TIAN Yanhua, YANG Zhaoyan, LUO Aiguo, et al. Optimization of Microwave Assisted Aqueous Two Phase Extraction of Lily Polysaccharides and Its Structure Characterization[J]. Science and Technology of Food Industry, 2023, 44(21): 227−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010007.
Citation: TIAN Yanhua, YANG Zhaoyan, LUO Aiguo, et al. Optimization of Microwave Assisted Aqueous Two Phase Extraction of Lily Polysaccharides and Its Structure Characterization[J]. Science and Technology of Food Industry, 2023, 44(21): 227−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010007.

Optimization of Microwave Assisted Aqueous Two Phase Extraction of Lily Polysaccharides and Its Structure Characterization

More Information
  • Received Date: January 03, 2023
  • Available Online: September 04, 2023
  • To obtain lily polysaccharides efficiently and characterize the structure of polysaccharides, the polysaccharides from lily was extracted by using microwave-assisted aqueous two-phase extraction in this paper. The best extraction process was determined by single factor experiment and orthogonal experiment. The crude extract of lily polysaccharides was purified via DEAE-52 and Sephadex G-100 column chromatography in turn to obtain a single fraction (LP2-SG). The molecular weight and monosaccharide composition of LP2-SG were determined by high performance gel permeation chromatography and gas chromatography, respectively, and then its structure was preliminarily characterized. The results showed that the optimum extracting parameters to achieve the highest yield of polysaccharides 10.15%±0.11% from lily by microwave-assisted aqueous two-phase extraction was obtained under the microwave power of 400 W, ammonium sulfate mass fraction of 20%, ethanol volume fraction of 50%, and solid-to-liquid ratio of 1:30 g/mL. LP2-SG with a molecular weight of 530.51 kDa was composed of mannose, glucose, and galactose with a molar ratio of 11.63:29.85:8.46. LP2-SG has no characteristic absorption at 260 nm and 280 nm, and it had typical infrared absorption characteristics of polysaccharides. The results of this study provide an important reference for the efficient extraction and deep development of lily polysaccharides.
  • [1]
    白光剑, 陈少丹, 张普照, 等. 百合多糖的化学结构表征和生物活性研究进展[J]. 中草药,2022,53(20):6583−6592

    BAO G J, CHEN S D, ZHANG P Z, et al. Research progress on chemical structure characterization and biological activities of Lilii Bulbus polysaccharides[J]. Chinese Traditional and Herbal Drugs,2022,53(20):6583−6592.
    [2]
    柳颖, 杨许花, 马洪鑫, 等. 百合多糖的提取工艺及生物活性研究进展[J]. 食品安全质量检测学报,2021,12(6):2326−2331. [YANG Y, YANG X H, MA H X, et al. Research progress on extraction technology and biological activity of Lilium polysaccharide[J]. Journal of Food Safety and Quality,2021,12(6):2326−2331.

    YANG Y, YANG X H, MA H X, et al. Research progress on extraction technology and biological activity of Lilium polysaccharide[J]. Journal of Food Safety and Quality, 2021, 126): 23262331.
    [3]
    张靖, 彭鼎, 陈凯, 等. 百合多糖免疫活性研究进展[J]. 中国动物传染病学报,2021,29(3):114−118

    ZHANG J, PENG D, CHEN K, et al. Research progress on the effect of Lilium polysaccharide on immunity[J]. Chinese Journal of Animal Infectious Diseases,2021,29(3):114−118.
    [4]
    HAN H, XIE H. A study on the extraction and purification process of lily polysaccharide and its anti-tumor effect[J]. African Journal of Traditional,2013,10(6):485–489.
    [5]
    ZHOU J, AN R, HUANG X. Genus Lilium:A review on traditional uses, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2021,270:113852. doi: 10.1016/j.jep.2021.113852
    [6]
    NAI J, ZHANG C, SHAO H, et al. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide[J]. International Journal of Biological Macromolecules,2021,183:2337−2353. doi: 10.1016/j.ijbiomac.2021.05.213
    [7]
    MENG Q, CHEN Z, CHEN F, et al. Optimization of ultrasonic-assisted extraction of polysaccharides from Hemerocallis citrina and the antioxidant activity study[J]. Journal of Food Science,2021,86(7):3082−3096. doi: 10.1111/1750-3841.15806
    [8]
    MIRZADEH M, ARIANEJAD M, KHEDMAT L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method:A review[J]. Carbohydrate Polymers,2020,229:115421. doi: 10.1016/j.carbpol.2019.115421
    [9]
    谭莉, 陈瑞战, 金辰光, 等. 橘皮多糖微波提取工艺优化及分离纯化研究[J]. 食品科技,2017,42(3):214−218, 222

    TAN L, CHEN R Z, JIN C G, et al. Optimization of microwave-assisted extraction, isolation and purification of polysaccharides from tangerines peel[J]. Food Science and Technology,2017,42(3):214−218, 222.
    [10]
    胡罗松, 郑青松, 文雨欣, 等. 微波辅助提取莲子心多糖的工艺优化及其抗氧化活性研究[J]. 食品研究与开发,2022,43(15):109−116

    HU L S, ZHENG Q S, WEN Y X, et al. Microwave-assisted extraction optimization and antioxidant activity of polysaccharide from Plumula nelumbinis[J]. Food Research and Development,2022,43(15):109−116.
    [11]
    唐健波, 吕都, 潘牧, 等. 微波辅助提取刺梨多糖工艺优化及抗肿瘤活性研究[J]. 食品与机械,2021,37(9):160−167

    TANG J B, LÜ D, PAN M, et al. Optimization of microwave assisted extraction of Rosa roxburghii polysaccharide and its antitumor activity[J]. Food and Machinery,2021,37(9):160−167.
    [12]
    宋磊肖, 何俊平, 贾晓韩, 等. 板栗多糖的提取分离纯化方法及其生物活性[J]. 落叶果树,2018,50(4):32−35

    SONG L X, HE J P, JIA X H, et al. Extraction, separation and purification of polysaccharides from Castanea mollissima and their biological activities[J]. Deciduous Fruits,2018,50(4):32−35.
    [13]
    杨汝凭, 陈瑞战, 王超雪, 等. 超高压提取红心火龙果果皮多糖理化特征及抗氧化活性研究[J]. 分子科学学报,2022,38(3):265−276

    YANG R P, CHEN R Z, WANG C X, et al. Ultrahigh pressure extraction, physicochemical characteristics and antioxidant activity of polysaccharides from red dragon fruit peel[J]. Journal of Molecular Science,2022,38(3):265−276.
    [14]
    LI P, XUE H, XIAO M, et al. Ultrasonic-assisted aqueous two-phase extraction and properties of water-soluble polysaccharides from Malus hupehensis[J]. Molecules,2021,26(8):2213. doi: 10.3390/molecules26082213
    [15]
    GAO C, CAI C, LIU J, et al. Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents[J]. Food Chemistry,2020,313:126164. doi: 10.1016/j.foodchem.2020.126164
    [16]
    WANG W X, YANG J H, YANG J. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves[J]. Preparative Biochemistry & Biotechnology,2021,51(8):821−831.
    [17]
    JI Y, RAO G, XIE G. Ultrasound-assisted aqueous two-phase extraction of total flavonoids from Tremella fuciformis and antioxidant activity of extracted flavonoids[J]. Preparative Biochemistry & Biotechnology,2022,52(9):1060−1068.
    [18]
    ROSTAMI H, GHARIBZAHEDI S. Microwave-assisted extraction of jujube polysaccharide:Optimization, purification and functional characterization[J]. Carbohydrate Polymers,2016,143:100−107. doi: 10.1016/j.carbpol.2016.01.075
    [19]
    KIA A, GANJLOO A, BIMAKR M. A short extraction time of polysaccharides from fenugreek ( Trigonella foencem graecum) seed using continuous ultrasound acoustic cavitation:Process optimization, characterization and biological activities[J]. Food and Bioprocess Technology,2018,11(12):2204−2216. doi: 10.1007/s11947-018-2178-2
    [20]
    HUI H, LI X, JIN H, et al. Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton[J]. International Journal of Biological Macromolecules,2019,133:306−315. doi: 10.1016/j.ijbiomac.2019.04.082
    [21]
    李乐, 陈本寿, 袁莹. 无花果多糖的微波提取工艺优化[J]. 现代食品科技,2021,37(12):215−220 doi: 10.13982/j.mfst.1673-9078.2021.12.0692

    LI L, CHEN B S, YUAN Y. Optimization of microwave assisted extraction of polysaccharides from Ficus carica[J]. Modern Food Science and Technology,2021,37(12):215−220. doi: 10.13982/j.mfst.1673-9078.2021.12.0692
    [22]
    XUE H, XU J, ZHANG J, et al. Modeling, optimization, purification, and characterization of polysaccharides from Lilium Lancifolium Thunb[J]. LWT-Food Science and Technology,2022,162:113491.
    [23]
    TAN J, CUI P, GE S, et al. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit:Modeling, optimization, purification, and characterization[J]. Ultrasonics Sonochemistry,2022,84:105966. doi: 10.1016/j.ultsonch.2022.105966
    [24]
    CHEN Z, ZHANG W, TANG X, et al. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC[J]. Carbohydrate Polymers,2016,144:263−270. doi: 10.1016/j.carbpol.2016.02.063
    [25]
    周小伟, 郭冬玲, 程金生, 等. 超声波-微波提取猴头菇多糖的条件优化[J]. 韶关学院学报,2022,43(9):1−5

    ZHANG X W, GUO D L, CHENG J S, et al. The optimization of ultrasonic-microwave extraction of polysaccharide from Hericium erinaceus[J]. Journal of Shaoguan University Natural Science,2022,43(9):1−5.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (138) PDF downloads (17) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return