]. Science and Technology of Food Industry,2020,41(19):7−12, 19. doi: 10.13386/j.issn1002-0306.2020.19.002
    [29]
    ZHU S, WANG S, WANG L, et al. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape ( Brassica napus L.) bee pollen[J]. LWT-Food Science and Technology,2021,147:111502. doi: 10.1016/j.lwt.2021.111502
    [30]
    PEREIRA A M, LISBOA C R, SANTOS T D, et al. Bioactive stability of microalgal protein hydrolysates under food processing and storage conditions[J]. Journal of Food Science and Technology,2019,56(10):4543−4551. doi: 10.1007/s13197-019-03915-2
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (140) PDF downloads (13) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return