Citation: | LI Shuang, LIU Xiaofang, LI Fuhou, et al. Optimization of Enzymatic Hydrolysis Preparation Process and Stability Evaluation of ACE Inhibitory Peptides from Antarctic Krill (Euphausia superba)[J]. Science and Technology of Food Industry, 2023, 44(21): 243−250. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020174. |
[1] |
赵宪勇, 左涛, 冷凯良, 等. 南极磷虾渔业发展的工程科技需求[J]. 中国工程科学,2016,18(2):85−90 doi: 10.3969/j.issn.1009-1742.2016.02.013
ZHAO X Y, ZUO T, LENG K L, et al. Engineering science and technology challenges in the Antarctic krill fishery[J]. Strategic Study of Chinese Academy of Engineering,2016,18(2):85−90. doi: 10.3969/j.issn.1009-1742.2016.02.013
|
[2] |
高颖, 王彦超, 常耀光, 等. 三种低氟南极磷虾肽的ACE抑制作用及抗氧化活性研究[J]. 食品工业科技,2016,37(2):82−87, 92 doi: 10.13386/j.issn1002-0306.2016.02.008
GAO Y, WANG Y C, CHANG Y G, et al. ACE inhibition and antioxidant activities of three types of Antarctic krill ( Euphausia superba) peptides with low fluorine content[J]. Science and Technology of Food Industry,2016,37(2):82−87, 92. doi: 10.13386/j.issn1002-0306.2016.02.008
|
[3] |
刘柯欣, 林松毅, 胡胜杰, 等. 南极磷虾蛋白营养与功能特性及食用安全性研究进展[J]. 食品科学,2022,43(7):263−272 doi: 10.7506/spkx1002-6630-20210301-007
LIU K X, LIN S Y, HU S J, et al. Advances in our knowledge of the nutritional and functional properties and safety of Antarctic krill proteins[J]. Food Science,2022,43(7):263−272. doi: 10.7506/spkx1002-6630-20210301-007
|
[4] |
孙如男, 冷凯良, 高华, 等. 南极磷虾金属螯合肽蛋白基料的酶解制备工艺优化[J]. 食品科技,2020,45(7):159−165 doi: 10.13684/j.cnki.spkj.2020.07.028
SUN R N, LENG K L, GAO H, et al. Optimization of enzymatic hydrolysis preparation of the protein-based material for the production of Antarctic krill metal-chelating peptide[J]. Food Science and Technology,2020,45(7):159−165. doi: 10.13684/j.cnki.spkj.2020.07.028
|
[5] |
汤海霞, 张艳, 葛武鹏, 等. 酶解法制备绵羊乳酪蛋白ACE抑制肽的工艺优化及其抑制机制[J]. 中国食品学报,2022,22(6):220−231 doi: 10.16429/j.1009-7848.2022.06.023
TANG H X, ZHANG Y, GE W P, et al. Optimization of enzymatic preparation of ACE inhibitory peptide from sheep milk casein and its inhibition mechanism[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(6):220−231. doi: 10.16429/j.1009-7848.2022.06.023
|
[6] |
ZHENG S L, LUO Q B, SUO S K, et al. Preparation, identification, molecular docking study and protective function on HUVECs of novel ACE inhibitory peptides from protein hydrolysate of skipjack tuna muscle[J]. Marine Drugs,2022,20(3):176. doi: 10.3390/md20030176
|
[7] |
蔡金秀, 夏姗姗, 马佳雯, 等. 马面鱼皮ACE抑制肽的制备、分离纯化及稳定性[J]. 中国食品学报,2022,22(3):225−234 doi: 10.16429/j.1009-7848.2022.03.025
CAI J X, XIA S S, MA J W, et al. Preparation, isolation and stability of collagen ACE inhibitory peptides from the skin of navodon septentrionalis ACE[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(3):225−234. doi: 10.16429/j.1009-7848.2022.03.025
|
[8] |
YU D Y, WANG C, SONG Y F, et al. Discovery of novel angiotensin-converting enzyme inhibitory peptides from Todarodes pacificus and their inhibitory mechanism: In silico and in vitro studies[J]. International Journal of Molecular Sciences,2019,20(17):4159. doi: 10.3390/ijms20174159
|
[9] |
纪慧卓, 陈嘉钰, 李欣, 等. 大黄鱼蛋白源ACE抑制三肽的虚拟筛选、体外活性验证及分子机制[J]. 食品工业科技,2021,42(6):125−129, 143 doi: 10.13386/j.issn1002-0306.2020060287
JI H Z, CHEN J Y, LI X, et al. Screening, in vitro activity and molecular mechanism of ACE inhibitory tirpeptides from Larimichthys crocea protein[J]. Science and Technology of Food Industry,2021,42(6):125−129, 143. doi: 10.13386/j.issn1002-0306.2020060287
|
[10] |
MIRZAEI M, MIRDAMADI S, SAFAVI M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure,2020,1213:128199. doi: 10.1016/j.molstruc.2020.128199
|
[11] |
SUO S K, ZHAO Y Q, WANG Y M, et al. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis:Isolation, identification, molecular docking study, and protective function on HUVECs[J]. Food & Function,2022,13(14):7831−7846.
|
[12] |
ZHONG C, SUN L C, YAN L J, et al. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber ( Stichopus japonicus) gonad[J]. Food & Function,2018,9(1):594−603.
|
[13] |
苑园园, 于宏伟, 田益玲, 等. 酶法制备牡蛎ACE抑制肽的条件优化[J]. 中国食品学报,2013,13(3):115−121 doi: 10.16429/j.1009-7848.2013.03.010
YUAN Y Y, YU H W, TIAN Y L, et al. Enzymatic preparation of angiotensin I-converting enzyme inhibitory peptides derived from oyster[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(3):115−121. doi: 10.16429/j.1009-7848.2013.03.010
|
[14] |
LEE J K, JEON J K, BYUN H G. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon ( Oncorhynchus keta) skin in spontaneously hypertensive rats[J]. Journal of Functional Foods,2014,7:381−389. doi: 10.1016/j.jff.2014.01.021
|
[15] |
KO J Y, KAND N, LEE J H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish ( Paralichthys olivaceus) muscle as a potent anti-hypertensive agent[J]. Process Biochemistry,2016,51(4):535−541. doi: 10.1016/j.procbio.2016.01.009
|
[16] |
ZHAO Y Q, ZHANG L, TAO J, et al. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill ( Euphausia superba):Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs)[J]. Food Research International,2019,121:197−204. doi: 10.1016/j.foodres.2019.03.035
|
[17] |
陈秋銮, 陈雪芹, 马倩, 等. 酶解法制备牡丹籽ACE抑制肽及其稳定性[J]. 食品工业科技,2020,41(19):149−156. [CHEN Q L, CHEN X Q, MA Q, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2020,41(19):149−156. doi: 10.13386/j.issn1002-0306.2020.19.024
|
[18] |
KOHMURA M, NIO N, ARIYOSHI Y. Inhibition of angiotensin-converting enzyme by synthetic peptide fragments of human κ-Casein[J]. Agricultural and Biological Chemistry,1990,54(3):835−836.
|
[19] |
王振斌, 刘加友, 陈兵兵, 等. 响应面优化酶法制备芝麻饼粕ACE抑制肽研究[J]. 中国粮油学报,2015,30(9):88−93 doi: 10.3969/j.issn.1003-0174.2015.09.017
WANG Z B, LIU J Y, CHEN B B, et al. The response surface optimizate preparation of sesame dregs’ ACE inhibitory peptides with enzyme[J]. Journal of the Chinese Cereals and Oils Association,2015,30(9):88−93. doi: 10.3969/j.issn.1003-0174.2015.09.017
|
[20] |
贾叶叶, 田洪磊, 詹萍, 等. 酶法制备沙漠果蛋白ACE抑制肽工艺的研究[J]. 食品工业科技,2016,37(6):264−274 doi: 10.13386/j.issn1002-0306.2016.06.046
JIA Y Y, TIAN H L, ZHAN P, et al. Preparation of ACE inhibitory peptides from Brazil nut protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2016,37(6):264−274. doi: 10.13386/j.issn1002-0306.2016.06.046
|
[21] |
张婉迎, 杨俊杰, 杨松, 等. 响应面优化桑葚果粉喷雾干燥研究[J]. 食品工业,2018,39(7):182−185
ZHANG W Y, YANG J J, YANG S, et al. Optimization of spray drying of mulberry powder by response surface method[J]. The Food Industry,2018,39(7):182−185.
|
[22] |
陈冰冰, 欧颖仪, 叶灏铎, 等. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究[J]. 食品工业科技,2022,43(3):1−9
CHEN B B, OU Y Y, YE H D, et al. Optimization of enzymatic hydrolysis process and activity of ACE inhibitory peptides from selenium-rich Moringa oleifera leaves protein[J]. Science and Technology of Food Industry,2022,43(3):1−9.
|
[23] |
李珊, 梁俭, 冯群, 等. 桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性[J]. 食品工业科技,2019,40(4):220−225, 231 doi: 10.13386/j.issn1002-0306.2019.04.036
LI S, LANG J, FENG Q, et al. Optimization of polysaccharides from guiqi-mango peels by response surface methodology and its antioxidant activity in vitro[J]. Science and Technology of Food Industry,2019,40(4):220−225, 231. doi: 10.13386/j.issn1002-0306.2019.04.036
|
[24] |
姚轶俊, 张晶, 鞠兴荣, 等. 菜籽抗氧化肽WDHHAPQLR的环境稳定性研究[J]. 中国粮油学报,2019,34(8):54−60 doi: 10.3969/j.issn.1003-0174.2019.08.010
YAO Y J, ZHANG J, JU X R, et al. Environmental stability of rapeseed antioxidant peptide WDHHAPQLR[J]. Journal of the Chinese Cereals and Oils Association,2019,34(8):54−60. doi: 10.3969/j.issn.1003-0174.2019.08.010
|
[25] |
ZHU Q, XUE J, WANG P, et al. Identification of a novel ACE inhibitory hexapeptide from camellia seed cake and evaluation of its stability[J]. Foods,2023,12(3):501. doi: 10.3390/foods12030501
|
[26] |
TAO M, WANG C, LIAO D, et al. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa ( Bombyx mori) protein hydrolysate[J]. Process Biochemistry,2017,54:172−179. doi: 10.1016/j.procbio.2016.12.022
|
[27] |
ESCUDERO E, MORA L, TOLDRÁ F. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion[J]. Food Chemistry,2014,161:305−311. doi: 10.1016/j.foodchem.2014.03.117
|
[28] |
刘鑫烔, 宋铖铖, 乔变文, 等. 两种皮氏蛾螺ACE抑制肽的稳定性和抑制活性[J]. 食品工业科技,2020,41(19):7−12, 19 doi: 10.13386/j.issn1002-0306.2020.19.002
LIU X J, SONG C C, QIAO B W, et al. Research on the stability and activity of two ACE inhibitory peptides from Volutharpa ampullaceal perryi[J]. Science and Technology of Food Industry,2020,41(19):7−12, 19. doi: 10.13386/j.issn1002-0306.2020.19.002
|
[29] |
ZHU S, WANG S, WANG L, et al. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape ( Brassica napus L.) bee pollen[J]. LWT-Food Science and Technology,2021,147:111502. doi: 10.1016/j.lwt.2021.111502
|
[30] |
PEREIRA A M, LISBOA C R, SANTOS T D, et al. Bioactive stability of microalgal protein hydrolysates under food processing and storage conditions[J]. Journal of Food Science and Technology,2019,56(10):4543−4551. doi: 10.1007/s13197-019-03915-2
|