LIAO Binxu, TANG Shanhu, LI Sining, et al. Effects of Four Kinds of Hydrogel Wall Materials on the Characteristics of Embedded Microcapsules HydrogelBall of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2023, 44(21): 104−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010012.
Citation: LIAO Binxu, TANG Shanhu, LI Sining, et al. Effects of Four Kinds of Hydrogel Wall Materials on the Characteristics of Embedded Microcapsules HydrogelBall of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2023, 44(21): 104−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010012.

Effects of Four Kinds of Hydrogel Wall Materials on the Characteristics of Embedded Microcapsules HydrogelBall of Lactobacillus plantarum

  • In this research, Lactobacillus plantarum microcapsules were prepared by endogenous emulsification and microcapsule spheres were prepared by extrusion. The effects of four wall materials, which were sodium alginate, xanthan gum, gellan gum, and pectin, on the performance of Lactobacillus plantarum microcapsules were evaluated by determining the rate of encapsulation, the rate of survival after digestion in gastric fluids, and the effect of the dissolution of the bacteria in simulated gastrointestinal fluids. It was to improve the gastrointestinal fluid tolerance as well as release properties of Lactobacillus plantarum and to screen the wall materials suitable for the preparation of microcapsules hydrogel ball. The results showed that the microcapsule hydrogel ball prepared with sodium alginate as the wall material had the best effect. The particle size of the crystal ball was 3.30 mm. the water content was 93.99%. The structure was compact and the microstructure was good. The embedding rate of Lactobacillus plantarum was 87.14%, and the retention rate was 56.98% after 28 days, which remained at a high level. Simulated digestion in vitro showed that the survival rate of Lactobacillus plantarum after digestion in gastric juice was as high as 71.49%, and the release amount after intestinal digestion was 2.51×109 CFU/g. It demonstrated the good protective and slow-release capability of microcapsule hydrogel balls prepared with sodium alginate as wall material.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return