Citation: | HUANG Jingjing, ZHOU Yingqin, CHENG Xiufeng, et al. Research Progress on Food Derived Blood Glucose Regulating Peptides[J]. Science and Technology of Food Industry, 2023, 44(21): 431−441. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010077. |
[1] |
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas:Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice,2022,183:109119. doi: 10.1016/j.diabres.2021.109119
|
[2] |
PIZZATO M, TURATI F, ROSATO V, et al. Exploring the link between diabetes and pancreatic cancer[J]. Expert Review of Anticancer Therapy,2019,19(8):681−687. doi: 10.1080/14737140.2019.1642109
|
[3] |
RIVERO-PINO F, ESPEJO-CARPIO F J, GUADIX E M. Antidiabetic food-derived peptides for functional feeding:Production, functionality and in vivo evidences[J]. Foods,2020,9(8):983. doi: 10.3390/foods9080983
|
[4] |
LIU L, LI S S, ZHENG J X, et al. Safety considerations on food protein-derived bioactive peptides[J]. Trends in Food Science & Technology,2020,96:199−207.
|
[5] |
张廷新, 李富强, 张楠, 等. 降糖肽的制备、生物学效应及其构效关系研究进展[J]. 食品工业科技,2022,43(8):433−442 doi: 10.13386/j.issn1002-0306.2021040219
ZHANG Tingxin, LI Fuqiang, ZHANG Nan, et al. Advances in preparation, biological effect and structure-activity relationship of hypoglycemic peptides[J]. Science and Technology of Food Industry,2022,43(8):433−442. doi: 10.13386/j.issn1002-0306.2021040219
|
[6] |
ACQUAH C, DZUVOR C K, TOSH S, et al. Anti-diabetic effects of bioactive peptides:recent advances and clinical implications[J]. Critical Reviews in Food Science and Nutrition,2022,62(8):2158−2171. doi: 10.1080/10408398.2020.1851168
|
[7] |
BO W C, CHEN L, QIN D Y, et al. Application of quantitative structure-activity relationship to food-derived peptides:Methods, situations, challenges and prospects[J]. Trends in Food Science & Technology,2021,114:176−188.
|
[8] |
NAUCK M A, BALLER B, MEIER J J. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes[J]. Diabetes,2004,53(suppl_3):S190−S196. doi: 10.2337/diabetes.53.suppl_3.S190
|
[9] |
王清. 胰高血糖素样肽-1类似物的合成及活性研究[D]. 岳阳:湖南理工学院, 2019
WANG Qing. Synthesis and activity of glucagon-like peptide-1 analogs[D]. Yueyang:Hunan Institute of Science and Technology, 2019.
|
[10] |
WANG F, ZHANG Y Y, YU T T, et al. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells[J]. Journal of Functional Foods,2018,42:12−20. doi: 10.1016/j.jff.2017.12.061
|
[11] |
HONG H, ZHENG Y Y, SONG S J, et al. Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates[J]. Food Bioscience,2020,38:100748. doi: 10.1016/j.fbio.2020.100748
|
[12] |
LU Y T, LU P, WANG Y, et al. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in streptozotocin-induced diabetic mice[J]. International Journal of Molecular Sciences,2019,20(2):322. doi: 10.3390/ijms20020322
|
[13] |
WANG T T, ZHENG L, ZHAO T T, et al. Anti-diabetic effects of sea cucumber ( Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway[J]. Journal of Functional Foods,2020,75:104224. doi: 10.1016/j.jff.2020.104224
|
[14] |
ADMASSU H, GASMALLA M A A, YANG R, et al. Bioactive peptides derived from seaweed protein and their health benefits:Antihypertensive, antioxidant, and antidiabetic properties[J]. Journal of Food Science,2018,83(1):6−16. doi: 10.1111/1750-3841.14011
|
[15] |
ÇAĞLAR A F, GÖKSU A G, ÇAKIR B, et al. Tombul hazelnut ( Corylus avellana L.) peptides with DPP-IV inhibitory activity: In vitro and in silico studies[J]. Food Chemistry:X,2021,12:100151.
|
[16] |
LAMMI C, BOLLATI C, FERRUZZA S, et al. Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum[J]. Nutrients,2018,10(8):1082. doi: 10.3390/nu10081082
|
[17] |
AIELLO G, FERRUZZA S, RANALDI G, et al. Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell[J]. Journal of Functional Foods,2018,45:363−370. doi: 10.1016/j.jff.2018.04.023
|
[18] |
LACROIX I M, CHEN X-M, KITTS D D, et al. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers[J]. Food & Function,2017,8(2):701−709.
|
[19] |
SONG J J, WANG Q, DU M, et al. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates[J]. Journal of Dairy Science,2017,100(9):6885−6894. doi: 10.3168/jds.2016-11828
|
[20] |
JI W, ZHANG C H, JI H W. Two novel bioactive peptides from antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities[J]. Journal of Food Science,2017,82(7):1742−1749. doi: 10.1111/1750-3841.13735
|
[21] |
SALIM M A S M, GAN C-Y. Dual-function peptides derived from egg white ovalbumin:Bioinformatics identification with validation using in vitro assay[J]. Journal of Functional Foods,2020,64:103618. doi: 10.1016/j.jff.2019.103618
|
[22] |
LIU R, CHENG J M, WU H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides:A review[J]. International Journal of Molecular Sciences,2019,20(3):463. doi: 10.3390/ijms20030463
|
[23] |
GALLEGO M, ARISTOY M-C, TOLDRÁ F. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham[J]. Meat Science,2014,96(2):757−761. doi: 10.1016/j.meatsci.2013.09.014
|
[24] |
RIVERO-PINO F, ESPEJO-CARPIO F J, GUADIX E M. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein[J]. Food Chemistry,2020,328:127096. doi: 10.1016/j.foodchem.2020.127096
|
[25] |
IBRAHIM M A, BESTER M J, NEITZ A W, et al. Structural properties of bioactive peptides with α-glucosidase inhibitory activity[J]. Chemical Biology & Drug Design,2018,91(2):370−379.
|
[26] |
NONGONIERMA A B, FITZGERALD R J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins[J]. Journal of Food Biochemistry,2019,43(1):e12451. doi: 10.1111/jfbc.12451
|
[27] |
REN Y, LIANG K, JIN Y Q, et al. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp ( Cannabis sativa L.) seed protein[J]. Journal of Functional Foods,2016,26:439−450. doi: 10.1016/j.jff.2016.07.024
|
[28] |
LIU W W, LI H Y, WEN Y Y, et al. Molecular mechanism for the α-glucosidase inhibitory effect of wheat germ peptides[J]. Journal of Agricultural and Food Chemistry,2021,69(50):15231−15239. doi: 10.1021/acs.jafc.1c06098
|
[29] |
WANG X F, FAN Y Z, XU F R, et al. Characterization of the structure, stability, and activity of hypoglycemic peptides from Moringa oleifera seed protein hydrolysates[J]. Food & Function,2022,13(6):3481−3494.
|
[30] |
WANG R C, ZHAO H X, PAN X X, et al. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein[J]. Food Science & Nutrition,2019,7(5):1848−1856.
|
[31] |
JIANG M Z, YAN H, HE R H, et al. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment[J]. European Food Research and Technology,2018,244(11):1995−2005. doi: 10.1007/s00217-018-3111-7
|
[32] |
SIOW H L, GAN C Y. Extraction, identification, and structure-activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds ( Cuminum cyminum)[J]. Journal of Functional Foods,2016,22:1−12. doi: 10.1016/j.jff.2016.01.011
|
[33] |
NGOH Y Y, GAN C Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans ( Phaseolus vulgaris cv. Pinto)[J]. Food Chemistry,2016,190:331−337. doi: 10.1016/j.foodchem.2015.05.120
|
[34] |
NGOH Y-Y, GAN C-Y. Identification of Pinto bean peptides with inhibitory effects on α-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach[J]. Food Chemistry,2018,267:124−131. doi: 10.1016/j.foodchem.2017.04.166
|
[35] |
FUENTES L R, RICHARD C, CHEN L Y. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein[J]. Journal of Functional Foods,2021,87:104829. doi: 10.1016/j.jff.2021.104829
|
[36] |
ARISE R O, IDI J J, MIC-BRAIMOH I M, et al. In vitro Angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate[J]. Heliyon,2019,5(5):e01634. doi: 10.1016/j.heliyon.2019.e01634
|
[37] |
ZHAO B L, SU K Y, MAO X L, et al. Separation and identification of enzyme inhibition peptides from dark tea protein[J]. Bioorganic Chemistry,2020,99:103772. doi: 10.1016/j.bioorg.2020.103772
|
[38] |
WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut ( Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. Journal of Functional Foods,2020,69:103944. doi: 10.1016/j.jff.2020.103944
|
[39] |
MUDGIL P, KAMAL H, YUEN G C, et al. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates[J]. Food Chemistry,2018,259:46−54. doi: 10.1016/j.foodchem.2018.03.082
|
[40] |
MORA L, GONZÁLEZ-ROGEL D, HERES A, et al. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides[J]. Journal of Functional Foods,2020,67:103840. doi: 10.1016/j.jff.2020.103840
|
[41] |
VILCACUNDO R ,VILLALUENG C M, LEDESMA B H. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa ( Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion[J]. Journal of Functional Foods,2017,35:531−539. doi: 10.1016/j.jff.2017.06.024
|
[42] |
MUDGIL P, KAMAL H, KILARI B P, et al. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates:Identification and characterization of novel anti-diabetic bioactive peptides[J]. Food Chemistry,2021,353:129374. doi: 10.1016/j.foodchem.2021.129374
|
[43] |
ARIF R, AHMAD S, MUSTAFA G, et al. Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-P of Momordica charantia[J]. BioMed Research International,2021,2021:5561129.
|
[44] |
HARNEDY-ROTHWELL P A, MCLAUGHLIN C M, O'KEEFFE M B, et al. Identification and characterisation of peptides from a boarfish ( Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity[J]. Food Research International,2020,131:108989. doi: 10.1016/j.foodres.2020.108989
|
[45] |
WU Y H, ZHAO R, LI M X, et al. Novel soybean peptide iglycin ameliorates insulin resistance of high-fat diet fed C57BL/6J mice and differentiated 3T3L1 adipocytes with improvement of insulin signaling and mitochondrial function[J]. Food Science and Human Wellness,2022,11(6):1565−1572. doi: 10.1016/j.fshw.2022.06.014
|
[46] |
HENAUX L, PEREIRA K D, THIBODEAU J, et al. Glucoregulatory and anti-inflammatory activities of peptide fractions separated by electrodialysis with ultrafiltration membranes from salmon protein hydrolysate and identification of four novel glucoregulatory peptides[J]. Membranes,2021,11(7):528. doi: 10.3390/membranes11070528
|
[47] |
HARNEDY P A, PARTHSARATHY V, MCLAUGHLIN C M, et al. Atlantic salmon ( Salmo salar) co-product-derived protein hydrolysates:A source of antidiabetic peptides[J]. Food Research International,2018,106:598−606. doi: 10.1016/j.foodres.2018.01.025
|
[48] |
FADIMU G J, FARAHNAKY A, GILL H, et al. In-silico analysis and antidiabetic effect of α-amylase and α-glucosidase inhibitory peptides from lupin protein hydrolysate:Enzyme-peptide interaction study using molecular docking approach[J]. Foods,2022,11(21):3375. doi: 10.3390/foods11213375
|
[49] |
WEI R T, LIN L K, LI T T, et al. Separation, identification, and design of α‐glucosidase inhibitory peptides based on the molecular mechanism from Paeonia ostii ‘Feng Dan’ seed protein[J]. Journal of Food Science,2022,87(11):4892−4904. doi: 10.1111/1750-3841.16340
|
[50] |
ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT,2022,156:113062. doi: 10.1016/j.lwt.2021.113062
|
[51] |
RIVERO-PINO F, ESPEJO-CARPIO F J, GUADIX E M.Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis[J]. Food Bioscience,2021,44:101328. doi: 10.1016/j.fbio.2021.101328
|
[52] |
FENG J, MA Y L, SUN P, et al. Purification and characterisation of α‐glucosidase inhibitory peptides from defatted camellia seed cake[J]. International Journal of Food Science & Technology,2021,56(1):138−147.
|
[53] |
KAMAL H, MUDGIL P, BHASKAR B, et al. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes[J]. Journal of Cereal Science,2021,101:103308. doi: 10.1016/j.jcs.2021.103308
|
[54] |
BABA W N, MUDGIL P, KAMAL H, et al. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins[J]. Journal of Dairy Science,2021,104(2):1364−1377. doi: 10.3168/jds.2020-19271
|
[55] |
QIU L Y, DENG Z Y, ZHAO C D, et al. Nutritional composition and proteomic analysis of soft-shelled turtle ( Pelodiscus sinensis) egg and identification of oligopeptides with alpha-glucosidase inhibitory activity[J]. Food Research International,2021,145:110414. doi: 10.1016/j.foodres.2021.110414
|
[56] |
URAIPONG C, ZHAO J. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α‐glucosidase and angiotensin I converting enzyme[J]. Journal of the Science of Food and Agriculture,2018,98(2):758−766. doi: 10.1002/jsfa.8523
|
[57] |
MAZLOOMI S N, MAHOONAK A S, MORA L, et al. Pepsin hydrolysis of orange by-products for the production of bioactive peptides with gastrointestinal resistant properties[J]. Foods,2021,10(3):679. doi: 10.3390/foods10030679
|
[58] |
RAMADHAN A H, NAWAS T, ZHANG X W, et al. Purification and identification of a novel antidiabetic peptide from Chinese giant salamander ( Andrias davidianus) protein hydrolysate against α-amylase and α-glucosidase[J]. International Journal of Food Properties,2017,20(sup3):S3360−S3372. doi: 10.1080/10942912.2017.1354885
|
[59] |
FUENTES L R. Development and characterization of peptides with antidiabetic activities from oat protein[D]. Edmonton, Alberta:University of Alberta, 2021.
|
[60] |
DAI L Y, KONG L X, CAI X, et al. Analysis of the structure and activity of dipeptidyl peptidase IV (DPP-IV) inhibitory oligopeptides from sorghum kafirin[J]. Journal of Agricultural and Food Chemistry,2022,70(6):2010−2017. doi: 10.1021/acs.jafc.1c04484
|
[61] |
HE L, WANG X Y, WANG Y R, et al. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded cowhide collagen[J]. Food Chemistry, 2022:134793.
|
[62] |
LIU C Y, GUO Z T, YANG Y L, et al. Identification of dipeptidyl peptidase-IV inhibitory peptides from yak bone collagen by in silico and in vitro analysis[J]. European Food Research and Technology,2022,248(12):3059−3069. doi: 10.1007/s00217-022-04111-x
|
[63] |
MUNAWAROH H S H, GUMILAR G G, BERLIANA J D, et al. In silico proteolysis and molecular interaction of tilapia ( Oreochromis niloticus) skin collagen-derived peptides for environmental remediation[J]. Environmental Research,2022,212:113002. doi: 10.1016/j.envres.2022.113002
|
[64] |
MARTÍNEZ K A A, MEJIA E G. Comparison of five chickpea varieties, optimization of hydrolysates production and evaluation of biomarkers for type 2 diabetes[J]. Food Research International,2021,147:110572. doi: 10.1016/j.foodres.2021.110572
|
[65] |
ZHAO L, ZHANG M X, PAN F, et al. In silico analysis of novel dipeptidyl peptidase-IV inhibitory peptides released from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and the possible pathways involved in diabetes protection[J]. Current Research in Food Science,2021,4:603−611. doi: 10.1016/j.crfs.2021.08.008
|
[66] |
WANG B B, YU Z, YOKOYAMA W, et al. Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion[J]. Food Bioscience,2021,42:101161. doi: 10.1016/j.fbio.2021.101161
|
[67] |
MIRZAPOUR-KOUHDASHT A, MOOSAVI-NASAB M, LEE C W, et al. Structure-function engineering of novel fish gelatin-derived multifunctional peptides using high-resolution peptidomics and bioinformatics[J]. Scientific Reports,2021,11:7401. doi: 10.1038/s41598-021-86808-9
|
[68] |
LI Y C, AIELLO G, BOLLATI C, et al. Phycobiliproteins from Arthrospira Platensis (Spirulina):A new source of peptides with dipeptidyl peptidase-IV inhibitory activity[J]. Nutrients,2020,12(3):794. doi: 10.3390/nu12030794
|
[69] |
JIA C L, HUSSAIN N, UJIROGHENE O J, et al. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins[J]. Food Chemistry,2020,318:126333. doi: 10.1016/j.foodchem.2020.126333
|
[70] |
ZHAO W Z, ZHANG D, YU Z P, et al. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs[J]. Journal of Functional Foods,2020,64:103649. doi: 10.1016/j.jff.2019.103649
|
[71] |
JIN R T, TENG X Y, SHANG J Q, et al. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon ( Salmo salar) skin[J]. Food Research International,2020,133:109161. doi: 10.1016/j.foodres.2020.109161
|
[72] |
WANG K, YANG X X, LOU W Y, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass ( Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432
|
[73] |
NONGONIERMA A B, CADAMURO C, GOUIC LE A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70−79. doi: 10.1016/j.foodchem.2018.11.142
|
[74] |
MUNE M A M, MINKA S R, HENLE T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates[J]. Food Chemistry,2018,250:162−169. doi: 10.1016/j.foodchem.2018.01.001
|
[75] |
SATO K, MIYASAKA S, TSUJI A, et al. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae[J]. Food Chemistry,2018,261:51−56. doi: 10.1016/j.foodchem.2018.04.029
|
[76] |
ZAMUDIO F V, HIDALGO-FIGUEROA S N, ANDRADE R R O, et al. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains:Amaranth, Quinoa and Chia[J]. Food Chemistry,2022,394:133479. doi: 10.1016/j.foodchem.2022.133479
|
[77] |
HU S, FAN X, QI P, et al. Identification of anti-diabetes peptides from Spirulina platensis[J]. Journal of Functional Foods,2019,56:333−341. doi: 10.1016/j.jff.2019.03.024
|
[78] |
GONZÁLEZ-MONTOYA M, HERNÁNDEZ-LEDESMA B, MORA-ESCOBEDO R, et al. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes[J]. International Journal of Molecular Sciences,2018,19(10):2883. doi: 10.3390/ijms19102883
|
[79] |
ZHOU M, REN G Y, ZHANG B, et al. Screening and identification of a novel antidiabetic peptide from collagen hydrolysates of Chinese giant salamander skin:network pharmacology, inhibition kinetics and protection of IR-HepG2 cells[J]. Food & Function,2022,13(6):3329−3342.
|
[80] |
WANG J, WU T, FANG L, et al. Peptides from walnut ( Juglans mandshurica Maxim.) protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress[J]. Food & Function,2020,11(9):8112−8121.
|
[81] |
GONG P X, WANG B K, WU Y C, et al. Release of antidiabetic peptides from Stichopus japonicas by simulated gastrointestinal digestion[J]. Food Chemistry,2020,315:126273. doi: 10.1016/j.foodchem.2020.126273
|
[82] |
ROLIN J. Identification and aspects of commercial production of anti-diabetic peptide(s) from salmon protein hydrolysates [D]. Halifax:Dalhousie University, 2020.
|
[83] |
MOJICA L, DE MEJIA E G, GRANADOS-SILVESTRE M Á, et al. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches[J]. Journal of Functional Foods,2017,31:274−286. doi: 10.1016/j.jff.2017.02.006
|
[84] |
VÁZQUEZ J A, FRAGUAS J, MIRÓN J, et al. Valorisation of fish discards assisted by enzymatic hydrolysis and microbial bioconversion:Lab and pilot plant studies and preliminary sustainability evaluation[J]. Journal of Cleaner Production,2020,246:119027. doi: 10.1016/j.jclepro.2019.119027
|
[85] |
徐磊, 王清爽, 高珊, 等. 菌酶协同处理提高脱脂薏米水提取液营养价值[J]. 农业工程学报,2020,36(12):303−309[XU Lei, WANG Qingshuang, GAO Shan, et al. Improving nutrition value of the defatted adlay water extract by using fermentation with enzyme[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(12):303−309. doi: 10.11975/j.issn.1002-6819.2020.12.036
|
[86] |
ULUG S K, JAHANDIDEH F, WU J P. Novel technologies for the production of bioactive peptides[J]. Trends in Food Science & Technology,2021,108:27−39.
|
[87] |
ACQUAH C, CHAN Y W, PAN S, et al. Structure‐informed separation of bioactive peptides[J]. Journal of Food Biochemistry,2019,43(1):e12765. doi: 10.1111/jfbc.12765
|
[88] |
NAJAFIAN L, BABJI A S. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam)[J]. Journal of Food Measurement and Characterization,2018,12(3):2174−2183. doi: 10.1007/s11694-018-9833-1
|
[89] |
GALLEGO M, TOLDRÁ F, MORA L. Quantification and in silico analysis of taste dipeptides generated during dry-cured ham processing[J]. Food Chemistry,2022,370:130977. doi: 10.1016/j.foodchem.2021.130977
|
[90] |
YAP P G, GAN C Y. In vivo challenges of anti-diabetic peptide therapeutics:Gastrointestinal stability, toxicity and allergenicity[J]. Trends in Food Science & Technology,2020,105:161−175.
|
[91] |
TU M L, CHENG S Z, LU W H, et al. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein:Sequence, structure, and functions[J]. TrAC Trends in Analytical Chemistry,2018,105:7−17. doi: 10.1016/j.trac.2018.04.005
|
[92] |
MINKIEWICZ P, IWANIAK A, DAREWICZ M. BIOPEP-UWM database of bioactive peptides:Current opportunities[J]. International Journal of Molecular Sciences,2019,20(23):5978. doi: 10.3390/ijms20235978
|
[93] |
江明珠. 超声波预处理辅助酶解制备大豆降糖肽及其作用机理[D]. 镇江:江苏大学, 2018[JIANG Mingzhu. Preparation and hypoglycemic mechanism of soybean peptides by ultrasonic pretreatment with enzymatic hydrolysis[D]. Zhenjiang:Jiangsu University, 2018.
JIANG Mingzhu. Preparation and hypoglycemic mechanism of soybean peptides by ultrasonic pretreatment with enzymatic hydrolysis[D]. Zhenjiang: Jiangsu University, 2018.
|
[94] |
IBRAHIM M A, BESTER M J, NEITZ A W, et al. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates[J]. Biomedicine & Pharmacotherapy,2018,107:234−242.
|
[95] |
TOLDRÁ F, GALLEGO M, REIG M, et al. Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity[J]. Journal of Agricultural and Food Chemistry,2020,68(46):12842−12855. doi: 10.1021/acs.jafc.9b08297
|
[96] |
WANG B, XIE N N, LI B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability:A review[J]. Journal of Food Biochemistry,2019,43(1):e12571. doi: 10.1111/jfbc.12571
|
[97] |
XIE N N, LIU S S, WANG C, et al. Stability of casein antioxidant peptide fractions during in vitro digestion/Caco-2 cell model:Characteristics of the resistant peptides[J]. European Food Research and Technology,2014,239:577−586. doi: 10.1007/s00217-014-2253-5
|
[98] |
PUGLIESE R, BOLLATI C, GELAIN F, et al. A supramolecular approach to develop new soybean and lupin peptide nanogels with enhanced dipeptidyl peptidase IV (DPP-IV) inhibitory activity[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3615−3623. doi: 10.1021/acs.jafc.8b07264
|
[99] |
PARTHASARATHI R, DHAWAN A. In silico approaches for predictive toxicology[M]. In vitro toxicology. Elsevier. 2018:91−109.
|
[100] |
GUPTA S, KAPOOR P, CHAUDHARY K, et al. In silico approach for predicting toxicity of peptides and proteins[J]. PloS one,2013,8(9):e73957. doi: 10.1371/journal.pone.0073957
|
[101] |
EKEZIE F G C, CHENG J H, SUN D W. Effects of nonthermal food processing technologies on food allergens:A review of recent research advances[J]. Trends in Food Science & Technology,2018,74:12−25.
|
[102] |
WANG J, YIN T L, XIAO X W, et al. StraPep:A structure database of bioactive peptides[J]. Database,2018,2018:bay038.
|
[103] |
GÜLSEREN İ, VAHAPOGLU B. The stability of food bioactive peptides in blood:An overview[J]. International Journal of Peptide Research and Therapeutics,2022,28:1−7. doi: 10.1007/s10989-021-10311-y
|
[104] |
FU Y, ZHANG Y H, SOLADOYE O P, et al. Maillard reaction products derived from food protein-derived peptides:Insights into flavor and bioactivity[J]. Critical Reviews in Food Science and Nutrition,2020,60(20):3429−3442. doi: 10.1080/10408398.2019.1691500
|
1. |
柳先知,战林洁,李宏雁,李彩富,李曼,徐同成,姬娜,徐龙朝. 脱支小麦淀粉对面条品质性能影响的研究. 粮油食品科技. 2025(01): 138-146 .
![]() | |
2. |
苗峻伟,段续,任广跃,刘文超,李琳琳,曹伟伟. 微波冻干预制面条干燥特性及品质特征研究. 食品与发酵工业. 2024(09): 262-267 .
![]() | |
3. |
魏星,王晓龙,李小平,李亮,胡新中. 不同含水量面条蒸煮品质差异机制研究. 中国粮油学报. 2024(04): 49-58 .
![]() | |
4. |
董璐钦,李雪琴,邢志轩. 预煮时间对面条冻藏期间品质的影响. 食品工业科技. 2023(21): 83-90 .
![]() |