Citation: | YANG Suhua, JIN Linxuan, NIU Chenyu, et al. Preparation and Properties of Lysozyme Self-assembled Nanofibrils Films[J]. Science and Technology of Food Industry, 2023, 44(21): 251−257. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120218. |
[1] |
LISITSYN A, SEMENOVA A, NASONOVA V, et al. Approaches in animal proteins and natural polysaccharides application for food packaging:edible film production and quality estimation[J]. Polymers (Basel),2021,13(10):1592. doi: 10.3390/polym13101592
|
[2] |
PEYDAYESH M, BAGNANI M, MEZZENGA R. Sustainable bioplastics from amyloid fibril-biodegradable polymer blends[J]. ACS Sustainable Chemistry & Engineering,2021,9(35):11916−11926.
|
[3] |
OLIVER W T, WELLS J E, MAXWELL C V. Lysozyme as an alternative to antibiotics improves performance in nursery pigs during an indirect immune challenge[J]. Journal of Animal Science,2014,92(11):4927−4934. doi: 10.2527/jas.2014-8033
|
[4] |
WEI Z X, WU S H, XIA J J, et al. Enhanced antibacterial activity of hen egg-white lysozyme against Staphylococcus aureus and Escherichia coli due to protein fibrillation[J]. Biomacromolecules,2021,22(2):890−897. doi: 10.1021/acs.biomac.0c01599
|
[5] |
ZHANG Z S, ZHOU X, WANG D, et al. Lysozyme-based composite membranes and their potential application for active packaging[J]. Food Bioscience,2021,43:101078. doi: 10.1016/j.fbio.2021.101078
|
[6] |
鲁奇林, 赵宏侠, 冯叙桥, 等. 溶菌酶复合涂膜贮藏鲜枣工艺研究[J]. 中国食品学报,2015,15(1):115−122 doi: 10.16429/j.1009-7848.2015.01.018
LU Q L, ZHAO H X, FENG X Q, et al. Research of lysozyme complex coating on postharvest storage quality of fresh jujube[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(1):115−122. doi: 10.16429/j.1009-7848.2015.01.018
|
[7] |
AMINLARI L, HASHEMI M M, AMINLARI M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods[J]. Journal of Food Science,2014. 79(6):R1077−R1090. doi: 10.1111/1750-3841.12460
|
[8] |
BOUAZIZ Z, SOUSSAN L, JANOT J M, et al. Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide[J]. Colloids and Surfaces B:Biointerfaces,2017,157:10−17. doi: 10.1016/j.colsurfb.2017.05.050
|
[9] |
KAVANAGH C M, CLARK A H, ROSS-MURPHY S B. Heat-induced gelation of globular proteins:Part 3. Molecular studies on low pH b-lactoglobulin gels[J]. Biological Macromolecules,2000,28(1):41−50. doi: 10.1016/S0141-8130(00)00144-6
|
[10] |
FENG Z B, WU G X, LIU C H, et al. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning[J]. Food Hydrocolloids,2018,79:179−188. doi: 10.1016/j.foodhyd.2017.12.028
|
[11] |
CAO Y P, MEZZENGA R. Food protein amyloid fibrils:Origin, structure, formation, characterization, applications and health implications[J]. Advances in Colloid and Interface Science,2019,269:334−356. doi: 10.1016/j.cis.2019.05.002
|
[12] |
HOPPENREIJS L J G, FITZNER L, RUHMLIED T, et al. Engineering amyloid and amyloid-like morphologies of β-lactoglobulin[J]. Food Hydrocolloids,2022,124:107301. doi: 10.1016/j.foodhyd.2021.107301
|
[13] |
CLOSE W, NEUMANN M, SCHMIDT A, et al. Physical basis of amyloid fibril polymorphism[J]. Nature Communications,2018,9(1):699. doi: 10.1038/s41467-018-03164-5
|
[14] |
PEYDAYESH M, MEZZENGA R. Protein nanofibrils for next generation sustainable water purification[J]. Nature Communications,2021,12(1):3248. doi: 10.1038/s41467-021-23388-2
|
[15] |
ZHOU X M, SHIMANOVICH U, HERLING T W, et al. Enzymatically active microgels from self-assembling protein nanofibrils for microflow chemistry[J]. ACS Nano,2015,9(6):5772−5781. doi: 10.1021/acsnano.5b00061
|
[16] |
FRANCE K J D, KUMMER N, REN Q, et al. Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology[J]. Biomacromolecules,2020,21(12):5139−5147. doi: 10.1021/acs.biomac.0c01267
|
[17] |
LIU L L, LI X T, ZHANG N, et al. Novel soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly:Outstanding nanocarriers for hydrophobic nutraceuticals[J]. Food Hydrocolloids,2019,91(1):246−255.
|
[18] |
XU Z J, SHAN G C, HAO N R, et al. Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate[J]. Biomaterials,2022,283:121455. doi: 10.1016/j.biomaterials.2022.121455
|
[19] |
RAHAMTULLAH, MISHRA R. Nicking and fragmentation are responsible for alpha-lactalbumin amyloid fibril formation at acidic pH and elevated temperature[J]. Protein Science,2021,30(9):1919−1934. doi: 10.1002/pro.4144
|
[20] |
张赟彬, 江娟. 大豆分离蛋白可食膜的生产工艺及性能表征[J]. 食品科学,2012,33(6):100−104
ZHANG Y B, JIANG J. Preparation and performance characterization of soy protein isolate edible film[J]. Food Science,2012,33(6):100−104.
|
[21] |
MUSTAPHA R, ZOUGHAIB A, GHADDAR N, et al. Modified upright cup method for testing water vapor permeability in porous membranes[J]. Energy,2020,195(15):117057.
|
[22] |
LIU J, MA Z X, LIU Y C, et al. Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications[J]. Food Packaging and Shelf Life,2022,31:100800. doi: 10.1016/j.fpsl.2021.100800
|
[23] |
BOLISETTY S, ADAMCIL J, MEZZENGA R. Snapshots of fibrillation and aggregation kinetics in multistranded amyloid[J]. Soft Matter,2010,7(2), 493−499.
|
[24] |
MISHRA R, SÖRGJERD K, NYSTRÖM S, et al. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion[J]. Journal of Molecular Biology,2007,366(3):1029−1044. doi: 10.1016/j.jmb.2006.11.084
|
[25] |
XIANG N, WU S H, WEI Z X, et al. Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification[J]. Food Chemistry,2021,353:129420. doi: 10.1016/j.foodchem.2021.129420
|
[26] |
MALMOS K G, BLANCAS-MEJIA L M, WEBER B, et al. ThT 101:A primer on the use of thioflavin T to investigate amyloid formation[J]. Amyloid,2017,24(1):1−16. doi: 10.1080/13506129.2017.1304905
|
[27] |
TANG C H, SUN X, FOEGENDING E A, et al. Modulation of physicochemical and conformational properties of kidney bean vicilin (phaseolin) by glycation with glucose:Implications for structure-function relationships of legume vicilins[J]. Journal of Agricultural and Food Chemistry,2011,59(18):10114−10123. doi: 10.1021/jf202517f
|
[28] |
YOUSSEF L, PATRA D. Interaction of carbon nanotubes with curcumin:Effect of temperature and pH on simultaneous static and dynamic fluorescence quenching of curcumin using carbon nanotubes[J]. Luminescence,2020,35(5):659−666. doi: 10.1002/bio.3770
|
[29] |
CHEN F P, ZHANG N, TANG C H. Food proteins as vehicles for enhanced water dispersibility, stability and bioaccessibility of coenzyme Q10[J]. LWT - Food Science and Technology,2016,72:125−133. doi: 10.1016/j.lwt.2016.04.040
|
[30] |
孔爱荣. 香兰素及金属离子与溶菌酶相互作用的研究[D]. 江苏:扬州大学, 2010
KONG A R. Studies on the interaction between vanillin, metal ions and lysozyme [D]. Yangzhou:Yangzhou University, 2010.
|
[31] |
SOTHORNVIT R, OLSEN C W, MCHUGH T H, et al. Tensile properties of compression-molded whey protein sheets:Determination of molding condition and glycerol-content effects and comparison with solution-cast films[J]. Journal of Food Engineering,2007,78(3):855−860. doi: 10.1016/j.jfoodeng.2005.12.002
|
[32] |
王金梅. 大豆蛋白热聚集行为及界面、乳化性质研究[D]. 广州:华南理工大学, 2012
WANG J M. Thermally aggregation behaviors, interfacial and emulsifying properties of soy protein [D]. Guangzhou:South China University of Technology, 2012.
|
[33] |
周钦育, 黄燕燕, 赵珊, 等. 蛋清溶菌酶的提取及其酶学性质探究[J]. 中国食品学报,2021,21(4):148−158 doi: 10.16429/j.1009-7848.2021.04.018
ZHOU Q Y, HUANG Y Y, ZHAO S, et al. Studies on extraction and enzymatic properties of egg white lysozyme[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(4):148−158. doi: 10.16429/j.1009-7848.2021.04.018
|
[34] |
MOON K D, DELAQUIS P, TOIVONEN P, et al. Effect of vanillin on the fate of Listeria monocytogenes and Escherichia coli O157:H7 in a model apple juice medium and in apple juice[J]. Food Microbiology,2006,23(2):169−174. doi: 10.1016/j.fm.2005.02.005
|
1. |
何海华,刘邵凡. 食用菌多糖与运动功能关系研究进展. 江苏调味副食品. 2024(02): 6-9 .
![]() | |
2. |
林雨蝶,李治赫,张付云. 丝状真菌胞外多糖的研究进展. 农产品加工. 2024(12): 104-107 .
![]() | |
3. |
陈秉彦,林晓姿,李维新,杨超,何志刚. 乳酸菌联合酿酒酵母发酵对龙须菜多糖结构特征及抗氧化性的影响. 食品科学技术学报. 2023(03): 107-115+147 .
![]() | |
4. |
桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
![]() | |
5. |
刘志洋,孙琪瑶,宫世平,徐建舒,王亚慧,张铭泽,于悦. 鹿皮胶多糖对酒精性肝损伤的保护作用. 食品工业科技. 2021(23): 334-340 .
![]() | |
6. |
赵可,李汉清,蒋嘉烨,可燕. 关白附多糖纯化工艺优化及抑制结肠癌肝转移. 世界科学技术-中医药现代化. 2021(09): 3281-3288 .
![]() | |
7. |
张明,王瑶,马超,王崇队,杨立风,范祺,张博华,孟晓峰. 芦笋老茎多糖体外抗氧化及降血糖作用研究. 食品科技. 2020(02): 219-224 .
![]() | |
8. |
贾杰,郑瑞峰,李淑兰,张道敬. 多粘类芽孢杆菌HY96-2胞外多糖的分离纯化. 分析科学学报. 2020(01): 42-46 .
![]() | |
9. |
张喜康,赵宇慧,刘军,李佩佩,马露,王聪,王丽萍,刘敦华. 枸杞不同生长期多糖的理化特性及结构分析. 食品科学. 2020(16): 158-164 .
![]() | |
10. |
野津,张文森,王知斌,杨春娟,匡海学. DEAE-52在中药多糖分离纯化中的应用. 化学工程师. 2019(11): 43-45+22 .
![]() | |
11. |
赵明智,吕延成. 古尼虫草纯化多糖免疫调节活性研究. 食品安全质量检测学报. 2018(10): 2493-2500 .
![]() | |
12. |
孙玉姣,侯淑婷,鱼喆喆,崔湘怡,谭梓杉,戚歆宇,康雨芳. 宁夏红果枸杞多糖提取及其体外抗氧化活性研究. 陕西科技大学学报. 2018(05): 39-45 .
![]() |