LIU Wenyan, YAN Zhongxin, HAO Lizhuang, et al. Research Progress in the Application of Spectroscopic Technology in the Traceability of Food Origin[J]. Science and Technology of Food Industry, 2023, 44(21): 421−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010069.
Citation: LIU Wenyan, YAN Zhongxin, HAO Lizhuang, et al. Research Progress in the Application of Spectroscopic Technology in the Traceability of Food Origin[J]. Science and Technology of Food Industry, 2023, 44(21): 421−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010069.

Research Progress in the Application of Spectroscopic Technology in the Traceability of Food Origin

More Information
  • Received Date: January 10, 2023
  • Available Online: September 06, 2023
  • The technology of food geographical origin traceability is essential for the country to effectively promote the implementation of food origin traceability and protect famous and unique products. To preserve the uniqueness and authenticity of food products in the market, maintain the market order, and safeguard the rights of producers and consumers, there is an urgent need to provide rapid, non-destructive testing for food geographical origin traceability. Compared with other detection techniques, spectroscopy, one of the most promising detection techniques for industrial application, is widely used for origin traceability due to its wide range of applications, fast analysis, simple operation, non-destructive, non-pollution, and online analysis. Herein, the principles of three standard spectroscopic techniques, namely Near-infrared spectroscopy (NIR), Mid-infrared spectroscopy (MIR), and Raman spectroscopy (RS), and their application status in geographical origin traceability of plant and animal foods are introduced in detail, and comparison is made among them. Besides, the application of multispectral data fusion in food geographical origin identification is also systematically discussed. The future development trend is prospected, providing a measure of technical references for applying spectroscopic techniques in food geographical origin traceability.
  • [1]
    李政, 赵姗姗, 郄梦洁, 等. 动物源性农产品产地溯源技术研究[J]. 农产品质量与安全,2019(3):57−64

    LI Z, ZHAO S S, QIE M J, et al. Study on the technology of origin traceability of animal-derived agricultural products[J]. Quality and Safety of Agro-Products,2019(3):57−64.
    [2]
    陆焦焦. 基于DNA条形码的冬虫夏草鉴别及产地溯源研究[D]. 扬州:扬州大学, 2022

    LU J J. Identification and origin traceability of Cordyceps sinensis based on DNA barcode[D]. Yangzhou:Yangzhou University, 2022.
    [3]
    LIU H Y, ZHAO Q Y, GUO X Q, et al. Application of isotopic and elemental fingerprints in identifying the geographical origin of goat milk in China[J]. Food Chemistry,2019,277:448−454. doi: 10.1016/j.foodchem.2018.10.144
    [4]
    PENG C Y, ZHANG Y L, SONG W, et al. Using stable isotope signatures to delineate the geographic point-of-origin of Keemun black tea[J]. Journal of the Science of Food and Agriculture,2019,99(5):2596−2601. doi: 10.1002/jsfa.9475
    [5]
    王默涵, 高铭, 李雅丽, 等. 基于稳定同位素和矿物元素的牛奶产地溯源技术[J]. 食品工业科技,2022,43(3):284−290

    WANG M H, GAO M, LI Y L, et al. Traceability technology of milk origin based on stable isotopes and mineral elements[J]. Science and Technology of Food Industry,2022,43(3):284−290.
    [6]
    LIU Z, ZHANG Y Z, ZHANG Y, et al. Influence of leaf age, species and soil depth on the authenticity and geographical origin assignment of Green tea[J]. Rapid Communications in Mass Spectrometry,2019,33(7):625−634. doi: 10.1002/rcm.8387
    [7]
    BERTOLDI D, COSSIGNANI L, BLASI F, et al. Characterisation and geographical traceability of Italian Goji berries[J]. Food Chemistry,2019,275:585−593. doi: 10.1016/j.foodchem.2018.09.098
    [8]
    BENNION M, MORRISON L, BROPHY D, et al. Trace element fingerprinting of blue mussel ( Mytilus edulis) shells and soft tissues successfully reveals harvesting locations[J]. Science of the Total Environment,2019,685:50−58. doi: 10.1016/j.scitotenv.2019.05.233
    [9]
    李富荣, 刘雯雯, 文典, 等. 基于矿质元素指纹分析的陈皮产地溯源研究[J]. 食品工业科技,2022,43(11):295−302

    LI F R, LIU W W, WEN D, et al. Study on origin tracing of dried Tangerine peel using mineral element fingerprints[J]. Science and Technology of Food Industry,2022,43(11):295−302.
    [10]
    KURAS M J, ZIELIŃSKA P M, DUSZYŃSKA J, et al. Determination of the elemental composition and antioxidant properties of dates ( Phoenix dactyliferia) originated from different regions[J]. Journal of Food Science and Technology,2020,57:2828−2839. doi: 10.1007/s13197-020-04314-8
    [11]
    张蕾蕾, 吴剑荣, 张洪涛, 等. 基于GC-MS结合化学计量学方法鉴定四川郫县豆瓣酱[J]. 食品与发酵工业,2022,48(13):268−276

    ZHANG L L, WU J R, ZHANG H T, et al. Identification of Sichuan Pixian bean paste based on GC-MS and chemometrics[J]. Food and Fermentation Industries,2022,48(13):268−276.
    [12]
    马永杰, 郭俊先, 郭志明, 等. 基于近红外透射光谱及多种数据降维方法的红富士苹果产地溯源[J]. 现代食品科技,2020,36(6):303−309

    MA Y J, GUO J X, GUO Z M, et al. Origin tracing of Red fuji apple based on near infrared transmission spectrum and various dimension reduction methods[J]. Modern Food Science and Technology,2020,36(6):303−309.
    [13]
    ELHAMDAOUI O, EI O A, CHEIKH A, et al. Assessment of a Non-destructive method for rapid discrimination of Moroccan date palm varieties via mid-Infrared spectroscopy combined with chemometric models[J]. Journal of AOAC International,2021,104(6):1710−1718. doi: 10.1093/jaoacint/qsab068
    [14]
    卢诗扬, 张雷蕾, 潘家荣, 等. 拉曼光谱结合LSTM长短期记忆网络的樱桃产地鉴别研究[J]. 光谱学与光谱分析,2021,41(4):1177−1181

    LU S Y, ZHANG L L, PAN J R, et al. Identification of Cherry origin by Raman spectroscopy combined with LSTM short-and long-term memory network[J]. Spectroscopy and Spectral Analysis,2021,41(4):1177−1181.
    [15]
    焦俊, 圣阳, 马鑫, 等. 基于近红外和远红外光谱信息融合的核桃品种鉴别方法[J]. 农业工程,2021,11(12):35−41

    JIAO J, SHENG Y, MA X, et al. Identification of Walnut cultivars based on near-infrared and far-infrared spectral information fusion[J]. Agricultural Engineering,2021,11(12):35−41.
    [16]
    SHA M, GUI D D, LI P, et al. Enhanced raman and mid-infrared spectroscopic discrimination of geographical origin of rice by data mining and data fusion[J]. Spectroscopy,2021,36(3):34−43.
    [17]
    黄志鸿. 基于近红外、中红外和拉曼光谱法甲醇柴油品质检测研究[D]. 南昌:华东交通大学, 2016

    HUANG Z H. Research on detection of methanol diesel quality based on near-infrared, mid-infrared and Raman spectroscopy[D]. Nanchang:East China Jiaotong University, 2016.
    [18]
    EISENSTECKEN D, STÜRZ B, ROBATSCHER P, et al. The potential of near infrared spectroscopy (NIRS) to trace apple origin:Study on different cultivars and orchard elevations[J]. Postharvest Biology and Technology,2019,147:123−131. doi: 10.1016/j.postharvbio.2018.08.019
    [19]
    张立欣, 杨翠芳, 陈杰, 等. 基于变量优选和近红外光谱技术的红富士苹果产地溯源[J]. 食品与发酵工业,2022,48(20):36−43

    ZHANG L X, YANG C F, CHEN J, et al. Origin traceability of red fuji apple based on variable optimization and near infrared spectroscopy[J]. Food and Fermentation Industries,2022,48(20):36−43.
    [20]
    WADOOD S A, GUO B L, ZHANG X W, et al. Geographical origin discrimination of wheat kernel and white flour using near-infrared reflectance spectroscopy fingerprinting coupled with chemometrics[J]. International Journal of Food Science & Technology,2019,54(6):2045−54.
    [21]
    ZHAO H Y, GUO B L, WEI Y M, et al. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat[J]. Food Chemistry,2013,138(2-3):1902−1907. doi: 10.1016/j.foodchem.2012.11.037
    [22]
    GONZÁLEZ-MARTÍN M I, MONCADA G W, GONZÁLEZ-PÉREZ C, et al. Chilean flour and wheat grain:Tracing their origin using near infrared spectroscopy and chemometrics[J]. Food Chemistry,2014,145:802−806. doi: 10.1016/j.foodchem.2013.08.103
    [23]
    刘秀明, 李涛, 李源栋, 等. 基于NIR分析和模式识别技术的葛根品种及产地判别[J]. 食品工业科技,2018,39(22):247−251

    LIU X M, LI T, LI Y D, et al. Identification of Pueraria lobata varieties and origin based on NIR analysis and pattern recognition technology[J]. Science and Technology of Food Industry,2018,39(22):247−251.
    [24]
    WU X M, ZHANG Q Z, WANG Y Z. Traceability the provenience of cultivated Paris polyphylla Smith var. Yunnanensis using ATR-FTIR spectroscopy combined with chemometrics[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy,2019,212:132−145. doi: 10.1016/j.saa.2019.01.008
    [25]
    YANG Y, WU Y J, LI W L, et al. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,191:233−240. doi: 10.1016/j.saa.2017.10.019
    [26]
    ARNDT M, RURIK M, DREES A, et al. Comparison of different sample preparation techniques for NIR screening and their influence on the geographical origin determination of almonds (Prunus dulcis Mill.)[J]. Food Control, 2020, 115:107302.
    [27]
    LIU Y, MA D H, WANG X C, et al. Prediction of chemical composition and geographical origin traceability of Chinese export tilapia fillets products by near infrared reflectance spectroscopy[J]. LWT-Food Science and Technology,2015,60(2):1214−1218. doi: 10.1016/j.lwt.2014.09.009
    [28]
    XICCATO G, TROCION A, TULLI F, et al. Prediction of chemical composition and origin identification of european sea bass ( Dicentrarchus labrax L.) by near infrared reflectance spectroscopy (NIRS)[J]. Food Chemistry,2003,86(2):275−281.
    [29]
    GHIDINI S, VARRÀ M O, DALL'ASTA C, et al. Rapid authentication of European sea bass ( Dicentrarchus labrax L.) according to production method, farming system, and geographical origin by near infrared spectroscopy coupled with chemometrics[J]. Food Chemistry,2019,280:321−327. doi: 10.1016/j.foodchem.2018.12.075
    [30]
    GUO X H, CAI R, WANG S S, et al. Non-destructive geographical traceability of sea cucumber ( Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods[J]. Royal Society Open Science,2018,5(1):170714. doi: 10.1098/rsos.170714
    [31]
    王靖, 丁佳兴, 郭中华, 等. 基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J]. 食品工业科技,2018,39(2):250−254, 260

    WANG J, DING J X, GUO Z H, et al. Identification of Ningxia mutton origin based on near-infrared hyperspectral imaging technology[J]. Science and Technology of Food Industry,2018,39(2):250−254, 260.
    [32]
    史岩, 赵田田, 陈海华, 等. 基于近红外光谱技术的鸡肉产地溯源[J]. 中国食品学报,2014,14(12):198−204

    SHI Y, ZHAO T T, CHEN H H, et al. Traceability of chicken origin based on near-infrared spectroscopy[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(12):198−204.
    [33]
    吴鹏, 宋海燕, 杨威, 等. 基于近红外光谱的鸡蛋产地溯源[J]. 食品工业科技,2020,41(22):227−231

    WU P, SONG H Y, YANG W, et al. Egg origin traceability based on near-infrared spectroscopy[J]. Science and Technology of Food Industry,2020,41(22):227−231.
    [34]
    ZHUANG X G, SHI X S, WANG H F, et al. Rapid determination of green tea origins by Near-Infrared spectroscopy and Multi-wavelength statistical discriminant analysis[J]. Journal of Applied Spectroscopy,2019,86(1):76−82. doi: 10.1007/s10812-019-00784-7
    [35]
    FIRMANI P, DE LUCA S, BUCCI R, et al. Near infrared (NIR) spectroscopy-based classification for the authentication of darjeeling black tea[J]. Food Control,2019,100:292−299. doi: 10.1016/j.foodcont.2019.02.006
    [36]
    LIU Y, HUANG J L, LI M H, et al. Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,267:120537. doi: 10.1016/j.saa.2021.120537
    [37]
    胡燕, 齐桂年. 我国不同产地黑茶的FTIR指纹图谱分析[J]. 核农学报,2014,28(4):684−691

    HU Y, QI G N. FTIR fingerprint analysis of black tea from different regions in China[J]. Journal of Nuclear Agricultural Sciences,2014,28(4):684−691.
    [38]
    LIU L, COZZOLINO D, CYNKAR W U, et al. Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify riesling wines from different countries[J]. Food Chemistry,2008,106(2):781−786. doi: 10.1016/j.foodchem.2007.06.015
    [39]
    GIRAUDO A, GRASSI S, SAVORANI F, et al. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis[J]. Food Control,2019,99:137−145. doi: 10.1016/j.foodcont.2018.12.033
    [40]
    刘星, 范楷, 钱群丽, 等. 基于近红外光谱技术的坛紫菜产地溯源研究[J]. 农产品质量与安全,2021(1):51−55

    LIU X, FAN K, QIAN Q L, et al. Study on provenance traceability of Porphyra haitanensis based on near-infrared spectroscopy[J]. Quality and Safety of Agro-Products,2021(1):51−55.
    [41]
    JIMÉNEZ-CARVELO A M, LOZANO V A, OLIVIERI A C. Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils[J]. Food Control,2019,96:22−28. doi: 10.1016/j.foodcont.2018.08.024
    [42]
    朱哲燕, 张初, 刘飞, 等. 基于中红外光谱分析技术的香菇产地识别研究[J]. 光谱学与光谱分析,2014,34(3):664−667

    ZHU Z Y, ZHANG C, LIU F, et al. Identification of Lentinus edodes origin based on mid infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2014,34(3):664−667.
    [43]
    何勇, 郑启帅, 张初, 等. 基于中红外光谱和化学计量学算法鉴别核桃产地及品种[J]. 光谱学与光谱分析,2019,39(9):2812−2817

    HE Y, ZHENG Q S, ZHANG C, et al. Identification of walnut origin and variety based on mid infrared spectroscopy and chemometric algorithm[J]. Spectroscopy and Spectral Analysis,2019,39(9):2812−2817.
    [44]
    GORDON R, CHAPMAN J, POWER A, et al. Mid-infrared spectroscopy coupled with chemometrics to identify spectral variability in Australian barley samples from different production regions[J]. Journal of Cereal Science,2019,85:41−47. doi: 10.1016/j.jcs.2018.11.004
    [45]
    HU L Q, YIN C L, MA S, et al. Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics[J]. Computers and Electronics in Agriculture,2018,154:491−500. doi: 10.1016/j.compag.2018.09.029
    [46]
    吕伟奇, 张霁, 赵艳丽, 等. 不同产地黄硬皮马勃的红外光谱鉴别方法研究[J]. 河南农业科学,2016,45(1):104−107, 142

    LU W Q, ZHANG J, ZHAO Y L, et al. Study on infrared spectroscopic identification methods of yellow Sclerotinia mabo from different origins[J]. Journal of Henan Agricultural Sciences,2016,45(1):104−107, 142.
    [47]
    刘庭恺, 胡子康, 龙婉君, 等. 基于近红外和中红外光谱的杜仲产地溯源[J]. 化学试剂,2022,44(7):952−959

    LIU T K, HU Z K, LONG W J, et al. Origin tracing of Eucommia ulmoides Oliv. based on near-infrared and mid infrared spectra[J]. Chemical Reagents,2022,44(7):952−959.
    [48]
    解玫莹, 单圣男, 李欢欢, 等. 不同产地药材牛膝的红外光谱及红外导数光谱鉴别研究[J]. 安徽中医药大学学报,2021,40(6):86−91 doi: 10.3969/j.issn.2095-7246.2021.06.019

    XIE M Y, SHAN S N, LI H H, et al. Study on the identification of Achyranthes bidentata from different habitats by infrared spectrum and infrared derivative spectrum[J]. Journal of Anhui University of Chinese Medicine,2021,40(6):86−91. doi: 10.3969/j.issn.2095-7246.2021.06.019
    [49]
    LIU L, ZUO Z T, WANG Y Z, et al. A fast multi-source information fusion strategy based on FTIR spectroscopy for geographical authentication of wild Gentiana rigescens[J]. Microchemical Journal,2020,159:105360. doi: 10.1016/j.microc.2020.105360
    [50]
    MAGDAS D A, GUYON F, FEHER I, et al. Wine discrimination based on chemometric analysis of untargeted markers using FT-Raman spectroscopy[J]. Food Control,2018,85:385−391. doi: 10.1016/j.foodcont.2017.10.024
    [51]
    林敏. 基于生物大分子指纹的新鲜芒果溯源新技术研究[D]. 杭州:中国计量大学, 2018

    LIN M. Research on new traceability technology of fresh mango based on biomacromolecule fingerprint[D]. Hang zhou:China University of Metrology, 2018.
    [52]
    沙敏, 李良翠, 黄家乐, 等. 拉曼光谱数据处理方式对大米产地鉴别模型的影响[J]. 中国食品学报,2021,21(5):369−376

    SHA M, LI L C, HUANG J L, et al. Effect of Raman spectrum data processing methods on rice origin identification model[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(5):369−376.
    [53]
    ZHU L, SUN J, ZHANG H, et al. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy[J]. Journal of Cereal Science,2018,82:175−182. doi: 10.1016/j.jcs.2018.06.010
    [54]
    KARUNATHILAKA S R, YAKES B J, HE K Q, et al. First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration[J]. Food Control,2018,92:137−146. doi: 10.1016/j.foodcont.2018.04.046
    [55]
    韩爱云, 张振冉, 解立斌, 等. 拉曼光谱技术在肉类掺假检测方面的应用研究进展[J]. 肉类研究,2021,35(7):50−54

    HAN A Y, ZHANG Z R, XIE L B, et al. Research progress in application of Raman spectroscopy in detection of meat adulteration[J]. Meat Research,2021,35(7):50−54.
    [56]
    BOYACI İ H, UYSAL R S, TEMIZ T, et al. A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method[J]. European Food Research and Technology,2014,238(5):845−852. doi: 10.1007/s00217-014-2168-1
    [57]
    CORVUCCI F, NOBILI L, MELUCCI D, et al. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis[J]. Food Chemistry,2015,169:297−304. doi: 10.1016/j.foodchem.2014.07.122
    [58]
    俞允, 何雁, 陈荣, 等. 基于拉曼光谱的不同产地黄芪鉴别研究[J]. 江西中医药大学学报,2015,27(3):57−60

    YU Y, HE Y, CHEN R, et al. Identification of Astragalus membranaceus from different origins based on Raman spectroscopy[J]. Journal of Jiangxi University of Chinese Medicine,2015,27(3):57−60.
    [59]
    郑玲, 赵燕平, 冯亚东. 不同产地和陈化年限普洱茶的表面增强拉曼光谱鉴别分析研究[J]. 光谱学与光谱分析,2013,33(6):1575−1580

    ZHENG L, ZHAO Y P, FENG Y D, et al. Study on identification of Pu'er tea from different places of origin and aging years by surface enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2013,33(6):1575−1580.
    [60]
    郭博远, 赵鹏翔, 王惠, 等. 拉曼光谱在皮肤领域的研究进展[J]. 生物技术进展,2022,12(1):44−49

    GUO B Y, ZHAO P X, WANG H, et al. Research progress of Raman spectroscopy in the field of skin[J]. Current Biotechnology,2022,12(1):44−49.
    [61]
    连天星, 刘罡, 李林涛, 等. 拉曼光谱技术在骨科疾病中的应用研究进展[J]. 国际骨科学杂志,2021,42(6):370−373 doi: 10.3969/j.issn.1673-7083.2021.06.010

    LIAN T X, LIU G, LI L T, et al. Research progress in application of Raman spectroscopy in orthopaedic diseases[J]. International Journal of Orthopaedics,2021,42(6):370−373. doi: 10.3969/j.issn.1673-7083.2021.06.010
    [62]
    黄珏, 王正亮, 李慕雨, 等. 基于电子舌和近红外光谱技术的进口牛肉产地溯源[J]. 中国食品学报,2021,21(12):254−260

    HUANG J, WANG Z L, LI M Y, et al. Origin traceability of imported beef based on electronic tongue and near-infrared spectroscopy[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):254−260.
    [63]
    杨承恩, 苏玲, 冯伟志, 等. 中红外光谱结合机器学习对不同产地平菇鉴别[J]. 光谱学与光谱分析,2023,43(2):577−582

    YANG C E, SU L, FENG W Z, et al. Mid-infrared spectroscopy combined with machine learning for the identification of Oyster mushrooms of different origins[J]. Spectroscopy and Spectral Analysis,2023,43(2):577−582.
    [64]
    卢诗扬. 拉曼光谱结合模式识别的樱桃产地溯源研究[D]. 杭州:中国计量大学, 2021

    LU S Y. Traceability of Cherry origin based on Raman spectroscopy and pattern recognition[D]. Hangzhou:China University of Metrology, 2021.
    [65]
    MARCO B, ANDREA M, CARMELA Z, et al. Geographical identification of Italian extra virgin olive oil by the combination of near infrared and Raman spectroscopy:A feasibility study[J]. Journal of Near Infrared Spectroscopy,2021,29(6):359−365. doi: 10.1177/09670335211051575
    [66]
    CHEN Y, WANG J, XU Q, et al. Identification of Edible-vegetable-oil types based on Multi-kernel learning and Multi-spectral fusion[J]. IOP Conference Series:Materials Science and Engineering,2018,452(2):022054.
    [67]
    吴双, 王杰, 俞雅茹, 等. 基于拉曼和近红外光谱特征层融合的食用油MUFA和PUFA含量检测[J]. 中国粮油学报,2017,32(11):158−164

    WU S, WANG J, YU Y R, et al. Detection of MUFA and PUFA in edible oil based on fusion of Raman and near-infrared spectral characteristic layers[J]. Journal of the Chinese Cereals and Oils Association,2017,32(11):158−164.
    [68]
    BALLABIO D, ROBOTTI E, GRISONI F, et al. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey[J]. Food Chemistry,2018,266:79−89. doi: 10.1016/j.foodchem.2018.05.084
    [69]
    李亚惠, 李艳肖, 谭伟龙, 等. 基于近、中红外光谱法融合判定黑果枸杞产地及品质信息[J]. 光谱学与光谱分析,2020,40(12):3878−3883

    LI Y H, LI Y X, TAN W L, et al. Rapid identification and evaluation of Lycium ruthenicum Murr. by nearinfrared and Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(12):3878−3883.
    [70]
    RIOVSNTO R, CYNKAR U, BERZAGHI P, et al. Discrimination between Shiraz wines from different Australian regions:The role of spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry,2011,59(18):10356−10360. doi: 10.1021/jf202578f
    [71]
    向伶俐, 李梦华, 李景明, 等. 近、中红外光谱法融合判定葡萄酒产地[J]. 光谱学与光谱分析,2014,34(10):2662−2666 doi: 10.3964/j.issn.1000-0593(2014)10-2662-05

    XIANG L L, LI M H, LI J M, et al. Determination of wine origin by fusion of near-infrared spectroscopy and mid infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2014,34(10):2662−2666. doi: 10.3964/j.issn.1000-0593(2014)10-2662-05
    [72]
    陶思嘉, 李梦华, 李景明, 等. 红外光谱及Bayes信息融合技术的葡萄酒鉴别研究[J]. 分析化学,2014,42(2):215−220

    TAO S J, LI M H, LI J M, et al. Study on wine identification using infrared spectroscopy and Bayes information fusion technology[J]. Chinese Journal of Analytical Chemistry,2014,42(2):215−220.
    [73]
    COZZOLINO D. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples[J]. Molecules,2015,20(1):726−737. doi: 10.3390/molecules20010726
    [74]
    PEI Y F, ZUO Z T, ZHUANG Q Z, et al. Data fusion of fourier transform Mid-Infrared (MIR) and Near-Infrared (NIR) spectroscopies to identify geographical origin of wild Paris polyphylla var. yunnanensis[J]. Molecules,2019,24(14):52−64.
    [75]
    李秀萍, 李杰庆, 李涛, 等. 多源异构光谱信息融合的食用牛肝菌鉴别方法[J]. 光谱学与光谱分析,2018,38(12):3897−3904

    LI X P, LI J Q, LI T, et al. Identification method of edible boletus based on multi-source isomeric spectral information fusion[J]. Spectroscopy and Spectral Analysis,2018,38(12):3897−3904.
    [76]
    YAO S, LI J Q, LI T, et al. Geographical traceability of boletaceae mushrooms using data fusion of FT-IR, UV, and ICP-AES combined with SVM[J]. International Journal of Food Properties,2019,22(1):414−426. doi: 10.1080/10942912.2019.1588299
    [77]
    张娇, 王元忠, 杨维泽, 等. ATR-FTIR和UV-Vis结合数据融合策略鉴别滇黄精产地[J]. 光谱学与光谱分析,2021,41(5):1410−1416

    ZHANG J, WANG Y Z, YANG W Z, et al. Data fusion of ATR-FTIR and UV-Vis spectra to identify the origin of Polygonatum kingianum[J]. Spectroscopy and Spectral Analysis,2021,41(5):1410−1416.
    [78]
    于叶霞, 李鹂, 王元忠. 基于光谱和色谱数据融合策略的青叶胆及近似种的鉴别研究[J]. 光谱学与光谱分析,2020,40(8):2440−2446

    YU Y X, LI L, WANG Y Z. Study on differentiation of Swertia Leducii and its closely relative species based on data fusion of spectra and chromatography[J]. Spectroscopy and Spectral Analysis,2020,40(8):2440−2446.
  • Cited by

    Periodical cited type(5)

    1. 庞夫花,王庆莲,袁华招,蔡伟建,王珑静,赵密珍. 不同栽培模式对草莓果实挥发性香气物质的影响. 江苏农业学报. 2024(02): 359-366 .
    2. 万霖,田雨琪,车刚,陆博远,王洪超,陈正发. 真空冷冻与热风干燥对腐竹品质特性及微观结构的影响. 食品工业科技. 2024(16): 57-63 . 本站查看
    3. 徐浪,王林聪,焦懿,詹国平,刘涛,张伟锋,郑耘,余道坚. 辐照处理在农产品加工中的应用研究进展. 安徽农业科学. 2020(07): 14-19 .
    4. 奚裕婷,郭虹娜,姜毅,周姣,余伟,刘佳,肖红梅. 葡萄汁有孢汉逊酵母挥发性代谢物熏蒸处理对草莓果实香气成分及贮藏品质的影响. 食品科学. 2020(09): 168-174 .
    5. 吴永俊,王莉,康翠翠,施文正,王玉涛. 不同致死方式对虹鳟鱼肉挥发性成分的影响. 甘肃农业大学学报. 2019(03): 152-162 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (159) PDF downloads (27) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return