XIN Yiran, YOU Shengbo, WU Junrui, et al. Effects of Enzyme-Microorganisms Synergy Treatment on Nutrient Functional Components and Biological Activities of Nannochloropsis oceanica[J]. Science and Technology of Food Industry, 2023, 44(21): 198−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120245.
Citation: XIN Yiran, YOU Shengbo, WU Junrui, et al. Effects of Enzyme-Microorganisms Synergy Treatment on Nutrient Functional Components and Biological Activities of Nannochloropsis oceanica[J]. Science and Technology of Food Industry, 2023, 44(21): 198−207. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120245.

Effects of Enzyme-Microorganisms Synergy Treatment on Nutrient Functional Components and Biological Activities of Nannochloropsis oceanica

More Information
  • Received Date: January 02, 2023
  • Available Online: October 24, 2023
  • In order to improve the utilization value of N. oceanica, the effects of enzyme-bacteria synergy treatment on its nutritional and functional components as well as its biological activities were investigated. Papain was used to hydrolyze N. oceanica, and the enzymolysis process was optimized by single factor and response surface test. After fermented by lactic acid bacteria, the contents of total phenols, peptides and flavonoids as well as the antioxidant and hypolipidemic activities in vitro before and after fermentation were measured. Sensory evaluation was also performed. The results showed that the optimum enzymolysis process of N. oceanica was as follows: Enzyme amount 5.0%, pH8.0, enzymolysis time 4.0 h, enzymolysis temperature 76 ℃. Under this condition, the content of polypeptide significantly increased by nearly 1.3 times and the total phenolic content increased by 5.1%, while the total flavonoid content decreased by 32.5%. The antioxidant activity and pancreatic lipase inhibitory activity of the fermented products were enhanced, among which the DPPH free radical scavenging rate in mixed bacteria fermented group increased by 1.2 times, and the pancreatic lipase scavenging rate in mixed bacteria fermented group increased by 59.4%. Moreover, the sensory score of the sample after fermentation was significantly improved. In conclusion, the synergistic fermentation of enzyme-bacteria can significantly improve the polypeptide content, antioxidant activity, hypolipidemia activity and sensory properties of N. oceanica, thus provides reference and technical support for the development of functional fermentation products.
  • [1]
    吕小京, 操德群, 徐年军. 响应面试验优化酶解法制备海洋微藻微拟球藻抗氧化肽工艺[J]. 食品科学,2018,39(6):183−188 doi: 10.7506/spkx1002-6630-201806029

    LÜ X J, CAO D Q, XU N J. Optimization of enzymatic hydrolysis process for preparation of antioxidant peptides from marine Chlorella microalgae microphylla by response surface methodology[J]. Food Science,2018,39(6):183−188. doi: 10.7506/spkx1002-6630-201806029
    [2]
    GUIMARÃES B O, VILLARREAL-TORIBIO B, GARCÍA-BARRERA T, et al. Effect of sulphur on selenium accumulation and speciation in Nannochloropsis oceanica[J]. Journal of Functional Foods,2022,96:1−11.
    [3]
    XU Y. Biochemistry and biotechnology of lipid accumulation in the microalga Nannochloropsis oceanica[J]. Journal of Agricultural and Food Chemistry,2022,70(37):11500−11509. doi: 10.1021/acs.jafc.2c05309
    [4]
    DU P R, MAJYAZOUB M E, THOMAS T, et al. Nannochloropsis oceanica as a microalgal food intervention in diet-induced metabolic syndrome in rats[J]. Nutrients,2021,13(11):3991−3993. doi: 10.3390/nu13113991
    [5]
    刘习军. 超声波辅助珠磨法破壁微拟球藻细胞[D]. 广州:华南理工大学, 2019

    LIU X J. Disintegration of Nannochloropsis sp. cells in a turbine bead mill with ultrasonic assistance[D]. Guangzhou:South China University of Technology, 2019.
    [6]
    王芳, 贾万利, 张浩男, 等. 混合菌发酵对豆粕品质的影响[J]. 甘肃农业大学学报,2017,52(4):45−51

    WANG F, JIA W L, ZHANG H N, et al. Effect of mixed bacteria fermentation on the quality of soybean meal[J]. Journal of Gansu Agricultural University,2017,52(4):45−51.
    [7]
    丁瑞雪, 武俊瑞, 岳喜庆, 等. 益生菌对肠道营养健康调控作用的研究进展[J]. 中国乳品工业,2018,46(1):24−32 doi: 10.3969/j.issn.1001-2230.2018.01.007

    DING R X, WU J R, YUE X Q, et al. Research progress on the regulation of probiotics on intestinal nutrition and health[J]. China's Dairy Industry,2018,46(1):24−32. doi: 10.3969/j.issn.1001-2230.2018.01.007
    [8]
    杨洁芳, 刘会平, 张宇, 等. 菌酶协同制备大豆肽的工艺优化及其抗氧化特性的研究[J]. 食品工业科技,2013,34(13):245−249

    YANG J F, LIU H P, ZHANG Y, et al. Study on fermentation conditions of the soybean peptides by cooperation of bacteria and enzyme and its antioxidant activity[J]. Science and Technology of Food Industry,2013,34(13):245−249.
    [9]
    邹俊哲, 林凯, 谯飞, 等. 菌酶协同发酵水解大米蛋白ACE抑制肽及其活性的研究[J]. 食品研究与开发,2019,40(9):1−7

    ZOU J Z, LIN K, QIAO F, et al. Lactobacillus plantarum and Bacillus subtilis coupled with enzymes to remove riceprotein and the angiotensin I-converting enzyme inhibitory activities of removal liquid[J]. Food Research and Development,2019,40(9):1−7.
    [10]
    ZHAO Z J, ZHANG L L, LOU Y G, et al. Inhibitory effect of polypeptides produced by Brevibacillus brevis on ochratoxigenic Fungi in the process of pile-fermentation of post-fermented tea[J]. Foods,2022,11(20):3243−3249. doi: 10.3390/foods11203243
    [11]
    牟佳红, 梁安雯, 覃超琳, 等. 酶解与发酵联合处理对黑木耳还原糖含量及抗氧化性能的影响[J]. 食品工业科技,2022,43(7):139−147

    MU J H, LIANG A W, QIN C L, et al. Effect of enzymatic hydrolysis combined with fermentation treatment on reducing sugar content and antioxidant performance of Auricularia auricula[J]. Science and Technology of Food Industry,2022,43(7):139−147.
    [12]
    ITZAMNÁ B P, JOSÉ Á G B. Physicochemical and antioxidant characterization of Justicia spicigera[J]. Food Chemistry,2017,218:305−312. doi: 10.1016/j.foodchem.2016.09.078
    [13]
    于金慧, 马德源, 刘云鹏, 等. 乳酸菌发酵对螺旋藻主要功效成分影响的初步研究[J]. 食品工业科技,2019,40(18):85−90

    YU J H, MA D Y, LIU Y P, et al. Preliminary study on the effect of lactic acid bacteria fermentation on the main functional components of Spirulina[J]. Science and Technology of Food Industry,2019,40(18):85−90.
    [14]
    MARTÍNEZ S, FUENTES C, CARBALLO J. Antioxidant activity, total phenolic content and total flavonoid content in sweet chestnut ( Castanea sativa Mill. ) cultivars grown in northwest Spain under different environmental conditions[J]. Foods,2022,11(21):3519−3529. doi: 10.3390/foods11213519
    [15]
    BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma(FRAP) as a measure of “antioxidant power”:The FRAP assay[J]. Analytical Biochemistry,1996,239(1):70−76. doi: 10.1006/abio.1996.0292
    [16]
    何旭华, 石志娇, 王安娜, 等. 黑果腺肋花楸叶黄酮的提取工艺优化及抗氧化、结合胆酸盐能力分析[J]. 食品工业科技,2023,44(2):1−8

    HE X H, SHI Z J, WANG A N, et al. Optimization of extraction process of flavonoids from Aronia melanocarpas' leaves and analysis of their antioxidant and bile salt binding capacity[J]. Science and Technology of Food Industry,2023,44(2):1−8.
    [17]
    黄雪薇, 雷嗣超, 涂芬, 等. 板栗壳黄酮结构分析及其对胰脂肪酶活力的抑制作用[J]. 食品科学,2021,42(21):111−118

    HUANG X W, LEI S C, TU F, et al. Structure analysis of flavonoid from chestnut shell and its inhibitory effect on pancreatic lipase activity[J]. Food Science,2021,42(21):111−118.
    [18]
    肖欣欣. 海带乳酸发酵制品的研制及贮藏期间菌相变化的研究[D]. 福州:福建农林大学, 2012

    XIAO X X. Preparation of lactic acid fermented products from kelp and study on changes of microfacies during storage[D]. Fuzhou:Fujian Agriculture and Forestry University, 2012.
    [19]
    王惠敏, 李茜, 蔡甜甜, 等. 亚麻籽粕抗氧化肽制备工艺的响应面法优化[J]. 食品工业科技,2018,39(3):220−225

    WANG H M, LI X, CAI T T, et al. Optimization of preparation of antioxidant peptides from flaxseed meal by response surface method[J]. Science and Technology of Food Industry,2018,39(3):220−225.
    [20]
    赵谋明. 食物蛋白酶解理论与技术[M]. 北京:化学工业出版社, 2017:125−137

    ZHAO M M. Theory and technique of food protease hydrolysis[M]. Beijing:Chemical Industry Press, 2017:125−137.
    [21]
    ZORIĆ N, KOPJAR N, RODRIGUEZ J V, et al. Protective effects of olive oil phenolics oleuropein and hydroxytyrosol against hydrogen peroxide-induced DNA damage in human peripheral lymphocytes[J]. Acta Pharmaceutica (Zagreb, Croatia),2021,71(1):131−141. doi: 10.2478/acph-2021-0003
    [22]
    项群然, 崔树茂, 唐鑫, 等. 协同发酵对发酵乳中益生菌活菌数及酸乳品质的影响[J]. 食品与发酵工业, 2023, 49(6):18−26

    XIANG Q R, CUI S M, TANG X, et al. Effects of co-fermentation on the viable count of probiotics in the fermented milk and the quality of fermented milk[J]. Food and Fermentation Industries, 2023, 49(6):18−26.
    [23]
    赵吉春, 余洁, 谭正卫, 等. 发酵十字花科蔬菜中硫代葡萄糖苷代谢研究进展[J]. 食品科学,2021,42(23):381−389 doi: 10.7506/spkx1002-6630-20210518-223

    ZHAO J C, YU J, TAN Z W, et al. Advances in glucosinolates metabolism in fermented cruciferous vegetables[J]. Food Science,2021,42(23):381−389. doi: 10.7506/spkx1002-6630-20210518-223
    [24]
    LIU L, ZHANG R F, DENG Y Y, et al. Fermentation and complex enzyme hydrolysis enhance total soluble phenolic and antioxidant activity of rice bran pretreated by steaming with α-amylase[J]. Food Chemistry,2017,221:636−643. doi: 10.1016/j.foodchem.2016.11.126
    [25]
    RODRIGUEZ H, CURIEL J A, MARIA L J, et al. Food phenolics and lactic acid bacteria[J]. International Journal of Food Microbiology,2009,132(23):79−90.
    [26]
    陈苏婉, 汤颖秀, 邢政, 等. 超声波辅助副干酪乳杆菌发酵脱脂乳粉制备多肽的动力学研究[J]. 食品工业科技,2019,40(11):133−138 doi: 10.13386/j.issn1002-0306.2019.11.023

    CHEN S W, TANG Y X, XING Z, et al. Kinetic study on ultrasound-assisted fermentation of peptides from skimmed milk powder by Lactobacillus paracasei[J]. Science and Technology of Food Industry,2019,40(11):133−138. doi: 10.13386/j.issn1002-0306.2019.11.023
    [27]
    崔蕾, 舒泉湧, 朱爱华, 等. 不同月份短柄五加叶中总黄酮含量测定[J]. 广东化工,2021,48(9):239−241

    CUI L, SHU Q Y, ZHU A H, et al. Determination of total flavonoids in the leaves of Acanthopanax senticosus in different months[J]. Guangdong Chemical Industry,2021,48(9):239−241.
    [28]
    VIVEK K, MISHRA S, PRADHANR C, et al. Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice[J]. LWT-Food Science and Technology,2019,108:55−60. doi: 10.1016/j.lwt.2019.03.046
    [29]
    杨姗姗, 李彤, 乌日娜, 等. 下一代益生菌对肥胖人群肠道微生物调控作用的研究进展[J]. 中国食品学报,2021,21(4):356−363

    YANG S S, LI T, WU R N, et al. Research progress of next generation probiotics on the regulation of intestinal microbiota in obese population[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(4):356−363.
    [30]
    常青, 郑宝东, 张怡, 等. 生姜抗性淀粉对高脂血症大鼠降血脂作用和胆汁酸代谢的影响[J]. 食品科学,2022,43(7):147−157

    CHANG Q, ZHENG B D, ZHANG Y, et al. Effect of ginger resistant starch on hypolipidemia and bile acid metabolism in hyperlipidemia rats[J]. Food Science,2022,43(7):147−157.
    [31]
    NICCOLAI A, SHANNON E, ABUGHANNAM N, et al. Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products[J]. Journal of Applied Phycology,2019,31(2):1077−1083. doi: 10.1007/s10811-018-1602-3
    [32]
    LU X N, ROSS C F, POWERS J R, et al. Determination of total phenolic content and antioxidant activity of garlic ( Allium sativum) and elephant garlic( Allium ampeloprasum) by attenuated total reflectance-Fourier transformed infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry,2011,59(10):5215−5221. doi: 10.1021/jf201254f
    [33]
    LI Z, TENG J, LIU Y, et al. Enhanced antioxidant activity forpple juice fermented with Lactobacillus plantarum ATCC14917[J]. Molecules,2018,24(1):51−63. doi: 10.3390/molecules24010051
    [34]
    MATTHEW D W, IAIN A B R, J. CRAIG R, et al. The modulation of pancreatic lipase activity by alginates[J]. Food Chemistry,2014,146:478−484.
    [35]
    JUREMA S M, DE S F M, RODRIGUES S G, et al. Coffee simulated inhibition of pancreatic lipase and antioxidant activities:Effect of milk and decaffeination[J]. Food Research International,2022,160:111730. doi: 10.1016/j.foodres.2022.111730
    [36]
    郭晶晶, 乌日娜, 安飞宇, 等. 植物乳杆菌WW对高脂血症大鼠体脂的影响[J]. 食品科学,2019,40(9):139−145

    GUO J J, WU R N, AN F Y, et al. Effects of Lactobacillus plantarum WW on body fat in hyperlipidemia rats[J]. Food Science,2019,40(9):139−145.
    [37]
    张旻. 降胆固醇功能乳杆菌的筛选及降解机理研究[D]. 上海:上海交通大学, 2007:13-15

    ZHANG M. Screening of lactobacillus for efficient cholesterol-lowering and study on its mechanisms[D]. Shanghai:Shanghai Jiao Tong University, 2007:13-15.
    [38]
    黎沙. 基于光谱法结合分子模拟技术研究黄酮化合物对胰脂肪酶的抑制作用机制[D]. 南昌:南昌大学, 2021:6-7

    LI S. Study on the inhibitory effect of flavonoids on pancreatic lipase by spectroscopy combined with molecular simulation technology[D]. Nanchang:Nanchang University, 2021:6-7.
    [39]
    祝闻旸. 海带腥味物质分析与生物法脱腥研究[D]. 无锡:江南大学, 2022:10-13

    ZHU W Y. Study on substance analysis and removal of fishy smell of kelp by biological method[D]. Wuxi:Jiangnan University, 2022:10-13.
    [40]
    张琦梦, 顾华蓉, 穆洪涛, 等. 基于GC-MS分析传统鱼露发酵过程中挥发性风味物质变化[J]. 中国酿造,2022,41(9):242−251

    ZHANG Q M, GU H R, MU H T, et al. Analysis of volatile flavor components of traditional Chinese fish sauce during fermentation by GC-MS[J]. China Brewing,2022,41(9):242−251.
    [41]
    顾赛麒, 胡彬超, 张月婷, 等. 基于电子鼻、气-质联用技术和感官评价方法优化海带发酵脱腥工艺[J]. 食品与发酵工业,2020,46(19):124−129

    CAI S Q, HU B C, ZHANG Y T, et al. The deodorization process of kelp fermentation was optimized based on electronic nose, gas-mass coupling technology and sensory evaluation[J]. Food and Fermentation Industries,2020,46(19):124−129.
  • Cited by

    Periodical cited type(2)

    1. 贾成雨,刘畅,林洪,曹立民,王凯强,隋建新. 鲨鱼单域抗体融合蛋白的克隆表达、稳定性及检测性能研究. 食品安全质量检测学报. 2024(03): 117-124 .
    2. 刘明刚,杨慧娟,白宇琛,窦磊娜,于雪芝,王战辉,沈建忠. 单域抗体在有害小分子检测领域的研究进展. 食品安全质量检测学报. 2021(19): 7804-7812 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (126) PDF downloads (11) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return