Citation: | LUO Xiujuan, LUO Yanghe, LI Guanli, et al. Speculate on the Formation Mechanism of Nonanal and Decanal from LPC (18:1) and LPE (18:1) in the Steaming of Chinese Water Chestnut Based on the in Vitro Model Study[J]. Science and Technology of Food Industry, 2023, 44(18): 123−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120189. |
[1] |
李官丽, 伍淑婕, 罗秀娟, 等. 基于SPME-GC-MS萃取荸荠挥发性风味物质研究[J]. 食品研究与开发,2022,43(14):70−78. [LI G L, WU S J, LUO X J, et al. Extraction of volatile flavor substances from Chinese water chestnut based on SPME-GC-MS[J]. Food Reserch and Development,2022,43(14):70−78.
LI G L, WU S J, LUO X J, et al. Extraction of volatile flavor substances from Chinese water chestnut based on SPME-GC-MS[J]. Food Reserch and Development. 2022, 43(14): 70-78.
|
[2] |
ANTEQUERA T, LÓPEZ-BOTE C J, CÓRDOBA J J, et al. Lipid oxidative changes in the processing of Iberian pig hams[J]. Food Chemistry,1992,45(2):105−110. doi: 10.1016/0308-8146(92)90018-W
|
[3] |
BRUNA J M , ORDONEZ J A , FERNANDEZ M, et al. Microbial and physico-chemical changes during the ripening of dry fermented sausages superficially inoculated with or having added an intracellular cell-free extract of Penicillium aurantiogriseum[J]. Meat Science,2001,59(1):87−96. doi: 10.1016/S0309-1740(01)00057-2
|
[4] |
ANDRES A I, CAVA R, VENTANAS J, et al. Lipid oxidative changes throughout the ripening of dry-cured Iberian hams with different salt contents and processing conditions[J]. Food Chemistry,2004,84(3):375−381. doi: 10.1016/S0308-8146(03)00243-7
|
[5] |
USDA. National Nutrient Database for Standard [EB/OL]. https://ndb.nal.usda.gov/ndb/foods/show/302149 (most recent access April 12, 2021)
|
[6] |
PIKUL J, LESZCZYNSKI D E, KUMMEROW F A. Relative role of phospholipids, triacylglycerols, and cholesterol esters on malonaldehyde formation in fat extracted from chicken meat[J]. Journal of Food Science,1984,49(3):704−708. doi: 10.1111/j.1365-2621.1984.tb13192.x
|
[7] |
SASAKI K, MITSUMOTO M, KAWABATA K. Relationship between lipid peroxidation and fat content in Japanese Black beef longissimus muscle during storage[J]. Meat Science,2001,59(4):407−410. doi: 10.1016/S0309-1740(01)00093-6
|
[8] |
HUAN Y J, ZHOU G H, ZHAO G M, et al. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing[J]. Meat Science,2005,71(2):291−299. doi: 10.1016/j.meatsci.2005.03.025
|
[9] |
PENG C Y, LAN C H, LIN P C, et al. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes[J]. Journal of Hazardous Materials,2017,324:160−167. doi: 10.1016/j.jhazmat.2016.10.045
|
[10] |
ZHANG J H, CAO J, PEI Z S, et al. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS[J]. Food Research International,2019,123:217−225. doi: 10.1016/j.foodres.2019.04.069
|
[11] |
PORTER N A. Mechanisms for the autoxidation of polyunsaturated lipids[J]. Accounts of Chemical Research,1986,19(9):262−268. doi: 10.1021/ar00129a001
|
[12] |
PAQUETTE G, KUPRANYCZ D B, VAN DE VOORT F R. The mechanisms of lipid autoxidation I. Primary oxidation products[J]. Canadian Institute of Food Science and Technology Journal,1985,18(2):112−118. doi: 10.1016/S0315-5463(85)71767-1
|
[13] |
AHMED M, PICKOVA J, AHMAD T, et al. Oxidation of lipids in foods[J]. Sarhad Journal of Agriculture,2016,32(3):230−238. doi: 10.17582/journal.sja/2016.32.3.230.238
|
[14] |
SILVAGNI A, FRANCO L, BAGNO A, et al. Thermo-induced lipid oxidation of a culinary oil: The effect of materials used in common food processing on the evolution of oxidised species[J]. Food Chemistry,2012,133(3):754−759. doi: 10.1016/j.foodchem.2012.01.088
|
[15] |
FRANKEL E N. Recent advances in lipid oxidation[J]. Journal of the Science of Food and Agriculture,1991,54(4):495−511. doi: 10.1002/jsfa.2740540402
|
[16] |
SCHAICH K M. Lipid oxidation: Theoretical aspects[J]. Bailey's Industrial Oil and Fat Products,2005,6(6):269−355.
|
[17] |
IGENE J O, PEARSON A M, DUGAN L R, et al. Role of triglycerides and phospholipids on development of rancidity in model meat systems during frozen storage[J]. Food Chemistry,1980,5(4):263−276. doi: 10.1016/0308-8146(80)90048-5
|
[18] |
ZAMORA R, HIDALGO F J. Contribution of lipid oxidation products to acrylamide formation in model systems[J]. Journal of Agricultural and Food Chemistry,2008,56(15):6075−6080. doi: 10.1021/jf073047d
|
[19] |
刘欢. 北京烤鸭关键挥发性风味物质鉴别及其形成机制研究[D]. 北京: 中国农业科学院, 2020
LIU H. Identification of key volatile flavor substances of Peking duck and their formation mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022.
|
[20] |
黄淑霞. 反-2-壬烯醛对啤酒新鲜度的影响与调控机制研究[D]. 无锡: 江南大学, 2017
HUANG S X. Effect of trans-2-nonenal on beer freshness and its regulation mechanism [D]. Wuxi: Jiangnan University, 2017.
|
[21] |
HUANG L S, KANG J S, KIN M R, et al. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte[J]. Journal of Agricultural and Food Chemistry,2008,56(4):1224−1232. doi: 10.1021/jf073016i
|
[22] |
HUANG L S, KIM M R, SOK D E. Regulation of lipoxygenase activity by polyunsaturated lysophosphatidylcholines or their oxygenation derivatives[J]. Journal of Agricultural and Food Chemistry,2008,56(17):7808−7814. doi: 10.1021/jf801082x
|
[23] |
HUANG L S, KIM M R, SOK D E. Linoleoyl lysophosphatidylcholine is an efficient substrate for soybean lipoxygenase-1[J]. Archives of Biochemistry and Biophysics,2006,455(2):119−126. doi: 10.1016/j.abb.2006.09.015
|
[24] |
CAO J, JIANG X, CHEN Q Y, et al. Oxidative stabilities of olive and camellia oils: Possible mechanism of aldehydes formation in oleic acid triglyceride at high temperature[J]. LWT,2020,118(C):108858.
|
[25] |
程华峰, 林琳, 葛孟甜, 等. 3种生态环境中华绒螯蟹肉挥发性风味特征的比较[J]. 食品与发酵工业,2019,45(23):247−256. [CHENG H F, LIN L, GE M T, et al. Comparison of volatile flavor characteristics of Chinese mitten crab meat in three ecological environments[J]. Food and Fermentation Industries,2019,45(23):247−256.
CHENG H F, LIN L, GE M T, et al. Comparison of volatile flavor characteristics of Chinese mitten crab meat in three ecological environments[J]. Food and Fermentation Industries, 2019, 45(23): 247-256.
|
[26] |
张唯, 高斌富, 常新, 等. 紫外法与碘量法测定食用植物油中过氧化值的比较[J]. 中国油脂,1993(5):37−39. [ZHANG W, GAO B F, CHANG X, et al. Comparison of ultraviolet and iodometric methods for the determination of peroxide in edible vegetable oils[J]. China Oils Fats,1993(5):37−39.
ZHANG W, GAO B F, CHANG X, et al. Comparison of ultraviolet and iodometric methods for the determination of peroxide in edible vegetable oils[J]. China Oils Fats. 1993(5): 37-39.
|
[27] |
青岛啤酒股份有限公司. 瓶内甲酯化-顶空固相微萃取-气相色谱质谱联用测定啤酒中游离脂肪酸的检测方法: 中国, 102539609B[P]. 2014-07-16
Tsingtao Brewery Company Limited. Determination of free fatty acids in beer by in-bottle methylation with headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry: China, 102539609B[P]. 2014-07-16.
|
[28] |
李官丽, 聂辉, 苏可珍, 等. 基于感官评价和电子鼻分析不同蒸煮时间荸荠挥发性风味物质[J]. 食品工业科技,2020,41(15):1−7,14. [LI G L, NIE H, SU K Z, et al. Analysis of volatile flavor compounds in Water chestnut with different steaming and cooking time based on sensory evaluation and electronic nose[J]. Science and Technology of Food Industry,2020,41(15):1−7,14.
LI G L, NIE H, SU K Z, et al. Analysis of volatile flavor compounds in Water chestnut with different steaming and cooking time based on sensory evaluation and electronic nose. Science and Technology of Food Industry, 2020, 41(15): 1-7.
|
[29] |
LEA C H. Recent developments in the study of oxidative deterioration of lipids[J]. Chem. Ind. (London),1953,49:1303−1309.
|
[30] |
ESTÉVEZ M, MORCUENDE D, VENTANAS S, et al. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2003,51(11):3429−3435. doi: 10.1021/jf026218h
|
[31] |
REIS A, SPICKETT C M. Chemistry of phospholipid oxidation[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2012,1818(10):2374−2387. doi: 10.1016/j.bbamem.2012.02.002
|
[32] |
PORTER N A, CALDWELL S E, MILLS K A. Mechanisms of free radical oxidation of unsaturated lipids[J]. Lipids,1995,30(4):277−290. doi: 10.1007/BF02536034
|
[33] |
BALAKRISHNA M, MA J, LIU T, et al. Hydrolysis of oxidized phosphatidylcholines by crude enzymes from chicken, pork and beef muscles[J]. Food Chemistry,2020,313:125956. doi: 10.1016/j.foodchem.2019.125956
|
[34] |
LU F S H, NIELSEN N S, BARON C P, et al. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification[J]. Critical Reviews in Food Science and Nutrition,2017,57(10):2057−2070. doi: 10.1080/10408398.2014.925422
|